Abstract
目的
探讨肝细胞来源的富含亮氨酸α-2糖蛋白1(LRG1)对M1型肝巨噬细胞活化的影响。
方法
BALB/c小鼠通过高脂饮食(HFD)喂养16周来建立代谢相关脂肪性肝病(MAFLD)模型,油酸诱导小鼠原代肝细胞发生脂肪变性,用RT-PCR和Western blot检测肝组织和肝细胞中LRG1的mRNA和蛋白水平的表达。将原代肝巨噬细胞分为5组,对照组、脂肪变性肝细胞来源的上清(CM)刺激组、CM+LRG1组、CM+转化生长因子-β1(TGF-β1)组、CM+TGF-β1+LRG1组,各组培养24 h后,Western bot法检测一氧化氮合酶(iNOS)蛋白水平的表达,RT-PCR法检测iNOS、趋化因子1(CXCL-1)和白细胞介素-1β(IL-1β)的mRNA水平的表达。MAFLD小鼠分为4组,1组作为对照(6只),其余3组经尾静脉分别注射LRG1(6只)、TGF-β1(6只)或者TGF-β1+LRG1(6只),收集肝组织,经HE染色观察肝脏病理学变化,免疫组化法观察肝组织中F4/80+细胞的分布,RT-PCR法检测肝组织iNOS、CXCL-1和IL-1β的mRNA水平的表达。
结果
HFD小鼠肝组织和脂肪变性的肝细胞中LRG1的mRNA和蛋白水平的表达显著降低(P < 0.05)。脂肪变性肝细胞来源的CM刺激明显促进肝巨噬细胞中iNOS、CXCL-1和IL-1β的mRNA水平的表达,而TGF-β1和LRG1联合刺激时明显抑制这些分子mRNA水平的表达(P < 0.05)。小鼠HFD16周后,单独注射LRG1或TGF-β1均可减少肝内脂质沉积以及肝内巨噬细胞的浸润,二者联合上述改变更加明显。同时,TGF-β1和LRG1联合刺激时也明显抑制iNOS、CXCL-1和IL-1β的mRNA水平的表达(P < 0.05)。
结论
LRG1通过增强TGF-β1信号通路抑制肝巨噬细胞浸润,从而缓解非酒精性脂肪肝的炎性反应。
Keywords: 富亮氨酸α2-糖蛋1, 肝巨噬细胞, 代谢相关脂肪性肝病, 转化生长因子-β1, 脂肪变性
Abstract
Objective
To explore the effect of leucine-rich α-2-glycoprotein (LRG1) derived from hepatocytes on activation of hepatic M1 Kupffer cells.
Methods
A metabolic dysfunction-associated fatty liver disease (MAFLD) model was established in BALB/c mice by high-fat diet (HFD) feeding for 16 weeks. Oleic acid was used to induce steatosis in primary cultures of mouse hepatocytes. The mRNA and protein expressions of LRG1 in mouse liver tissues and hepatocytes were detected by real-time PCR and Western blotting. Primary hepatic macrophages were stimulated with the conditioned medium (CM) from steatotic hepatocyte along with LRG1 or transforming growth factor-β1 (TGF-β1), or both for 24 h, and the expression levels of inducible nitric oxide synthase (iNOS) was detected with Western botting, and the mRNA expressions of iNOS, chemokine ligand 1 (CXCL-1) and interleukin-1β (IL-1β) were measured by RT-PCR. The MAFLD mice were injected with LRG1 (n=6), TGF-β1 (n=6), or both (n=6) through the caudal vein, and the live tissues were collected for HE staining and immumohistochemical detection of F4/80 expression; the mRNA expressions of iNOS, CXCL-1 and IL-1β in liver tissues were detected using RT-PCR.
Results
The mRNA and protein expression levels of LRG1 were significantly downregulated in the liver tissues of MAFLD mice and steatotic hepatocytes (P < 0.05). Treatment of the hepatic macrophages with CM from steatosis hepatocytes significantly enhanced the mRNA expression levels of iNOS, CXCL-1 and IL-1β, and these changes were significantly inhibited by the combined treatment with TGF-β1 and LRG1 (P < 0.05). In MAFLD mice, injections with either LRG1 or TGF-β1 alone reduced hepatic lipid deposition and intrahepatic macrophage infiltration, and these effects were significantly enhanced by their combined treatment, which also more strongly inhibited the mRNA expression levels of iNOS, CXCL-1 and IL-1β (P < 0.05).
Conclusion
LRG1 inhibits hepatic macrophage infiltration by enhancing TGF-β1 signaling to alleviate fatty liver inflammation in MAFLD mice.
Keywords: leucine-rich α-2-glycoprotein 1, hepatic macrophages, metabolic dysfunction-associated fatty liver disease, transforming growth factor-β1, steatosis
代谢相关脂肪性肝病(MAFLD)是由于营养过度导致肝脏内脂质过度沉积,以肝细胞脂肪变性、各种炎性细胞浸润、肝星状细胞活化和肝窦内皮毛细血管化为特征[1-3]。MAFLD已成为高收入国家最常见的慢性肝病,常与肥胖、胰岛素抵抗、2型糖尿病、高血压、高脂血症和代谢综合征相关[4]。许多研究报道了代谢功能障碍与非酒精性脂肪性肝病发展的复杂机制密切相关,这促使人们考虑将非酒精性脂肪性肝病重新命名为MAFLD [5]。作为肝脏中主要的免疫细胞,肝巨噬细胞在MAFLD肝内免疫微环境的构建中起着至关重要的作用[6],肝内巨噬细胞聚集发生在MAFLD的早期阶段,巨噬细胞聚集程度也可对MAFLD的进展起到一定的预测作用[7]。
作为高度保守的富含亮氨酸重复序列蛋白家族成员,亮氨酸α-2糖蛋白1(LRG1)已被证明参与多种病理生理过程的调节,包括血管生成[8]、肿瘤发生[9]、关节炎[10]和皮肤修复[11]。在这些前期的研究中,LRG1对特定细胞增殖和迁移的影响常被关注;然而,LRG1在这些病理过程中对免疫微环境建立的影响却很少涉及。特别是血管生成[12]、肿瘤发生[13]和组织修复[14]的过程往往伴随着免疫细胞表型的转化。有研究表明,在MAFLD的形成中LRG1的表达降低[15],但是LRG1在其炎性微环境中发挥怎样的作用以及对MAFLD的进展能否起到抑制作用目前尚未报道。LRG1主要由肝脏产生,故LRG1表达的变化可能直接影响肝内组织免疫微环境。因此,本研究高脂饮食(HFD)建立MAFLD的小鼠模型,观察LRG1的表达变化,探讨其对肝巨噬细胞活化的影响,寻求改善MAFLD的方法,进而为临床上缓解MAFLD进程提供新思路。
1. 材料和方法
1.1. 动物
SPF级雌性或雄性BALB/c小鼠(6~8周,20±4 g,中国北京斯贝福生物技术有限公司),在贵州医科大学实验动物中心饲养,温度22±2 ℃,湿度50%~60%,12 h循环照明,小鼠自由摄取食、水。所有的动物实验都是根据动物伦理研究中使用动物的声明进行的,动物实验方案均经贵州医科大学实验动物伦理委员会审核,符合动物保护、动物福利和伦理原则等相关规定(批准号: 1900035)。
1.2. 试剂
D-Hank's(索莱宝,北京);ECL发光试剂盒(Millipore);GAPDH抗体(CST);LRG1蛋白(R&D Systems);HRP标记的羊抗兔IgG(欣盛博,深圳);RPMI 1640培养基(Gibco);SDS-PAGE蛋白凝胶试剂盒(碧云天,上海);TGF-β1蛋白(PeproTech);TRIZOL(Life Technologies);F4/80抗体(Abcam);油红O染色液(索莱宝,北京);LRG1抗体(Abcam);iNOS抗体(CST);油酸(Sigma);PVDF(Millipore);DAB(中杉金桥)。
1.3. 仪器
自动生化分析仪(型号:XC8001,中国);正置荧光显微镜(NIKON);实时定量PCR仪(BIO-RAD);切片机(Leica);血糖仪(安稳型;三诺)
1.4. 动物造模及干预
高脂饮食16周后的小鼠,随机分为4组,每组各6只,1组作为对照组,另外3组作干预组,干预的第1组尾静脉注射LRG1(50 μg/kg)蛋白,干预的第2组尾静脉注射TGF-β1(500 ng/kg)蛋白,干预第3组TGF-β1(500 ng/kg)和LRG1(50 μg/kg)蛋白联合注射,各组每5天注射1次,连续注射3次,在最后一次注射后的第5 d将小鼠经1%戊巴比妥钠麻醉后颈椎脱臼处死。另外,从小鼠的角静脉中收集血清500 μL。
1.5. 原代肝细胞和巨噬细胞的分离培养
8周龄雌性或雄性BALB/c小鼠(21±3 g)腹腔注射1%戊巴比妥钠(150 mg/kg)麻醉后,颈椎脱臼法处死,经门静脉灌注D-Hank's缓冲液20 mL和15 mL 0.1%胶原酶Ⅳ。待肝脏呈灰色时,取下肝脏,用10 mL RPMI 1640培养基重悬。经70 μm的细胞滤网过滤细胞悬液,离心后收集富含肝细胞的细胞沉淀[16]。使用0.5 mmol/L油酸处理原代肝细胞24 h,更换为新鲜培养基继续处理12 h的方法诱导肝细胞脂肪变性;为后续实验,收集脂肪变性肝细胞来源的上清作为上清(CM)。小鼠体外肝脏灌流后,采用Percoll密度梯度分离法分离Kupffer细胞[17]。原代肝巨噬细胞分为5组,第1组:正常培养,第2组:用条件培养基培养12 h后,换新鲜培养基继续培养24 h,第3~5组:用脂肪变性的原代肝细胞的CM培养12 h后,分别用LRG1(1 μg/mL)、TGF-β1(10 ng/mL)或者TGF-β1(10 ng/mL)+LRG1(1 μg/mL)刺激培养24 h,在显微镜下观察细胞形态变化。
1.6. 油红O染色
原代肝细在融合度为85%时用于实验,加入油酸(0.5 mmol/L)处理24 h,然后在室温下油红O染色15 min,根据制造商的说明来确定脂滴的沉积。
1.7. Western blotting法检测LRG1、iNOS的蛋白水平的表达
提取细胞或组织蛋白,经SDS-PAGE胶电泳并转至PVDF膜,封闭后孵育LRG1抗体(1∶ 1500)、iNOS抗体(1∶ 1500)或GAPDH抗体(1∶ 2000),再用HRP标记的二抗(1∶ 3000)孵育,经ECL激发曝光。
1.8. Real-time PCR检测LRG1、iNOS、CXCL-1和IL-1β的mRNA水平的表达
收集的细胞或组织用TRIZOL法提取总RNA,运用MonscriptTM RTIIIAII- in-One Mix with dsDNase合成cDNA,并按照MonAMPTM SYBR Green Qpcr Mix实验步骤进行PCR反应,所有目的基因表达量以GAPDH的表达量作为内参。引物(武汉擎科生物公司)序列[18]如下(表 1)。
表 1.
引物序列
Primer sequence
Gene | Primer sequence 5'-3' |
LRG1 | F5'-TCTTGGCAGCATCAAGGAAG-3' |
R5'-TGGACAGTGTCGGCAGGGA-3' | |
iNOS | F5'-GAGCGAGTTGTGGATTGTC-3' |
R5'-CCAGGAAGTAGGTGAGGG-3' | |
CXCL-1 | F5'-CCAAACCGAAGTCATAGCC-3' |
R5'-AGGGAGCTTCAGGGTCAA-3' | |
IL-1β | F5'-GTTCCCATTAGACAACTGC-3' |
R5'-GATTCTTTCCTTTGAGGC-3' | |
GAPDH | F5'-TGTTTCCTCGTCCCGTAG-3' |
R5'-CAATCTCCACTTTGCCACT-3' |
1.9. HE染色和免疫组化
固定好的肝脏组织脱水后,经石蜡包埋成块,作5 μm切片,脱蜡后经苏木精染细胞核、伊红染细胞质后用中性树胶封片保存。脱蜡的切片用3%的过氧化氢阻止内源性过氧化物酶,经山羊血清封闭,一抗用F4/80(1∶ 200),后滴加HRP标记的二抗,经DAB显色液进行特异性染色,在显微镜下观察显色,看到显色逐步显示出来,显色越来越明显,停止染色。
1.10. 腹腔内糖耐量试验
小鼠禁食过夜16 h,用手持血糖仪测定每只小鼠的基础血糖浓度,然后每只小鼠通过腹腔注射葡萄糖,随后在注射葡萄糖后的15、30、60、120 min重新测量血糖浓度。
1.11. 肝功能检测
小鼠眼球取血后,静置10 min,以500 g转速离心10 min,上层的血清由自动生化分析仪检测丙氨酸转氨酶(ALT)、天冬氨酸转氨酶(AST)、甘油三酯(TG)和总胆固醇(TC)含量。
1.12. 统计学分析
所有数据选用统计分析软件SPSS 17.0分析,所得各项数据符合参数检验条件。用均数±标准差进行统计描述,多组间差异采用单因素方差分析,两组实验数据之间的对比使用t检验,P < 0.05时认为差异具有统计学意义。所有实验均独立重复至少3次。
2. 结果
2.1. LRG1在肝脂肪变性小鼠肝脏中mRNA和蛋白表达水平降低
与对照组相比,MAFLD小鼠肝组织中出现大量脂滴沉积,且肝细胞体积变大,肝血窦变窄(图 1A),F4/ 80+细胞浸润的数量更加明显(图 1B)。此外,MAFLD小鼠肝脏中M1型巨噬细胞活化的标志基因iNOS、炎性因子CXCL-1和IL-1β的mRNA水平的表达均较对照组出现明显高表达(P < 0.05,图 1C),而肝脏中LRG1的mRNA和蛋白水平的表达因脂肪变性而下调(P < 0.05,图 1D~E)。
图 1.
LRG1在正常和脂肪变性肝组织中的表达
Expression of LRG1 in normal and steatotic liver tissues. A: HE staining of liver tissues of normal mice and mice with MAFLD. B: Immumohistochemical staining for detecting F4/80 expression in the liver tissues of normal and MAFLD mice. Black arrows indicate F4/80 + cells (hepatic macrophages). C: RT-qPCR for detection of the mRNA expression levels of iNOS, CXCL-1 and IL-1β in the liver tissues of normal and MAFLD mice. D: Western blotting for detecting LRG1 protein expression levels in the liver tissues of normal mice and MAFLD mice. E: RT-qPCR for detecting LRG1 mRNA expression in the liver tissues of normal mice and MAFLD mice. Scale bar=20 μm. Data are presented as Mean±SE (n=6). *P < 0.05 vs Control group.
2.2. LRG1在脂肪变性肝细胞中蛋白和mRNA表达水平降低
与对照组相比,油酸处理原代肝细胞24 h后,可见明显的脂滴沉积,且由于脂肪变性(图 2A),LRG1的蛋白和mRNA表达水平受到明显抑制(P < 0.05,图 2B~C)。
图 2.
LRG1在正常肝细胞与脂肪变性肝细胞中的表达
Expression of LRG1 in normal and steatotic hepatocytes. A: Primary hepatocytes were treated with or without oleic acid (0.5 mmol/L) for 24 h to determine the deposition of lipid droplets using Oil Red O staining. B: Protein expression levels of LRG1 detected by Western blotting in primary hepatocytes with or without oleic acid (0.5 mmol/L) treatment for 24 h. C: RTqPCR for detecting LRG1 mRNA expression in primary hepatocytes with or without oleic acid treatment. Scale bar: 20 μm. Data are presented as Mean±SE (n=6). *P < 0.05 vs Control group.
2.3. LRG1通过TGF-β信号通路抑制CM诱导的肝巨噬细胞活化
显微镜下观察细胞形态可见,正常培养的肝巨噬细胞突起数量较少,突起也较短,CM刺激培养的肝巨噬细胞呈现出细胞体积变大,细胞突起数量增多,突起变长,用LRG1刺激时细胞形态改变不明显,TGF-β1刺激时,细胞突起数量减少,长度变短,而当用TGF-β1+LRG1刺激时,细胞突起数量进一步减少,长度也变的更短(图 3A);Western blot和RT-qPCR结果显示,CM可显著增强iNOS、CXCL-1和IL-1β的mRNA表达水平,而TGF-β1可显著抑制iNOS、CXCL-1和IL-1β的mRNA表达水平;这些抑制作用被LRG1进一步增强(P < 0.05,图 3B~C)。
图 3.
LRG1通过增强TGF-β1信号调控脂肪变性肝细胞CM诱导的肝巨噬细胞活化
LRG1 regulates the activation of hepatic macrophages induced by conditioned medium (CM) derived from steatotic hepatocytes by enhancing TGF-β1 signaling. A: Primary hepatic macrophages were stimulated with CM derived from steatotic hepatocytes for 12 h, and were then treated with LRG1 (1 μg/mL), TGF-β1 (10 ng/mL) or both for 24 h. Cell morphological changes were observed under an inverted phase contrast microscope. B: Protein expression levels of iNOS detected by Western blotting. C: RT-qPCR for detecting mRNA expression levels of iNOS, CXCL-1 and IL-1β. Scale bar, 10 μm. Data are presented as Mean±SE (n=6). *P < 0.05.
2.4. LRG1通过增强TGF-β1信号通路改善HFD诱导的MAFLD
高脂饮食16周后,经小鼠尾静脉注射LRG1、TGF-β1或TGF-β1联合LRG1。单独注射LRG1或TGF-β1可轻度减少肝脏脂质沉积,减少肝内巨噬细胞浸润(图 4A~B);而TGF-β1联合LRG1能更大程度地减轻HFD诱导的肝脂肪变性和肝脏炎症。此外,TGF-β1联合LRG1显著改善肝功能,抑制血清TC和TG含量,促进血糖的调节功能的恢复(P < 0.05,图 4C~E)。
图 4.
LRG1通过增强TGF-β1信号改善高脂饮食诱导的肝脏脂肪变性
LRG1 regulates HFD-induced MAFLD by enhancing TGF-β1 signaling. After feeding on HFD for 16 weeks, the mice were injected with LRG1 (50 μg/kg), TGF-β1 (500 ng/kg) or both through the caudal vein for 3 times (once/5 days). Liver tissues were collected for HE staining (A) and immumohistochemical staining for F4/80 (B) (black arrows indicate F4/80 + cells). C: Serum levels of AST, ALT, TC and TG in the mice. D: RT-qPCR for detecting mRNA expression levels of iNOS, CXCL-1 and IL-1β in the liver tissues. E: Intraperitoneal glucose tolerance test. Scale bar=20 μm. Data are presented as Mean±SE (n=6). *P < 0.05.
3. 讨论
脂质沉积过多是导致MAFLD形成的始动因素。随着肝细胞功能的恶化和毒性脂质的损伤,其他肝内细胞也发生一系列生物学变化,包括巨噬细胞M1型极化、肝星状细胞活化、肝窦内皮细胞毛细血管化、血小板聚集和活化。肝脏非实质细胞之间的相互作用也可进一步加重肝内炎症、肝脏胰岛素抵抗和脂代谢异常[19-21]。在肝脏的免疫反应中,巨噬细胞是重要的免疫细胞,主要由本身所固有的肝巨噬细胞以及单核细胞分化而来的巨噬细胞组成[22]。巨噬细胞极化状态的不同,将其分为M1型和M2型细胞,M1型细胞具有重要的促炎作用,可以分泌大量的促炎因子,来加重细胞和组织的破坏[23],而M2型巨噬细胞具有抗炎、清除细胞碎片、修复组织的功能,M1型和M2型细胞在炎症调控上相互制约抑制,处于平衡状态[24, 25]。虽然非实质细胞功能变化的最初原因是肝细胞脂肪变性,但肝细胞脂肪变性影响正常肝脏微环境的机制尚未完全清楚。本研究试图阐明脂肪变性肝细胞如何影响肝巨噬细胞的极化状态,以及如何抑制肝巨噬细胞的M1型极化以改善MAFLD。
肝脏巨噬细胞浸润增加及向M1型极化是加重MAFLD的重要因素,且这种病理改变受多种机制调控。在肥胖和代谢综合征的微环境中,血清中饱和脂肪酸、胆固醇、脂质代谢物和脂多糖的增加可促进肝巨噬细胞的炎性活化[26]。脂毒性肝细胞可通过损伤相关分子模式激活巨噬细胞,使其向M1型极化,M1型巨噬细胞通过释放促炎因子加重肝细胞损伤。巨噬细胞和肝细胞之间的相互作用在MAFLD的进展中起着重要作用[27]。肝细胞是肝脏的主要组成细胞,其功能状态也直接决定了肝脏组织的微环境。当发生脂肪变性时,肝细胞分泌的蛋白质谱的变化也可能是肝巨噬细胞向M1型极化的重要诱因[28]。本研究中,在高脂饮食喂养的小鼠肝组织中观察到脂滴沉积,并伴随巨噬细胞和促炎因子数量的增加,表明肝组织中的巨噬细胞可能处于M1型极化状态。此外,我们还发现LRG1在脂肪肝组织中表达明显降低,因此LRG1表达降低是否为MAFLD发生发展的重要因素,这是本研究要探索的科学问题。
通过基因表达数据库(https://www.ncbi.nlm.nih.gov/geo/)分析不同组织中LRG1的表达,发现与其它组织相比,LRG1在肝脏中的表达最高,提示LRG1可能在维持肝脏正常生理微环境中发挥重要作用。虽然LRG1在体内主要由肝脏合成,但它是一种分泌性糖蛋白,可通过体液运输到不同器官。当LRG1作用于多种细胞时,发挥多种生物学作用,如肿瘤生长和转移、炎症反应、血管生成和组织修复[11, 29-35]。然而,即使在相似的病理过程中,LRG1作用于不同的细胞,其生物学功能却截然不同。如作用于胶质瘤[36]和甲状腺癌细胞[37]时,对细胞的增殖和迁移起到积极的促进作用;然而,当作用于鳞状细胞癌[38]和肝细胞癌[31]时,它对细胞增殖和迁移起抑制作用。然而,就LRG1和血管生成而言,它在不同器官的病理过程中也表现出不同的功能。例如,在心力衰竭的情况下,通过microRNA-494抑制LRG1的表达已被证实可诱导内皮细胞的增殖和迁移[39]。在脑缺血大鼠模型中,LRG1已被证实通过增强TGF-β1信号通路促进血管生成[40]。此外,LRG1通过增强肺成纤维细胞的活化促进肺纤维化[41],LRG1也能通过抑制TGF-β1信号通路抑制心脏成纤维细胞的活化并改善心肌纤维化[42]。这些研究不仅说明了LRG1对各种细胞的作用存在显著差异,而且提示LRG1可能通过影响TGF- β1信号通路发挥作用。
TGF-β可刺激巨噬细胞释放抗炎细胞因子IL-10,抑制巨噬细胞向促炎表型转化[43, 45]。在本研究中用LRG1和TGF-β1联合刺激肝巨噬细胞,显著抑制iNOS、CXCL-1和IL-1β的表达水平,LRG1和TGF-β1联合治疗MAFLD小鼠,可减少肝内脂质沉积及巨噬细胞的浸润,并改善肝功能和血糖调节能力,结果表明LRG1通过增强TGF-β1信号抑制肝巨噬细胞活化;LRG1还通过增强TGF-β1信号通路抑制HFD诱导的肝脏炎性反应。此外,在MAFLD小鼠肝脏中观察到明显的巨噬细胞聚集和活化,并发现LRG1在脂肪肝组织中的表达显著降低。因此,我们推测肝细胞脂肪变性诱导的LRG1表达下降可能是肝内巨噬细胞活化的原因。正常肝细胞来源的LRG1通过增强TGF-β1信号通路在肝脏的抑制性炎症反应的微环境建立中发挥重要作用。MAFLD的发展经历了单纯性脂肪变性、脂肪性肝炎和肝纤维化。各阶段的病理变化与肝内组织不同微环境密切相关。其中,TGF-β1信号被认为是促进脂肪变性诱导肝纤维化形成的主要信号之一,而LRG1在这一病理过程中的肝脏表达尚不清楚,需要进一步研究。
综上所述,本研究发现了高脂饮食诱导的小鼠肝脏中LRG1表达降低,LRG1通过增强TGF-β1信号抑制肝巨噬细胞的浸润从而减轻脂肪肝的炎性病变,这些结果也表明,LRG1可能被用作改善MAFLD病变的潜在靶点。虽然本研究获得的数据揭示了LRG1在肝脂肪变性中的作用机制,但仍有一些问题未得到解决。首先,生理性肝内微环境依赖于肝脏的所有细胞;因此,LRG1是否也可以影响其他肝内细胞的功能来调节MAFLD值得进一步研究。其次,需要确定在脂肪变性肝细胞中调节LRG1表达的信号。虽然有报道microRNA-494抑制内皮细胞中LRG1的表达[39],但脂肪变性是否影microRNA-494介导的肝细胞中LRG1的表达尚不清楚。第三,虽然LRG1可以通过增强TGF-β1信号通路抑制肝巨噬细胞活性来减轻体内外MAFLD,但临床应用通过增强LRG1的功能活性来改善MAFLD更可取。上述问题将是未来研究的方向。
Biography
徐龙飞,硕士,E-mail: 752406613@qq.com
Funding Statement
国家自然科学基金地区基金(81860154,81960383);贵州省科技计划项目[黔科支撑(2018)2784];贵州医科大学博士启动基金[院博合J字(2018)002号];贵州医科大学2018年度学术新苗培养及创新探索专项项目[黔科合平台人才(2018)5779-24];中国医学科学院成体干细胞转化研究重点实验室(贵州医科大学)开放性课题(2018YB02);贵州省普通高等学校青年科技人才成长项目[黔教合KY字(2021)150];贵州省教育厅青年科技人才成长项目[黔科合KY字(2018)172]
Supported by National Nature Science Foundation of China (81860154, 81960383)
Contributor Information
徐 龙飞 (Longfei XU), Email: 752406613@qq.com.
王 琪 (Qi WANG), Email: 904701681@qq.com.
洪 艳 (Yan HONG), Email: hongyanb@163.com.
References
- 1.Kuchay MS, Choudhary NS, Mishra SK. Pathophysiological mechanisms underlying MAFLD. Diabetes Metab Syndr. 2020;14(6):1875–87. doi: 10.1016/j.dsx.2020.09.026. [DOI] [PubMed] [Google Scholar]
- 2.Heeren J, Scheja L. Metabolic-associated fatty liver disease and lipoprotein metabolism. Mol Metab. 2021;50(7):101238. doi: 10.1016/j.molmet.2021.101238. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 3.Sberna AL, Bouillet B, Rouland A, et al. European Association for the Study of the Liver (EASL), European Association for the Study of Diabetes (EASD) and European Association for the Study of Obesity (EASO) clinical practice recommendations for the management of non-alcoholic fatty liver disease: evaluation of their application in people with Type 2 diabetes. Diabet Med. 2018;35(3):368–75. doi: 10.1111/dme.13565. [DOI] [PubMed] [Google Scholar]
- 4.Zobair M, Younossi Non-alcoholic fatty liver disease-A global public health perspective. J Hepatol. 2019;70(3):531–44. doi: 10.1016/j.jhep.2018.10.033. [DOI] [PubMed] [Google Scholar]
- 5.Sakurai Y, Kubota N, Yamauchi T, et al. Role of insulin resistance in MAFLD. Int J Mol Sci. 2021;22(8):4156. doi: 10.3390/ijms22084156. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 6.Manne V, Handa P, Kowdley KV. Pathophysiology of nonalcoholic fatty liver disease/nonalcoholic steatohepatitis. Clin Liver Dis. 2018;22(1):23–37. doi: 10.1016/j.cld.2017.08.007. [DOI] [PubMed] [Google Scholar]
- 7.Gadd VL, Skoien R, Powell EE, et al. The portal inflammatory infiltrate and ductular reaction in human nonalcoholic fatty liver disease. Hepatology. 2014;59(4):1393–405. doi: 10.1002/hep.26937. [DOI] [PubMed] [Google Scholar]
- 8.Wang XM, Abraham S, McKenzie JAG, et al. LRG1 promotes angiogenesis by modulating endothelial TGF-β signalling. Nature. 2013;499(7458):306–11. doi: 10.1038/nature12345. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 9.Zhou Y, Zhang XT, Zhang JJ, et al. LRG1 promotes proliferation and inhibits apoptosis in colorectal cancer cells via RUNX1 activation. PLoS One. 2017;12(4):e0175122. doi: 10.1371/journal.pone.0175122. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 10.Wang YY, Xu JJ, Zhang XD, et al. TNF-α-induced LRG1 promotes angiogenesis and mesenchymal stem cell migration in the subchondral bone during osteoarthritis. Cell Death Dis. 2017;8(3):e2715. doi: 10.1038/cddis.2017.129. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 11.Y a, G ao. LRG1 promotes keratinocyte migration and wound repair through regulation of HIF-1α stability. J Investig Dermatol. 2020;140(2):455–64.e8. doi: 10.1016/j.jid.2019.06.143. [DOI] [PubMed] [Google Scholar]
- 12.Jetten N, Verbruggen S, Gijbels MJ, et al. Anti-inflammatory M2, but not pro-inflammatory M1 macrophages promote angiogenesis in vivo. Angiogenesis. 2014;17(1):109–18. doi: 10.1007/s10456-013-9381-6. [DOI] [PubMed] [Google Scholar]
- 13.Wang J, Li DY, Cang HX, et al. Crosstalk between cancer and immune cells: role of tumor-associated macrophages in the tumor microenvironment. Cancer Med. 2019;8(10):4709–21. doi: 10.1002/cam4.2327. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 14.Gu S, Dai HH, Zhao XL, et al. AKT3 deficiency in M2 macrophages impairs cutaneous wound healing by disrupting tissue remodeling. Aging. 2020;12(8):6928–46. doi: 10.18632/aging.103051. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 15.王 轶凡, 卞 兆连. LRG1在非酒精性脂肪性肝病小鼠及细胞模型中的表达. 交通医学. 2020;34(1):4–7. [Google Scholar]
- 16.Wan Z, Zhao LB, Lu F, et al. Mononuclear phagocyte system blockade improves therapeutic exosome delivery to the myocardium. Theranostics. 2020;10(1):218–30. doi: 10.7150/thno.38198. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 17.Aparicio-Vergara M, Tencerova M, Morgantini C, et al. Isolation of kupffer cells and hepatocytes from a single mouse liver[M]//Alpha-1 Antitrypsin Deficiency. New York: Humana Press, 2017, 20 (12): 161-71.
- 18.Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCT method. Methods. 2001;25(4):402–8. doi: 10.1006/meth.2001.1262. [DOI] [PubMed] [Google Scholar]
- 19.Bessone F, Razori MV, Roma MG. Molecular pathways of nonalcoholic fatty liver disease development and progression. Cell Mol Life Sci. 2019;76(1):99–128. doi: 10.1007/s00018-018-2947-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 20.Mohsen M, Dominik P, Suchira G, et al. Platelet GPIbα is a mediator and potential interventional target for NASH and subsequent liver cancer. Nat Med. 2019;25(4):641–55. doi: 10.1038/s41591-019-0379-5. [DOI] [PubMed] [Google Scholar]
- 21.Ad el, Hammoutene Role of liver sinusoidal endothelial cells in nonalcoholic fatty liver disease. J Hepatol. 2019;70(6):1278–91. doi: 10.1016/j.jhep.2019.02.012. [DOI] [PubMed] [Google Scholar]
- 22.Iyer S, Upadhyay PK, Majumdar SS, et al. Animal models correlating immune cells for the development of NAFLD/NASH. J Clin Exp Hepatol. 2015;5(3):239–45. doi: 10.1016/j.jceh.2015.06.004. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 23.Arrese M, Cabrera D, Kalergis AM, et al. Innate immunity and inflammation in NAFLD/NASH. Dig Dis Sci. 2016;61(5):1294–303. doi: 10.1007/s10620-016-4049-x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 24.Alisi A, Carpino G, Oliveira FL, et al. The role of tissue macrophagemediated inflammation on NAFLD pathogenesis and its clinical implications. Mediat Inflamm. 2017;20(1):1–15. doi: 10.1155/2017/8162421. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 25.Buttari B, Profumo E, Segoni L, et al. Resveratrol counteracts inflammation in human M1 and M2 macrophages upon challenge with 7-oxo-cholesterol: potential therapeutic implications in atherosclerosis. Oxidative Med Cell Longev. 2014;18(12):1–12. doi: 10.1155/2014/257543. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 26.Pan XL, Wang P, Luo JZ, et al. Adipogenic changes of hepatocytes in a high-fat diet-induced fatty liver mice model and non-alcoholic fatty liver disease patients. Endocrine. 2015;48(3):834–47. doi: 10.1007/s12020-014-0384-x. [DOI] [PubMed] [Google Scholar]
- 27.Li HO, Zhou YJ, Wang HZ, et al. Crosstalk between liver macrophages and surrounding cells in nonalcoholic steatohepatitis. Front Immunol. 2020;11(6):1169. doi: 10.3389/fimmu.2020.01169. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 28.Kazankov K, Jørgensen SMD, Thomsen KL, et al. The role of macrophages in nonalcoholic fatty liver disease and nonalcoholic steatohepatitis. Nat Rev Gastroenterol Hepatol. 2019;16(3):145–59. doi: 10.1038/s41575-018-0082-x. [DOI] [PubMed] [Google Scholar]
- 29.Serada S, Fujimoto M, Terabe F, et al. Serum leucine-rich alpha-2 glycoprotein is a disease activity biomarker in ulcerative colitis. Inflamm Bowel Dis. 2012;18(11):2169–79. doi: 10.1002/ibd.22936. [DOI] [PubMed] [Google Scholar]
- 30.Wong CCL, Tse APW, Huang YP, et al. Lysyl oxidase-like 2 is critical to tumor microenvironment and metastatic niche formation in hepatocellular carcinoma. Hepatology. 2014;60(5):1645–58. doi: 10.1002/hep.27320. [DOI] [PubMed] [Google Scholar]
- 31.Zhang YR, Luo Q, Wang N, et al. LRG1 suppresses the migration and invasion of hepatocellular carcinoma cells. Med Oncol. 2015;32(5):146. doi: 10.1007/s12032-015-0598-7. [DOI] [PubMed] [Google Scholar]
- 32.Wu J, Yin HD, Zhu JH, et al. Validation of LRG1 as a potential biomarker for detection of epithelial ovarian cancer by a blinded study. PLoS One. 2015;10(3):e0121112. doi: 10.1371/journal.pone.0121112. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 33.Zhong D, Zhao SR, He GX, et al. Stable knockdown of LRG1 by RNA interference inhibits growth and promotes apoptosis of glioblastoma cells in vitro and in vivo. Tumor Biol. 2015;36(6):4271–8. doi: 10.1007/s13277-015-3065-3. [DOI] [PubMed] [Google Scholar]
- 34.Liu YS, Luo XY, Li QR, et al. Shotgun and targeted proteomics reveal that pre-surgery serum levels of LRG1, SAA, and C4BP may refine prognosis of resected squamous cell lung cancer. J Mol Cell Biol. 2012;4(5):344–7. doi: 10.1093/jmcb/mjs050. [DOI] [PubMed] [Google Scholar]
- 35.Wen SY, Zhang LN, Yang XM, et al. LRG1 is an independent prognostic factor for endometrial carcinoma. Tumor Biol. 2014;35(7):7125–33. doi: 10.1007/s13277-014-1953-6. [DOI] [PubMed] [Google Scholar]
- 36.D i, Zhong LRG1 modulates invasion and migration of glioma cell lines through TGF-β signaling pathway. Acta Histochem. 2015;117(6):551–8. doi: 10.1016/j.acthis.2015.05.001. [DOI] [PubMed] [Google Scholar]
- 37.Ban ZF, He JN, Tang ZZ, et al. LRG-1 enhances the migration of thyroid carcinoma cells through promotion of the epithelialmesenchymal transition by activating MAPK/p38 signaling. Oncol Rep. 2019;41(10):3270–80. doi: 10.3892/or.2019.7123. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 38.Zhang NG, Ren YQ, Wang YS, et al. LRG1 suppresses migration and invasion of esophageal squamous cell carcinoma by modulating epithelial to mesenchymal transition. J Cancer. 2020;11(6):1486–94. doi: 10.7150/jca.36189. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 39.Su Q, Lv XW, Sun YH, et al. RETRACTED: microRNA-494 inhibits the LRG1 expression to induce proliferation and migration of VECs in rats following myocardial infarction. Mol Ther Nucleic Acids. 2019;18(5):110–22. doi: 10.1016/j.omtn.2019.08.007. [DOI] [PMC free article] [PubMed] [Google Scholar] [Retracted]
- 40.Meng HM, Song YJ, Zhu JY, et al. LRG1 promotes angiogenesis through upregulating the TGF-β1 pathway in ischemic rat brain. Mol Med Rep. 2016;14(6):5535–43. doi: 10.3892/mmr.2016.5925. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 41.Honda H, Fujimoto M, Serada S, et al. Leucine-rich α-2 glycoprotein promotes lung fibrosis by modulating TGF-β signaling in fibroblasts. Physiol Rep. 2017;5(24):e13556. doi: 10.14814/phy2.13556. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 42.Liu C, Lim ST, Teo MHY, et al. Collaborative regulation of LRG1 by TGF- β1 and PPAR- β/δ modulates chronic pressure overloadinduced cardiac fibrosis. Circ Heart Fail. 2019;12(3):e005962. doi: 10.1161/CIRCHEARTFAILURE.119.005962. [DOI] [PubMed] [Google Scholar]
- 43.Wang YQ, Han B, Wang YB, et al. Mesenchymal stem cell-secreted extracellular vesicles carrying TGF-β1 up-regulate miR-132 and promote mouse M2 macrophage polarization. J Cell Mol Med. 2020;24(21):12750–64. doi: 10.1111/jcmm.15860. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 44.Luo HX, Hao YX, Tang B, et al. Mouse forestomach carcinoma cells immunosuppress macrophages through transforming growth factor- β1. Mol Med Rep. 2012;5(4):988–92. doi: 10.3892/mmr.2012.777. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 45.Cheng G, Gao JX, Wang LF, et al. The TGF-β1/COX-2-dependant pathway serves a key role in the generation of OKC-induced M2-polarized macrophage-like cells and angiogenesis. Oncol Lett. 2020;20(4):39. doi: 10.3892/ol.2020.11900. [DOI] [PMC free article] [PubMed] [Google Scholar]