Abstract
目的
探讨牙龈卟啉单胞菌(Pg)感染对食管鳞癌细胞(ESCC)内IFNGR1棕榈酰化位点突变的机制及临床意义。
方法
Western blot检测Pg感染不同时间(24、48 h)ESCC细胞KYSE30及KYSE70中IFNGR1蛋白量表达水平。2-BP检测IFNGR1的棕榈酰化作用。构建IFNGR1-WT和IFNGR1-C122A棕榈酰化位点突变位点质粒,建立IFNGR1-WT和IFNGR1-C122A稳定细胞系,分别用Pg感染IFNGR1-WT和IFNGR1-C122A细胞,并分为4组:IFNGR1-WT、IFNGR1-C122A、IFNGR1-WT+Pg和IFNGR1-C122A+Pg组。免疫荧光和click-it实验检测IFNGR1在122位点发生棕榈酰化,以及Pg促进IFNGR1在ESCC内发生棕榈酰化。利用平板克隆、划痕实验及Transwell法检测Pg感染前后,IFNGR1-WT和IFNGR1-C122A稳转细胞株的体外增殖、迁移与侵袭能力差异。免疫荧光实验检测IFNGR1与溶酶体标记物LAMP2共定位情况。免疫组化检测50例ESCC组织中Pg感染与IFNGR1蛋白的表达情况;采用卡方检验及R Studio软件分析二者与ESCC患者临床病理特征及生存预后之间的相关性。
结果
Pg感染ESCC下调IFNGR1的蛋白表达。IFNGR1在122位点发生棕榈酰化。Pg促进IFNGR1在ESCC内棕榈酰化。与IFNGR1-WT组相比,IFNGR1-WT+Pg组体外增殖253±6.245 vs52±2.45、迁移(0.7816±0.0071)% vs(0.4347±0.0366)% 及侵袭709.33±14.57 vs 356.3±17.39能力均显著增强(P < 0.05);与IFNGR1-C122A组相比,IFNGR1-C122A+Pg组细胞体外增殖137.33±4.726 vs 29.67±3.055、迁移(0.7477±0.0057)% vs(0.2406±0.0028)%及侵袭587.33±5.033 vs 67.33±2.517能力同样均显著增强(P < 0.05)。与IFNGR1-WT+Pg组相比,IFNGR1-C122A+Pg体外增殖137.33±4.726 vs 253±6.245、迁移(0.7477± 0.0057)% vs(0.7816±0.0071)%及侵袭587.33±5.033 vs 709.33±14.57能力均显著降低(P < 0.05)。Pg及ZDHHC3促进IFNGR1在溶酶体内降解;IFNGR1与Pg表达呈负性相关,且IFNGR1的表达降低与更差的病理特征及生存预后相关。
结论
Pg感染ESCC下调IFNGR1蛋白表达量,同时诱导IFNGR1棕榈酰化,促进ESCC恶性化进展;IFNGR1的棕榈酰化位点突变减少ESCC增殖、迁移和侵袭作用;Pg感染ESCC靶向IFNGR1到溶酶体内降解可能是由于棕榈酰化作用,因此,清除Pg或抑制棕榈酰化作用能有效抑制食管癌的恶性进展。
Keywords: 食管鳞癌, 牙龈卟啉单胞菌, IFNGR1, 棕榈酰化, 增殖, 迁移, 侵袭
Abstract
Objective
To investigate the effect of Porphyromonas gingivalis (Pg) infection on IFNGR1 palmitoylation and biological behaviors of esophageal squamous cell carcinoma (ESCC) cells and the clinical implications.
Methods
The expression levels of IFNGR1 protein in ESCC cell lines KYSE30 and KYSE70 were detected using Western blotting at 24 and 48 h after Pg infection, and 2-BP was used to detect IFNGR1 palmitoylation in the cells. KYSE70 cells with wild-type IFNGR1 (IFNGR1-WT cells) and with IFNGR1-C122A palmitoylation site mutation induced by site-specific mutagenesis (IFNGR1-C122A cells) were both infected with Pg, and the changes in palmitoylation of IFNGR1-C122A were analyzed using immunofluorescence and Click-iT assays. The changes in proliferation, migration and invasion ability of the infected cells were evaluated using plate cloning assay, scratch assay and Transwell assay, and IFNGR1 co-localization with lysosomal marker LAMP2 was dected using immunofluorescence assay. Immunohistochemistry was used to detect Pg infection and IFNGR1 protein expression in 50 ESCC tissues, and their correlation with the clinicopathological characteristics and survival outcomes of the patients was analyzed.
Results
Pg infection down-regulated the protein expression of IFNGR1 in ESCC and promoted IFNGR1 palmitoylation at site 122. In IFNGR1-WT cells, Pg infection significantly enhanced cell proliferation, migration and invasion (P < 0.05). Similarly, Pg also significantly promoted proliferation, migration and invasion of IFNGR1-C122A cells, but to a lesser extent as compared with the wild-type cells (P < 0.05). Immunofluorescence assay showed that Pg and ZDHHC3 promoted IFNGR1 degradation within the lysosome. Immunohistochemical studies of the ESCC tissue samples showed a negative correlation between IFNGR1 and Pg expression, and a reduced IFNGR1 expression was correlated with a poorer survival outcome of the patient.
Conclusion
Pg infection enhances IFNGR1 palmitoylation to promote progression of ESCC, and elimination of Pg and inhibiting IFNGR1 palmitoylation may effectively control ESCC progression.
Keywords: esophageal squamous carcinoma, Porphyromonas gingivalis, IFNGR1, palmitoylation, proliferation, migration, invasion
食管癌作为一种常见的恶性消化道肿瘤,由于早期症状不明显,使该病发现较晚,死亡率相对较高[1]。尽管近年来我国食管癌发病率逐渐下降[2],但食管鳞状细胞癌(ESCC)仍然是发展中国家食管癌的主要组织学亚型[3]。牙龈卟啉单胞菌(Pg)作为慢性牙周炎的关键病原菌,可引起多种慢性炎症和微生物菌群失调等疾病[4-7]。有研究表明Pg的丰度是ESCC和牙龈鳞状细胞癌的高风险因素之一[8, 9]。在本团队前期研究中发现,Pg可作为ESCC诊断和预后的潜在血清生物标志物[10],但对于Pg促进ESCC恶性进展的机制还尚不清楚。因此,探索Pg促进ESCC发生发展预后相关的基因以及ESCC的发病机制十分重要。
IFN-γ(Interferon Gammol/La)是一种由T细胞和自然杀伤细胞产生的细胞因子,可参与抗原呈递作用、免疫系统激活以及调控肿瘤免疫微环境等生理活动,当IFN-γ功能缺失或突变时,将导致免疫逃避[11-14]。由免疫细胞产生的IFN- γ和由靶细胞表达的IFNGR1(Interferon Gammol/La Receptor 1)结合后,激活JAKSTAT信号通路,在抗肿瘤的过程中起着至关重的作用[15-17]。已有文献报道称缺乏IFN-γ或IFNGR1将促进肿瘤的生长[18],这表明IFNGR1的下调会增强癌细胞逃逸。有文献报道称在结直肠癌内,由于IFNGR1的棕榈酰化作用使IFNGR1在溶酶体内降解从而产生肿瘤免疫逃逸[19]。但IFNGR1是否在ESCC内也有同样的效应尚不明确,因此,研究IFNGR1对ESCC作用机制至关重要。
本研究主要探究Pg感染促进IFNGR1棕榈酰化,对ESCC细胞增殖、迁移和侵袭能力的影响,同时阐明Pg促进IFNGR1以溶酶体途径降解的机制,以明确IFNGR1在ESCC恶性化进展中的作用,为Pg促进IFNGR1下调对ESCC预测及预后判断提供理论依据。
1. 材料和方法
1.1. 材料
食管鳞状细胞癌KYSE30、KYSE70、KYSE140、KYSE150、TE1细胞,肺癌PC9、A549细胞及Pg菌株ATCC 33277均来自河南省肿瘤表观遗传重点实验室。细胞培养基RPMI 1640(普诺塞),胰蛋白酶(索莱宝),胎牛血清(普诺塞)。一步法PAGE凝胶快速制备试剂盒(雅酶),细胞转染试剂Attractene(Qigene),IFNGR1抗体(PA5- 27841,Thermo Fisher),GAPDH(D110016-0100,生工),BCA定量试剂盒(CW0014S,Biorad),Omni- ECL™超灵敏化学发光检测试剂盒(SQ201,雅酶),SDS- PAGE Loading Buffer(5 ×)(CW0027,康为),RIPA(89900,Thermo Fisher),PageRuler ™预染蛋白分子Ladder(26616,Thermo Fisher)。2-bromopalmitate(2-BP,Sigma),Pg抗体(实验室自制),免疫组化试剂盒(北京中杉金桥)。Click-iT棕榈酸叠氮化物(C10265,Thermo Fisher),Click-iT蛋白反应缓冲试剂盒(C10276,Thermo Fisher),链霉亲和素(20347,Thermo Fisher),生物素-炔(764213,SigmaAldrich)。Matrigel凝胶(B-P-00002-4,Biozellen)。DAPI(S36968,Invitrogen),5% BSA封闭液(SW3015,索莱宝),Alexa Fluor ™ Plus 555(A30106,Thermo Fisher),Alexa Fluor ™ Plus 488(A48262,Thermo Fisher)。RT-PCR实验所需引物合成于郑州乐睿生物科技公司,具体引物序列见表 1。ZDHHC3(上游5'- GCGGTAGGCGTGTACGGT-3',下游5'- ATTGTGGATGAATACTGCC-3)' 购自Genecopoeia。
表 1.
IFNGR1引物序列
IFNGR1 primer sequence
| Gene | Primer sequences (5' to 3') |
| IFNGR1-Xba1F | CCTCCATAGAAGATTCTAGAGCGACCATGGCTCTCCTCTTTCTCC |
| IFNGR1-flag-BamH1R | TCCTTCGCGGCCGCGGATCCTTACTTGTCGTCATCGTCTTTG |
| IFNGR1-C122A-F | GCTGTAGCTCGAGATGGAAAAATTGGACCACCTAAAC |
| IFNGR1-C122A-R | GGTCCAATTTTTCCATCTCGAGCTACAGCAAATTC |
| CMV-F | CGCAAATGGGCGGTAGGCGTG |
| EF1a-R | CGGAGCCAGTACACGACATCAC |
1.2. 方法
1.2.1. 细胞培养
人源性ESCC细胞均选用RPMI 1640培养基(内含10%FBS,1%青链霉素);人源性肺癌细胞PC9及A549选用DMEM高糖培养基(内含10%FBS,1%青链霉素);待细胞密度达到70%~90%时,胰蛋白酶消化5 min后离心重悬并传代,常规传代后2天更换1次培养基。
1.2.2. 免疫组化检测ESCC组织中Pg和IFNGR1表达情况
对每个食管鳞癌蜡块做连续切片,每例ESCC组织取两张石蜡包埋切片(片厚3 μmol/L),经30 min二甲苯脱蜡及酒精梯度脱水后,柠檬酸抗原修复液(1×)(pH=6.0)高温修复,冷却至室温后每张切片滴加50 µL内源性过氧化物酶阻断剂,避光室温孵育10 min。山羊血清室温下封闭40 min。按1∶1000对Pg抗体和IFNGR1抗体进行稀释,4 ℃过夜。隔天PBS清洗后滴加适量的反应增强液,37 ℃孵育20 min。每张切片滴加适量增强酶标山羊抗兔lgG聚合物,室温孵育25 min,蒸馏水清洗。DAB和苏木素染色并在显微镜下观察。
1.2.3. 免疫组化评分标准
每个观察者对每个样品进行两次分析,并进行免疫组化反应性评分(染色强度评分×阳性细胞率评分)。染色强度以简单的数字等级分级,定义如下:阴性=0分;微弱=1分;中等=2分;强阳性=3分。染色细胞阳性率百分比定义为: < 5%=0分;5%~ 25%=1分;26%~50%=2分;51%~75%=3分;>75%=4分。免疫反应评分范围为0~12分,定义如下:0=阴性,1~3=弱阳性,4~8=中等阳性,9~12=强阳性。根据Pg和IFNGR1的表达水平将每个组织切片的评分分为高表达组(>4分)和低表达组(< 4分)。我们定义细胞质内出现弥漫性黄褐色染色颗粒即为Pg阳性表达;细胞膜出现弥漫性黄褐色染色颗粒,即为IFNGR1阳性表达。
1.2.4. 质粒构建
根据文献[19]报道,通过在棕榈酰化位点预测数据库CSS-Palm对IFNGR1的棕榈酰化位点进行验证[20-22],将IFNGR1棕榈酰化位点序列进行目的基因的制备,采用同源重组法构建载体,用丙氨酸取代了Cys122残基,构建通过定点诱变的IFNGR1-C122A突变体质粒。
1.2.5. PCR构建IFNGR1-WT和IFNGR1-C122A质粒
PCR反应体系为模版质粒1 ng+primer F 1 µL+primer R 1 µL+2×TransStart GoldPfu PCR SuperMix 25 µL,最后用ddH2O将体系补足50 µL。按如下条件设置PCR程序:94 ℃ 5 min;94 ℃ 30 s,60 ℃ 30 s;重复40个循环。
1.2.6. 构建IFNGR1-WT和IFNGR1-C122A稳转细胞株
将食管癌KYSE70按4×105个细胞接种于6 cm皿中,于37 ℃,5% CO2培养箱中常规培养。次日观察细胞状态,待细胞长至50%~60%对细胞进行转染。按照Attractene(QIAGEN)说明书,每6 cm皿依次加入200 µL无血清培养基、2.4 μg质粒以及9 µL转染试剂,轻轻混匀后室温静置15 min,加入完全培养基至4000 µL,混匀后常规培养48 h。在每皿中加入10 μmol(Lol·L)嘌呤霉素筛选出转染成功的细胞,通过激光共聚焦显微镜观察细胞转染效率。
1.2.7. Western blotting
将处理好的细胞加入预冷裂解液,冰上裂解20 min后刮板提取细胞总蛋白到1.5 mL离心管内储存。震荡5 min,4℃,12 000 r/min离心10 min,将上清液移至新离心管内。BCA法测定蛋白浓度,加入Loading buffer以及RIPA裂解液对蛋白进行配平,金属水浴锅100 ℃加热10 min使蛋白变性。将变性后的蛋白按每孔30 µg加到10%的十二烷基硫酸钠-聚丙烯酰胺凝胶(SDS-PAGE),90 V电泳90 min,将电泳后凝胶上的蛋白转移至聚偏二氟乙烯膜,80 V恒压转膜150 min。5%脱脂奶粉常温封闭90 min。抗IFNGR1(兔,1∶1000)、抗GAPDH(兔,1∶1000),4℃孵育过夜。TBST缓冲液(50 mmol/L Tris,1.37 mmol/L NaCl,pH= 8.0;0.05% Tween 20)清洗4次,5 min/次。HRP山羊抗兔IgG二抗(1∶ 2000)室温孵育90 min。ECL超敏显色液对聚偏二氟乙烯膜进行曝光检测。
1.2.8. 免疫荧光检测转染效率及IFNGR1和LAMP2共定位
取对数期IFNGR1-WT和IFNGR1-C122A细胞(含1×104)接种至荧光小皿,贴壁后按MOI=20感染Pg,常规培养48 h后,PBS清洗3遍,4%甲醛常温固定2 h,0.2% TritonX-100透化3 min,5%BSA室温封闭40 min。用1%BSA将IFNGR1稀释为1∶ 100,4 ℃孵育过夜。1% BSA将荧光二抗Alexa Fluor™ Plus 488稀释为1∶ 500,常温孵育1 h。1%BSA将LAMP2稀释为1∶ 100,4 ℃孵育过夜,1%BSA将荧光二抗Alexa Fluor™ Plus 555稀释为1∶500,常温孵育1 h。激光共聚焦显微镜检测前30 min在每皿滴加1滴DAPI对细胞核进行染色,对IFNGR1和LAMP2共定位进行检测。
1.2.9. 平板克隆检测IFNGR1-WT和IFNGR1-C122A细胞增殖能力
将IFNGR1-WT和IFNGR1-C122A细胞按每孔1000个KYSE70细胞接种于六孔板,待细胞贴壁后,按MOI=20感染Pg。当出现肉眼可见的克隆时,终止培养。PBS常规清洗3遍后,4%甲醛固定,结晶紫常温染色30 min,拍照后采用Image J对其计数。每组实验重复3遍,每个分组设置3个副孔,计算出每孔细胞数,求其平均值,Graphpad软件绘制柱状图。
1.2.10. 划痕实验检测IFNGR1-WT和IFNGR1-C122A迁移能力
提前在6孔板下用记号笔横向划3条直线,将IFNGR1-WT和IFNGR1-C122A细胞按5×105/孔接种于六孔板,待细胞贴壁后,按MOI=20感染Pg,并将培养基更换为含2%血清的培养基,以此为0 h对标记位置进行记录拍照。继续常规培养,并在24 h和48 h时对同一标记位置再次拍照;通过ImageJ软件测量同一位置不同时间点的划痕面积。每组细胞设置为3个重复孔,每个实验重复3次,采用Graphpad软件绘制柱状图。
1.2.11. Transwell检测IFNGR1-WT和IFNGR1-C122A侵袭能力
在Transwell小室基底膜上室铺Matrigel凝胶,4 ℃静置3 h使基质胶凝固。将100 µL(内含7.5×104个细胞)IFNGR1-WT和IFNGR1-C122A细胞悬液(无血清)加入到透孔室的上室,6 h后按MOI=20感染Pg,在小室的下部加入800 µL完全培养基(含有10%血清),培养48 h后,PBS清洗、4%甲醇固定,并用结晶紫进行染色。将小室自然风干后放在倒置的显微镜上进行拍照,每个小室记录4个视野。Image J计算通过微孔膜的细胞数,每组细胞设置为3个重复孔,每个实验重复3次。
1.2.12. 2-BP检测IFNGR1棕榈酰化作用
称取0.17 g 2-BP粉末于万分天平中,将粉末溶于10 mL DMSO溶液,即为2-BP储存液。将1 µL 2-BP储存液加入至1 mL RPMI 1640培养基即为50 μmol/L 2-BP工作液。待细胞密度达到70%时,在每10 cm皿内加入10 µL 2-BP工作液,混匀后常规培养,并分别于加入2-BP工作液0、1、2、4、6、8 h后提取细胞蛋白,采用Western blot检测IFNGR1棕榈酰化修饰作用。
1.2.13. Click-iT检测Pg促进IFNGR1在ESCC内棕榈酰化
取对数期IFNGR1-WT和IFNGR1-C122A细胞,按MOI=20感染Pg。24 h后加入100 μmol/L Click-iT棕榈酸叠氮化物后常规培养6 h,去除培养基,PBS洗涤细胞,加入裂解液后冰上裂解30 min,震荡涡旋1 min,17 500 g,4 ℃离心5 min,BCA法测定上清液蛋白浓度。使用Click-iT蛋白反应缓冲试剂盒将蛋白样品与生物素-炔反应。链霉亲和素对生物素炔-叠氮化物-蛋白复合物进行下拉,Western blotting检测IFNGR1-WT和IFNGR1-C122A蛋白表达(同1.2.7)。
1.2.14. 病例资料
该研究所有病理组织样本均来自安阳肿瘤医院2013~2015年行食管癌根治术的患者,食管癌组织病理诊断均为ESCC且无合并其他肿瘤。所有患者均在术前签署知情同意且获得河南科技大学第一附属医院伦理委员会审批(伦理备案号:2022-03-B110)。
1.2.15. 统计学分析
所有的实验数据,均采用均数±标准差表示。采用ImageJ软件对平板克隆、Transwell实验进行细胞计数,对划痕实验面积进行分析;采用SPSS 22软件以及Prism 9.0.2(GraphPad Software, Inc.)对数据进行统计;采用Kaplan-Meier法对免疫组化结果进行生存分析;单变量和多变量的回归研究均采用Cox回归。当P < 0.05时认为差异具有统计学意义。
2. 结果
2.1. Pg感染和IFNGR1蛋白低表达预示ESCC患者不良预后
免疫组化结果显示同一组织内IFNGR1与Pg表达呈负性相关(图 1A);IFNGR1和Pg一致性分析结果显示Kappa值为-0.375;生存分析结果显示IFNGR1低表达与更差的五年生存期相关(P=0.0066,图 1B)。除此之外,还发现IFNGR1与年龄、吸烟、饮酒、肿瘤浸润深度、TNM分期以及分化程度等呈负相关(P < 0.05,图 1C,表 2)。
图 1.
Pg感染和IFNGR1低表达对ESCC患者病理特征及预后的影响
Effect of Pg infection and low IFNGR1 expression on pathological characteristics and prognosis of ESCC patients. A: Immunohistochemical detection results of Pg infection and IFNGR1 protein expression in ESCC tissues (DAB staining, original magnification: ×400, scale bar=20 μmol/L). B: 5-year survival curve of patients with positive and negative IFNGR1 expression. C: IFNGR1 correlation analysis. Red represents revival correlation and blue represents positive correlation.
表 2.
Pg感染及IFNGR1表达与ESCC患者临床病理特征的相关性分析
Correlation of Pg infection and IFNGR1 expression with clinicopathological characteristics of ESCC patients
| Factors | n | IFNGR1 | χ2 | P | PG | χ2 | P | |||
| (-) | (+) | (-) | (+) | |||||||
| Gender | Female | 21 | 8 (16.0%) | 13 (26.0%) | 7.239 | 0.007 | 20 (40.0%) | 1 (2.0%) | 18.733 | 0.0001 |
| Male | 29 | 22 (44.0%) | 7 (14.0%) | 10 (20.0%) | 19 (38.0%) | |||||
| Age (year) | ≤60 | 19 | 12 (24.0%) | 7 (14.0%) | 0.127 | 0.721 | 15 (30.0%) | 4 (8.0%) | 4.584 | 0.032 |
| ≥60 | 31 | 18 (36.0%) | 13 (26.0%) | 15 (30.0%) | 16 (32.0%) | |||||
| Smoke | No | 21 | 9 (18.0%) | 12 (24.0%) | 4.433 | 0.035 | 19 (38.0%) | 2 (4.0%) | 14.012 | 0.0001 |
| Yes | 29 | 21 (42.0%) | 8 (16.0%) | 11 (22.0%) | 18 (36.0%) | |||||
| Alcohol | No | 27 | 13 (26.0%) | 14 (28.0%) | 3.435 | 0.064 | 24 (48.0%) | 3 (6.0%) | 20.411 | 0.0001 |
| Yes | 23 | 17 (34.0%) | 6 (12.0%) | 6 (12.0%) | 17 (34.0%) | |||||
| Invasion | < Serous membrane | 23 | 11 (22.0%) | 12 (24.0%) | 2.630 | 0.105 | 20 (40.0%) | 3 (6.0%) | 12.896 | 0.0001 |
| ≥Serous membrane | 27 | 19 (38.0%) | 8 (16.0%) | 10 (20.0%) | 17 (34.0%) | |||||
| Division | Low | 24 | 13 (26.0%) | 11 (22.0%) | 0.654 | 0.419 | 20 (40.0%) | 4 (8.0%) | 10.47 | 0.0001 |
| High | 26 | 17 (34.0%) | 9 (18.0%) | 10 (20.0%) | 16 (32.0%) | |||||
| Lymph Node Metastasis | No | 24 | 8 (16.0%) | 6 (12.0%) | 0.066 | 0.797 | 12 (24.0%) | 2 (4.0%) | 5.357 | 0.021 |
| Yes | 36 | 22 (44.0%) | 14 (28.0%) | 18 (36.0%) | 18 (36.0%) | |||||
| TNM | Ⅰ | 23 | 5 (10.0%) | 8 (16.0%) | 3.412 | 0.332 | 12 (24.0%) | 12 (24.0%) | 14.672 | 0.002 |
| Ⅱ | 12 | 8 (16.0%) | 4 (8.0%) | 7 (14.0%) | 5 (10.0%) | |||||
| Ⅲ | 16 | 11 (22.0%) | 5 (10.0%) | 10 (20.0%) | 6 (12.0%) | |||||
| Ⅳ | 9 | 6 (12.0%) | 3 (6.0%) | 1 (2.0%) | 8 (16.0%) | |||||
2.2. IFNGR1在不同细胞系内的表达
Western blotting结果显示:IFNGR1在食管癌KYSE30及肺癌细胞PC9内表达较强,而在KYSE70、KYSE150、KYSE140、TE1、A549细胞内表达量较弱(图 2)。因此选用ESCC内表达量相对较强的KYSE30及表达量相对较弱的KYSE70细胞作为研究对象。
图 2.
Western blotting检测IFNGR1蛋白表达
Western blotting for IFNGR1 protein expression. A: Expression of IFNGR1 in KYSE30, KYSE70, KYSE140, KYSE150, TE1, PC9, and A549 cell lines. B: Effect of Pg on expression of IFNGR1 protein in KYSE70 and KYSE30 cells detected by Western blotting. *P < 0.05; **P < 0.01; ***P < 0.001 vs control group.
2.3. Pg感染下调ESCC内IFNGR1蛋白的表达
Western blotting结果证明,在KYSE30及KYSE70细胞内,IFNGR1蛋白表达量均随着Pg感染的时间延长而降低,即Pg下调IFNGR1蛋白的表达。
2.4. IFNGR1棕榈酰化检测
Westernblotting结果证明,经过2-BP处理后,IFNGR1的表达量随2-BP加入的时间增加而增加(图 3A),即IFNGR1存在棕榈酰化作用,且具有时间依赖性。
图 3.
IFNGR1棕榈酰化检测及IFNGR1-WT和IFNGR1-C122A细胞构建
IFNGR1 palmitoylation assay and construction of IFNGR1- WT and IFNGR1-C122A cells. A: Effect of 2-BP on IFNGR1 protein expression in KYSE70 cells detected by immunoblotting showed IFNGR1 protein expression. B: PCR detection of IFNGR1-WT and IFNGR1-C122A plasmid constructs. C: Immunofluorescence detection of IFNGR1-WT and IFNGR1-C122A plasmid transfection efficiency (×100). D: Click-iT for detecting IFNGR1-WT and IFNGR1-C122Apalmitoylation levels.
2.5. Pg促进IFNGR1在ESCC内棕榈酰化修饰
qPCR检测结果表明:IFNGR1-WT质粒和IFNGR1- C122A质粒构建成功(图 3B)。免疫荧光结果显示IFNGR1- WT和IFNGR1-C122A细胞转染良好(图 3C)。Click-it实验显示:在122突变位点IFNGR1棕榈酰化的水平明显下降;当Pg感染时,IFNGR1-WT棕榈酰化水平增强。即Pg感染促进IFNGR1在ESCC内棕榈酰化(图 3D)。
2.6. Pg感染促进IFNGR1-WT和IFNGR1-C122A细胞增殖、迁移及侵袭
平板克隆、划痕实验以及Transwell实验结果显示:IFNGR1- WT + Pg组增殖、迁移及侵袭能力均强于IFNGR1-WT组;IFNGR1-C122A+Pg组增殖、迁移及侵袭能力也均强于IFNGR1-C122A组,即Pg感染组各项指标均强于Pg未感染组(P < 0.05)。Pg感染时,棕榈酰化位点突变后增殖、迁移及侵袭能力均显著降低(P < 0.05,图 4A~F)。
图 4.
Pg感染对IFNGR1-WT和IFNGR1-C122A细胞增殖、迁移及侵袭的影响
Effect of Pg infection on proliferation, migration and invasion of IFNGR1-WT and IFNGR1- C122A cells. A: Proliferation of the cells assessed by panel cloning. B: Comparison of proliferation ability of the cells. C: Migration ability of the cells assessed using scratch test (× 100). D: Comparison of migration ability of the cells. E: Transwell assay for assessing invasion ability of the cells (×100). F: Comparison of invasion ability of the cells. *P < 0.05; **P < 0.01; ***P < 0.001; ****P < 0.0001.
2.7. Pg感染和棕榈酰化作用促进IFNGR1在溶酶体降解
免疫荧光结果显示:IFNGR1-WT可在溶酶体中定位,而IFNGR1-C122A与溶酶体共定位较少(图 5A)。即棕榈酰化作用促进IFNGR1在溶酶体内降解。免疫荧光结果表明Pg及ZDHHC3均可促进IFNGR1在溶酶体内降解(图 5B)。
图 5.
免疫荧光检测IFNGR1和LAMP2在KYSE70细胞内的共定位
Immunofluorescence detection of IFNGR1 and LAMP2 co-localization in KYSE70 cells. A: Localization of IFNGR1-WT and IFNGR1-C122A in the lysosomes; B: Effect of Pg and ZDHHC3 on the localization of IFNGR1 protein in lysosomes.
3. 讨论
IFN-γ是一种由T细胞和自然杀伤细胞产生的细胞因子,可启动肿瘤免疫并发挥免疫监视作用,同时也参与肿瘤免疫逃逸[23]。IFN-γ在肿瘤中具有促癌和抑癌两种作用,这取决于IFN-γ所处环境及靶细胞作用位点[24]。IFNGR1作为IFN-γ的受体之一,在机体内也发挥免疫作用,目前关于IFNGR1的研究主要集中在IFNGR1-JAK-STAT通路上。已有报道显示,在结直肠癌中IFNGR1的降解会导致IFN-γ传导受损,从而降低MHC-I的表达,进而导致肿瘤免疫逃逸[25];而在肝细胞癌中,Paraspeckle通过隔离IFNGR1 mRNA促进免疫逃逸[26]。尽管多数报道已证实IFN-γ或IFNGR1表达下降可导致肿瘤免疫逃逸,但本研究主要从Pg感染ESCC促进IFNGR1棕榈酰化,进而促进IFNGR1降解这一角度阐明这一机制,这与先前报道IFN-γ或IFNGR1下调促进肿瘤恶性化进展结果相一致。IFNGR1作为一种膜蛋白,常被运输到溶酶体或蛋白酶体中降解[27, 28]。对于IFN-γ及IFNGR1的研究主要集中在结直肠癌和肝细胞癌,但其在食管癌中的作用机制仍不明确。
棕榈酰化是一种蛋白质翻译后修饰,可以促进蛋白质的运输[19, 29]、定位[30]以及相互作用[31],该修饰主要发生在细胞器的质膜上。棕榈酰化在炎症发生中起重要作用,并在肿瘤的发生和发展中也具有重要意义[32, 33]。
在本研究中,我们对不同ESCC中IFNGR1蛋白表达进行了初步预实验。结果显示KYSE30中IFNGR1蛋白的表达水平较低分化的KYSE70细胞更高,这提示IFNGR1在恶性程度较低的细胞中可能具有更强的活性。此外,Pg可以抑制IFNGR1在KYSE30和KYSE70细胞中的表达,这表明Pg可能通过抑制IFNGR1来促进ESCC细胞的增殖、迁移和侵袭。为了进一步探究Pg抑制IFNGR1的抑癌机制,我们使用了IFNGR1表达较低的KYSE70细胞构建了IFNGR1的野生型和棕榈酰化突变细胞系。实验结果显示,Pg可以促进这两种细胞系的增殖、迁移和侵袭能力,这也与前期报道Pg促进食管癌恶性化进展结果相一致。与野生型细胞系相比,经棕榈酰化突变的细胞系的增殖、迁移和侵袭能力较弱,这表明棕榈酰化在一定程度上促进了ESCC细胞的增殖、迁移和侵袭。
为了进一步研究Pg在ESCC中如何下调IFNGR1的机制,我们使用IFNGR1-WT和IFNGR1-C122A突变体细胞,并通过IFNGR1和溶酶体标记物LAMP2的荧光抗体标记,进行了激光共聚焦成像实验。结果显示,在IFNGR1-WT细胞中,IFNGR1与溶酶体标记物LAMP2的共定位信号强度高于IFNGR1-C122A细胞,表明棕榈酰化作用促进IFNGR1在溶酶体降解。此外,通过感染Pg或外源性转入ZDHHC3对IFNGR1进行检测,结果表明,Pg和ZDHHC3都可以促进IFNGR1在溶酶体中的降解。为后续研究Pg如何促进ESCC患者的恶性进展提供了理论依据。
总的来说,本研究的结果为我们揭示了Pg在ESCC中促进IFNGR1棕榈酰化的机制,并提供了寻找Pg促进ESCC恶性进展的分子靶点和机制的重要线索。这为未来的研究和治疗提供了有益的参考。
Biography
申刘青,硕士,E-mail: 814632376@qq.com
Funding Statement
国家自然科学基金(81972571)
Supported by National Natural Science Foundation of China (81972571)
Contributor Information
申 刘青 (Liuqing SHEN), Email: 814632376@qq.com.
高 社干 (Shegan GAO), Email: gsg112258@163.com.
References
- 1.Thrumurthy SG, Chaudry MA, Thrumurthy SSD, et al. Oesophageal cancer: risks, prevention, and diagnosis. BMJ. 2019;366(7):l4373. doi: 10.1136/bmj.l4373. [DOI] [PubMed] [Google Scholar]
- 2.Xia CF, Dong XS, Li H, et al. Cancer statistics in China and United States, 2022: profiles, trends, and determinants. Chin Med J (Engl) 2022;135(5):584–90. doi: 10.1097/CM9.0000000000002108. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 3.Lin YS, Totsuka Y, He YT, et al. Epidemiology of esophageal cancer in Japan and China. J Epidemiol. 2013;23(4):233–42. doi: 10.2188/jea.JE20120162. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 4.Mu WX, Jia YQ, Chen XB, et al. Intracellular Porphyromonas gingivalis promotes the proliferation of colorectal cancer cells via the MAPK/ERK signaling pathway. Front Cell Infect Microbiol. 2020;10(5):584798. doi: 10.3389/fcimb.2020.584798. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 5.Olsen I, Yilmaz Ö. Possible role of Porphyromonas gingivalis in orodigestive cancers. J Oral Microbiol. 2019;11(1):1563410. doi: 10.1080/20002297.2018.1563410. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 6.Leishman SJ, Do HL, Ford PJ. Cardiovascular disease and the role of oral bacteria. J Oral Microbiol. 2010;2(10):3402. doi: 10.3402/jom.v2i0.5781. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 7.Chopra A, Radhakrishnan R, Sharma M. Porphyromonas gingivalisand adverse pregnancy outcomes: a review on its intricate pathogenic mechanisms. Crit Rev Microbiol. 2020;46(2):213–36. doi: 10.1080/1040841X.2020.1747392. [DOI] [PubMed] [Google Scholar]
- 8.Peters BA, Wu J, Pei ZH, et al. Oral microbiome composition reflects prospective risk for esophageal cancers. Cancer Res. 2017;77(23):6777–87. doi: 10.1158/0008-5472.CAN-17-1296. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 9.Katz J, Onate MD, Pauley KM, et al. Presence of Porphyromonas gingivalis in gingival squamous cell carcinoma. Int J Oral Sci. 2011;3(4):209–15. doi: 10.4248/IJOS11075. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 10.Gao SG, Yang JQ, Ma ZK, et al. Preoperative serum immol/ Lunoglobulin G and A antibodies to Porphyromonas gingivalis are potential serum biomarkers for the diagnosis and prognosis of esophageal squamous cell carcinoma. BMC Cancer. 2018;18(1):17. doi: 10.1186/s12885-017-3905-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 11.Blanck G. Components of the IFN-gammol/La signaling pathway in tumorigenesis. Arch Immol/Lunol Ther Exp (Warsz) 2002;50(3):151–8. [PubMed] [Google Scholar]
- 12.Stark GR, Kerr IM, Williams BR, et al. How cells respond to interferons. Annu Rev Biochem. 1998;67:227–64. doi: 10.1146/annurev.biochem.67.1.227. [DOI] [PubMed] [Google Scholar]
- 13.崔 立昆. IFN-γ在肿瘤免疫及免疫治疗中的作用. 中国肿瘤生物治疗杂志. 2022;29(2):157–62. [Google Scholar]
- 14.Bach EA, Aguet M, Schreiber RD. THE IFNγ RECEPTOR: a paradigm for cytokine receptor signaling. Annu Rev Immol/ Lunol. 1997;15:563–91. doi: 10.1146/annurev.immunol.15.1.563. [DOI] [PubMed] [Google Scholar]
- 15.Kwon B. IFN-γ in tissue-immol/Lune homeostasis and antitumor immol/Lunity. Cell Mol Immol/Lunol. 2018;15(5):531–2. doi: 10.1038/cmi.2017.95. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 16.Chiara Cossetti, Nunzio Iraci, Tim R Mercer, et al. Extracellular vesicles from neural stem cells transfer IFN-γ via Ifngr1 to activate Stat1 signaling in target cells. Mol Cell. 2014;56(2):193–204. doi: 10.1016/j.molcel.2014.08.020. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 17.Majoros A, Platanitis E, Kernbauer-Hölzl E, et al. Canonical and noncanonical aspects of JAK-STAT signaling: lessons from interferons for cytokine responses. Front Immol/Lunol. 2017;8(7):29. doi: 10.3389/fimmu.2017.00029. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 18.Wang Y, Liu DP, Chen PP, et al. Negative feedback regulation of IFN- γ pathway by IFN regulatory factor 2 in esophageal cancers. Cancer Res. 2008;68(4):1136–43. doi: 10.1158/0008-5472.CAN-07-5021. [DOI] [PubMed] [Google Scholar]
- 19.Du W, Hua F, Li X, et al. Loss of optineurin drives cancer immol/ Lune evasion via palmitoylation-dependent IFNGR1 lysosomal sorting and degradation. Cancer Discov. 2021;11(7):1826–43. doi: 10.1158/2159-8290.CD-20-1571. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 20.Ren J, Wen LP, Gao XJ, et al. CSS-Palm 2.0: an updated software for palmitoylation sites prediction. Protein Eng Des Sel. 2008;21(11):639–44. doi: 10.1093/protein/gzn039. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 21.Zhou FF, Xue Y, Yao XB, et al. CSS-Palm: palmitoylation site prediction with a clustering and scoring strategy (CSS) Bioinformatics. 2006;22(7):894–6. doi: 10.1093/bioinformatics/btl013. [DOI] [PubMed] [Google Scholar]
- 22.Ning WS, Jiang PR, Guo YP, et al. GPS-Palm: a deep learning-based graphic presentation system for the prediction of S- palmitoylation sites in proteins. Brief Bioinform. 2021;22(2):1836–47. doi: 10.1093/bib/bbaa038. [DOI] [PubMed] [Google Scholar]
- 23.Gocher AM, Workman CJ, Vignali DAA. Interferon-γ: teammol/Late or opponent in the tumour microenvironment ? Nat Rev Immol/ Lunol. 2022;22(3):158–72. doi: 10.1038/s41577-021-00566-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 24.Ding H, Wang G, Yu Z, et al. Role of interferon-gammol/La (IFN-γ) and IFN-γ receptor 1/2 (IFNγR1/2) in regulation of immol/Lunity, infection, and cancer development: IFN-γ-dependent or independent pathway. Biomed Pharmacother. 2022;155(8):113683. doi: 10.1016/j.biopha.2022.113683. [DOI] [PubMed] [Google Scholar]
- 25.Camilla S, CubillosRuiz Juan R. Optineurin guards IFNγ signaling in cancer cells. Cancer Discov. 2021;11(7):1623–5. doi: 10.1158/2159-8290.CD-21-0362. [DOI] [PubMed] [Google Scholar]
- 26.Jie Zan, Xuya Zhao, Xiya Deng, et al. Paraspeckle promotes hepatocellular carcinoma immol/Lune escape by sequestering IFNGR1 mRNA. Cell Mol Gastroenterol Hepatol. 2021;12(2):465–87. doi: 10.1016/j.jcmgh.2021.02.010. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 27.Kurten RC, Cadena DL, Gill GN. Enhanced degradation of EGF receptors by a sorting nexin, SNX1. Science. 1996;272(5264):1008–10. doi: 10.1126/science.272.5264.1008. [DOI] [PubMed] [Google Scholar]
- 28.Meng XB, Liu XW, Guo XD, et al. FBXO38 mediates PD-1 ubiquitination and regulates anti-tumour immol/Lunity of T cells. Nature. 2018;564(7734):130–5. doi: 10.1038/s41586-018-0756-0. [DOI] [PubMed] [Google Scholar]
- 29.Xing Gao, Chien- Wen Kuo, Alice Main, et al. Palmitoylation regulates cellular distribution of and transmembrane Ca flux through TrpM7. Cell Calcium. 2022;106(9):102639. doi: 10.1016/j.ceca.2022.102639. [DOI] [PubMed] [Google Scholar]
- 30.Zheng H, Pearsall EA, Hurst DP, et al. Palmitoylation and membrane cholesterol stabilize μ-opioid receptor homodimerization and G protein coupling. BMC Cell Biol. 2012;13(1):1–18. doi: 10.1186/1471-2121-13-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 31.Zeng XT, Yu XX, Cheng W. The interactions of ZDHHC5/GOLGA7 with SARS-CoV-2 spike (S) protein and their effects on S protein's subcellular localization, palmitoylation and pseudovirus entry. Virol J. 2021;18(1):257. doi: 10.1186/s12985-021-01722-w. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 32.Li XL, Shen LY, Xu Z, et al. Protein palmitoylation modification during viral infection and detection methods of palmitoylated proteins. Front Cell Infect Microbiol. 2022;12:821596. doi: 10.3389/fcimb.2022.821596. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 33.Tang F, Liu ZY, Chen X, et al. Current knowledge of protein palmitoylation in gliomas. Mol Biol Rep. 2022;49(11):10949–59. doi: 10.1007/s11033-022-07809-z. [DOI] [PubMed] [Google Scholar]





