Skip to main content
Science Progress logoLink to Science Progress
. 2009 Jul 1;92(2):113–137. doi: 10.3184/003685009X461431

Tubulin and its Prokaryotic Homologue FtsZ: A Structural and Functional Comparison

Nigel Dyer 1
PMCID: PMC10367450  PMID: 19697711

Abstract

Microtubules are one of the three primary constituents of the eukaryotic cytoskeleton and are constructed from the protein tubulin. FtsZ is a close structural homologue of tubulin within prokaryotes, and plays an important structural role during cell division. This article compares what is known about the structures that these two homologues are able to form in vivo and in vitro and examines the evidence that the water in the immediate vicinity of the structures, particularly in microtubules, may play an important role in their formation and stability. The article then examines evidence that this hydration layer might help our understanding of how the structures formed by tubulin and FtsZ are stabilised by associated proteins and selected cations. The article then considers recent studies of the charge distribution and dipole moments of tubulin and extends this work to include the electrostatic characteristics of FtsZ. There is then an examination of the ways in which the electrostatic similarities and differences between the two proteins might be related to the similarities and differences in the filamentary structures that they form.

Keywords: microtubules, tubulin, eukaryotic organisms, FtsZ

Full Text

The Full Text of this article is available as a PDF (5.5 MB).

References

  • 1.Michie K.A., and Lowe J. (2006) Dynamic filaments of the bacterial cytoskeleton. Ann. Rev. Biochem., 75, 467–492. [DOI] [PubMed] [Google Scholar]
  • 2.Lowe J., and Amos L.A. (1998) Crystal structure of the bacterial cell-division protein FtsZ. Nature, 391(6663), 203–206. [DOI] [PubMed] [Google Scholar]
  • 3.Erickson H.P. (1995) FtsZ, a prokaryotic homolog of tubulin? Cell, 80(3), 367–370. [DOI] [PubMed] [Google Scholar]
  • 4.Addinall S.G., and Holland B. (2002) The tubulin ancestor, FtsZ, draughtsman, designer and driving force for bacterial cytokinesis. J. Mol. Biol., 318(2), 219–236. [DOI] [PubMed] [Google Scholar]
  • 5.Margolin W. (2005) FtsZ and the division of prokaryotic cells and organelles. Nat. Rev. Mol. Cell Biol., 6(11), 862–871. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 6.Mitchison T.J. (1995) Evolution of a dynamic cytoskeleton. Phil. Trans. R. Soc. Lond. B Biol. Sci., 349(1329), 299–304. [DOI] [PubMed] [Google Scholar]
  • 7.Wasteneys G.O. (2002) Microtubule organization in the green kingdom: chaos or self-order? J. Cell Sci., 115(Pt 7), 1345–1354. [DOI] [PubMed] [Google Scholar]
  • 8.Desai A., and Mitchison T.J. (1997) Microtubule polymerization dynamics. Ann. Rev. Cell Dev. Biol., 13, 83–117. [DOI] [PubMed] [Google Scholar]
  • 9.Chen Y., and Erickson H.P. (2005) Rapid in vitro assembly dynamics and subunit turnover of FtsZ demonstrated by fluorescence resonance energy transfer. J. Biol. Chem., 280(23), 22549–22554. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 10.Stricker J. (2002) Rapid assembly dynamics of the Escherichia coli FtsZ-ring demonstrated by fluorescence recovery after photobleaching. Proc. Natl. Acad. Sci. USA, 99(5), 3171–3175. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 11.Asbury C.L. (2008) XMAP215: a tip tracker that really moves. Cell, 132(1), 19–20. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 12.Dehmelt L., and Halpain S. (2005) The MAP2/Tau family of microtubule-associated proteins. Genome Biol., 6(1), 204. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 13.Small E. (2007) FtsZ polymer-bundling by the Escherichia coli ZapA orthologue, YgfE, involves a conformational change in bound GTP. J. Mol. Biol., 369(1), 210–221. [DOI] [PubMed] [Google Scholar]
  • 14.Gueiros-Filho F.J., and Losick R. (2002) A widely conserved bacterial cell division protein that promotes assembly of the tubulin-like protein FtsZ. Genes Dev., 16(19), 2544–2456. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 15.Low H.H., Moncrieffe M.C., and Lowe J. (2004) The crystal structure of ZapA and its modulation of FtsZ polymerisation. J. Mol. Biol., 341(3), 839–852. [DOI] [PubMed] [Google Scholar]
  • 16.van den Ent F., and Lowe J. (2000) Crystal structure of the cell division protein FtsA from Thermotoga maritima. Embo J., 19(20), 5300–5307. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 17.Shiomi D., and Margolin W. (2007) Dimerization or oligomerization of the actin-like FtsA protein enhances the integrity of the cytokinetic Z ring. Mol. Microbiol., 66(6), 1396–1415. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 18.Hale C.A., and de Boer P.A. (1997) Direct binding of FtsZ to ZipA, an essential component of the septal ring structure that mediates cell division in E. coli. Cell, 88(2), 175–185. [DOI] [PubMed] [Google Scholar]
  • 19.Hale C.A., Rhee A.C., and de Boer P.A. (2000) ZipA-induced bundling of FtsZ polymers mediated by an interaction between C-terminal domains. J. Bacteriol., 182(18), 5153–5166. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 20.Mosyak L. (2000) The bacterial cell-division protein ZipA and its interaction with an FtsZ fragment revealed by X-ray crystallography. Embo J., 19(13), 3179–3191. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 21.Rost B., and Liu J. (2003) The PredictProtein server. Nucl. Acids Res., 31(13), 3300–3304. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 22.Blender Foundation. Blender: A free open source 3D content creation suite. [cited; Available from: http://www.blender.org/.
  • 23.RayChaudhuri D. (1999) ZipA is a MAP-Tau homolog and is essential for structural integrity of the cytokinetic FtsZ ring during bacterial cell division. Embo J., 18(9), 2372–2383. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 24.Stebbings H., and Hunt C. (1982) The nature of the clear zone around microtubules. Cell Tiss. Res., 227(3), 609–617. [DOI] [PubMed] [Google Scholar]
  • 25.Burton P.R., and Laveri L.A. (1985) The distribution, relationships to other organelles, and calcium-sequestering ability of smooth endoplasmic reticulum in frog olfactory axons. J. Neurosci., 5(11), 3047–4060. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 26.Vater W., Bohm K.J., and Unger E. (1997) Tubulin assembly in the presence of calcium ions and taxol: microtubule bundling and formation of macrotubulering complexes. Cell Motil. Cytoskeleton, 36(1), 76–83. [DOI] [PubMed] [Google Scholar]
  • 27.Herzog W., and Weber K. (1977) In vitro assembly of pure tubulin into microtubules in the absence of microtubule-associated proteins and glycerol. Proc. Natl. Acad. Sci. USA, 74(5), 1860–1864. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 28.Zheng J.M., and Pollack G.H. (2003) Long-range forces extending from polymer-gel surfaces. Phys. Rev. E. Stat. Nonlin. Soft Matter Phys., 68(3 Pt 1), 031408. [DOI] [PubMed] [Google Scholar]
  • 29.Cameron I.L. (1987) Cell cycle changes in water properties in sea urchin eggs. J. Cell Physiol., 133(1), 14–24. [DOI] [PubMed] [Google Scholar]
  • 30.Keates R.A. (1980) Effects of glycerol on microtubule polymerization kinetics. Biochem. Biophys. Res. Commun., 97(3), 1163–1169. [DOI] [PubMed] [Google Scholar]
  • 31.Shelanski M.L., Gaskin F., and Cantor C.R. (1973) Microtubule assembly in the absence of added nucleotides. Proc. Natl. Acad. Sci. USA, 70(3), 765–768. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 32.Na G.C., and Timasheff S.N. (1981) Interaction of calf brain tubulin with glycerol. J. Mol. Biol., 151(1), 165–178. [DOI] [PubMed] [Google Scholar]
  • 33.Timasheff S.N. (1993) The control of protein stability and association by weak interactions with water: how do solvents affect these processes? Ann. Rev. Biophys. Biomol. Struct., 22, 67–97. [DOI] [PubMed] [Google Scholar]
  • 34.Tuszynski J.A. (2006) The evolution of the structure of tubulin and its potential consequences for the role and function of microtubules in cells and embryos. Int. J. Dev. Biol., 50(2-3), 341–358. [DOI] [PubMed] [Google Scholar]
  • 35.Stracke R. (2002) Analysis of the migration behaviour of single microtubules in electric fields. Biochem. Biophys. Res. Commun., 293(1), 602–609. [DOI] [PubMed] [Google Scholar]
  • 36.Weisenberg R.C. (1972) Microtubule formation in vitro in solutions containing low calcium concentrations. Science, 177(54), 1104–1105. [DOI] [PubMed] [Google Scholar]
  • 37.Wolff J., Sackett D.L., and Knipling L. (1996) Cation selective promotion of tubulin polymerization by alkali metal chlorides. Protein Sci., 5(10), 2020–2028. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 38.Olmsted J.B., and Borisy G.G. (1975) Ionic and nucleotide requirements for microtubule polymerization in vitro. Biochemistry, 14(13), 2996–3005. [DOI] [PubMed] [Google Scholar]
  • 39.Schiff P.B., and Horwitz S.B. (1981) Taxol assembles tubulin in the absence of exogenous guanosine 5'-triphosphate or microtubule-associated proteins. Biochemistry, 20(11), 3247–3252. [DOI] [PubMed] [Google Scholar]
  • 40.Downing K.H., and Nogales E. (1999) Crystallographic structure of tubulin: implications for dynamics and drug binding. Cell Struct. Funct., 24(5), 269–275. [DOI] [PubMed] [Google Scholar]
  • 41.Pressel S., Ligrone R., and Duckett J.G. (2006) Effects of de- and rehydration on food-conducting cells in the moss Polytrichum formosum: a cytological study. Ann. Bot. (Lond.), 98(1), 67–76. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 42.Bagniewska-Zadworna A. (2008) The root microtubule cytoskeleton and cell cycle analysis through desiccation of Brassica napus seedlings. Protoplasma, 233, 177–185. [DOI] [PubMed] [Google Scholar]
  • 43.Mukherjee A., and Lutkenhaus J. (1998) Purification, assembly, and localization of FtsZ. Meth. Enzymol., 298, 296–305. [DOI] [PubMed] [Google Scholar]
  • 44.Berkowitz S.A., and Wolff J. (1981) Intrinsic calcium sensitivity of tubulin polymerization. The contributions of temperature, tubulin concentration, and associated proteins. J. Biol. Chem., 256(21), 11216–11223. [PubMed] [Google Scholar]
  • 45.Menendez M. (1998) Control of the structural stability of the tubulin dimer by one high affinity bound magnesium ion at nucleotide N-site. J. Biol. Chem., 273(1), 167–176. [DOI] [PubMed] [Google Scholar]
  • 46.Clare D.A., (2007) Calcium effects on the functionality of a modified whey protein ingredient. J. Agric. Food Chem., 55(26), 10932–10940. [DOI] [PubMed] [Google Scholar]
  • 47.Yu X.C., and Margolin W. (1997) Ca2+-mediated GTP-dependent dynamic assembly of bacterial cell division protein FtsZ into asters and polymer networks in vitro. Embo J., 16(17), 5455–5463. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 48.Lowe J., and Amos L.A. (1999) Tubulin-like protofilaments in Ca2+-induced FtsZ sheets. Embo J., 18(9), 2364–2371. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 49.Lowe J., and Amos L.A. (2000) Helical tubes of FtsZ from Methanococcus jannaschii. Biol. Chem., 381(9-10), 993–999. [DOI] [PubMed] [Google Scholar]
  • 50.Peters P.C. (2007) A new assembly pathway for the cytokinetic Z ring from a dynamic helical structure in vegetatively growing cells of Bacillus subtilis. Mol. Microbiol., 64(2), 487–499. [DOI] [PubMed] [Google Scholar]
  • 51.Tuszynski J. (2007) Transistor-like behavior of ionic conductivity of protein filaments, In: The Physics, Chemistry and Biology of Water. West Dover, Vermont. [Google Scholar]
  • 52.Amos L.A. (2004) Microtubule structure and its stabilisation. Org. Biomol. Chem., 2(15), 2153–2160. [DOI] [PubMed] [Google Scholar]
  • 53.Santra M.K., Dasgupta D., and Panda D. (2005) Deuterium oxide promotes assembly and bundling of FtsZ protofilaments. Proteins, 61(4), 1101–1110. [DOI] [PubMed] [Google Scholar]
  • 54.Shewry P.R. (2002) The structure and properties of gluten: an elastic protein from wheat grain. Phil. Trans. R. Soc. Lond. B. Biol. Sci., 357(1418), 133–142. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Science Progress are provided here courtesy of SAGE Publications

RESOURCES