Skip to main content
Science Progress logoLink to Science Progress
. 2019 Feb 27;86(3):179–202. doi: 10.3184/003685003783238671

Microbial Transformation of Metals and Metalloids

Andrea Raab 1, Jörg Feldmann 1
PMCID: PMC10367459  PMID: 15079996

Abstract

Throughout evolution, microbes have developed the ability to live in nearly every environmental condition on earth. They can grow with or without oxygen or light. Microbes can dissolve or precipitate ores and are able to yield energy from the reduction/oxidation of metal ions. Their metabolism depends on the availability of metal ions in essential amounts and protects itself from toxic amounts of metals by detoxification processes. Metals are metabolised to metallorgano-compounds, bound to proteins or used as catalytic centres of enzymes in biological reactions. Microbes, as every other cell, have developed a whole range of mechanisms for the uptake and excretion of metals and their metabolised compounds. The diversity of microbial metabolism can be illustrated by the fact that certain microbes can be found living on arsenate, which is considered a highly toxic metal for most other forms of live.

Full Text

The Full Text of this article is available as a PDF (310.1 KB).

10. References

  • 1.Nevin K.P., & Lovley D.R. (2000) Lack of production of electron-shuttling compounds or solubilization of Fe(III) during reduction of insoluble Fe(III) oxide by Geobacter metallireducens. App. Environ. Microbiol., 66, 2248–2251. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 2.Nevin K.P., & Lovley D.R. (2002) Mechanisms for Fe (III) oxide reduction in sedimentary environments. Geomicrobiol. J., 19(2), 141–159. [Google Scholar]
  • 3.Nevin K.P., & Lovley D.R. (20002) Mechanisms for accessing insoluble Fe(III) oxide during dissimilatory Fe(III) reduction by Geothrix fermentans. App. Environ. Microbiol., 68(5), 2294–2299. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 4.Newman D.K., & Kolter R. (2000) A role for excreted quinones in extracellular electron transfer. Nature 405, 94–97. [DOI] [PubMed] [Google Scholar]
  • 5.Turick C.E., Tisa L.S., & Caccavo F. (2002) Melanin production and use as a soluble electron shuttle for Fe(III) oxide reduction and as a terminal electron acceptor by Shewanella algae BrY. App. Environ. Microbiol., 68(5), 2436–2444. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 6.Laverman A.M., Blum J.S., Schaefer J.K., Philips E.J.P., Lovley D.R., & Oremland R.S. (1995) Growth of strain SES-3 with arsenate and other diverse electron acceptors. App. Environ. Microbiol., 61, 3556–3561. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 7.Blum J.S., Bindi A.B., Buzzelli J., Stolz J.F., & Oremland R.S. (1998) Bacillus arsenicoselenatis, sp nov, and Bacillus selenitireducens, sp nov: two haloalkaliphiles from Mono Lake, California that respire oxyanions of selenium and arsenic. Arch. Microbiol., 171(1), 19–30. [DOI] [PubMed] [Google Scholar]
  • 8.Newman D.K., Kennedy E.K., Coates J.D., Ahmann D., Ellis D.J., Lovley D.R., & Morel F.M.M. (1997) Dissimilatory arsenate and sulfate reduction in Desulfotomaculum auripigmentum sp. nov. Arch. Microbiol., 168(5), 380–388. [DOI] [PubMed] [Google Scholar]
  • 9.Gihring T.M., & Banfield J.F. (2001) Arsenite oxidation and arsenate respiration by a new Thermus isolate. FEMS Microbiol. Lett., 204(2), 335–340. [DOI] [PubMed] [Google Scholar]
  • 10.Herbel M.J., Blum J.S., Hoeft S.E., Cohen S.M., Arnold L.L., Lisak J., Stolz J.F., & Oremland R.S. (2002) Dissimilatory arsenate reductase activity and arsenate-respiring bacteria in bovine rumen fluid, hamster feces, and the termite hindgut. FEMS Microbiol. Ecol., 41(1), 59–67. [DOI] [PubMed] [Google Scholar]
  • 11.Huber R., Huber H., & Stetter K.O. (2000) Towards the ecology of hyperthermophiles: biotopes, new isolation strategies and novel metabolic properties. FEMS Microbiol. Rev., 24(5), 615–623. [DOI] [PubMed] [Google Scholar]
  • 12.Stolz J.F. & Oremland R.S. (1999) Bacterial respiration of arsenic and selenium. FEMS Microbiol. Rev., 23, 615–627. [DOI] [PubMed] [Google Scholar]
  • 13.Holmes D.E., Finneran K.T., O'Neil R.A., & Lovley D.R. (2002) Enrichment of members of the family Geobacteraceae associated with stimulation of dissimilatory metal reduction in uranium-contaminated aquifer sediments. App. Environ. Microbiol., 68(5), 2300–2306. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 14.Newman D.K., Beveridge T.J., & Morel F.M.M. (1997) Precipitation of arsenic trisulfide by Desulfotomaculum auripigmentum. App. Environ. Microbiol., 63(5), 2022–2028. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 15.Grunberg K., Wawer C., Tebo B.M., & Schuler D. (2001) A large gene cluster encoding several magnetosome proteins is conserved in different species of magnetotactic bacteria. App. Environ. Microbiol., 67(10), 4573–4582. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 16.Messerschmidt A., Huber R., Poulos T., & Wieghardt K. (ed.). (2001) Handbook of metalloproteins I & II. different chapters Wiley & Sons, Chichester. [Google Scholar]
  • 17.Dixon H.B.F. (1997) Biochemical action of arsonic acid. Adv. Inorg. Chem., 44, 175–192. [Google Scholar]
  • 18.Styblo M., Del Razo L.M., Vega L., Germolec D.R., LeCluyse E.L., Hamilton G.A., Reed W., Wang C., Cullen W.R., & Thomas D.J. (2000) Comparative toxicity of trivalent and pentavalent inorganic and methylated arsenicals in rat and human cells. Arch. Toxicol., 74(6), 289–299. [DOI] [PubMed] [Google Scholar]
  • 19.Kaise T., & Fukui S. (1992) The chemical form and acute toxicity of arsenic compounds in marine organisms. Appl. Organomet. Chem., 6(2), 155–160. [Google Scholar]
  • 20.Silver S., Budd K., Leahy K.M., Shaw W.V., Hammond D., Novick R.P., Willsky G.R., Malamy M.H. & Rosenberg H. (1981) Inducible plasmid determined resistance to arsenate, arsenite, and antimony(III) in Escherichia coli and Staphylococcus aureus. J. Bacteriol. 146, 983–996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 21.Rosen B.P. (2002) Biochemistry of arsenic detoxification. FEBS Lett., 529(1), 86–92. [DOI] [PubMed] [Google Scholar]
  • 22.Furrer J.L., Sanders D.N., Hook-Barnard I.G., & McIntosh M.A. (2002) Export of the siderophore enterobactin in Escherichia coli: involvement of a 43 kDa membrane exporter. Mol. Microbiol., 44(5), 1225–1234. [DOI] [PubMed] [Google Scholar]
  • 23.Mukund S., & Adams M.W.W. (1999) Molybdenum and vanadium do not replace tungsten in the catalytically active forms of the three tungstoenzymes in the hyperthermophilic archaeon Pyrococcus furiosus. J. Bacteriol., 178(1), 163–167. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 24.Thayer J.S. (2002) Review: Biological methylation of less-studied elements. Appl. Organomet. Chem., 16(12), 677–691. [Google Scholar]
  • 25.Challenger F. (1945) Biological methylation. Chem. Rev., 36, 315–361. [Google Scholar]
  • 26.Zakharyan R.A., & Aposhian H.V. (1999) Enzymatic reduction of arsenic compounds in mammalian systems: The Rate-Limiting Enzyme of Rabbit Liver Arsenic Biotransformation Is MMA V Reductase. Chem. Res. Toxicol., 12, 1278–1283. [DOI] [PubMed] [Google Scholar]
  • 27.Wildfang E., Zakharyan R.A., & Aposhian H.V. (1998) Enzymatic methylation of arsenic compounds–VI. Characterization of hamster liver arsenite and methylarsonic acid methyltransferase activities in vitro. Toxicol. Appl. Pharmacol., 152(2), 366–375. [DOI] [PubMed] [Google Scholar]
  • 28.Cullen W.R., & Reimer K.J. (1989) Arsenic speciation in the environment. Chem. Rev., 89, 713–764. [Google Scholar]
  • 29.Castlehouse H., Smith C., Raab A., Deacon C., Meharg A.A., & Feldmann J. (2003) Biotransformation and Accumulation of Arsenic in Soil Amended with Seaweed. Environ. Sci. Technol. 37, 951–957. [DOI] [PubMed] [Google Scholar]
  • 30.Feldmann J (2003) Volatilization of metals from a landfill site–Generation and immobilization of volatile species of tin, antimony, bismuth, mercury, arsenic, and tellurium on a municipal waste deposit in Delta, British Columbia, ACS Sym Ser 835, 128–140.
  • 31.Hansen H.R., Raab A., Feldmann J. (2003) New arsenosugar metabolite determined in urine by parallel use of HPLC-ICP-MS and HPLC-ESI-MS, J. Anal. At. Spectrom. 18, 474–479. [Google Scholar]
  • 32.Langdon C., Meharg A.A., Feldmann J., Balger T., Charnock J., Farquhar M., Piearce T., Semple K., Cotter-Howells J. (2002) Arsenic speciation in arsenate-resistant and non-resistant populations of the Earthworm, Lumbricus rubellus, J. Environ. Monit, 4, 603–608. [DOI] [PubMed] [Google Scholar]
  • 33.Tatken R.L., & Lewis R.J. (eds.) (1983) Registry of toxic effects chemical sub-stances. Report. Cincinnati, OH: US Department of Health and Human Services. [Google Scholar]
  • 34.Kaise T., Oya-Ohta Y., Ochi T., Okubo T., Hanaoka K., Irgolic K.J., Sakurai T., & Matsubara C. (1996) Toxicological study of organic arsenic com-pound in marine algae using mammalian cell culture technique. J. Food Hyg. Soc. Jpn., 37, 135–141. [Google Scholar]

Articles from Science Progress are provided here courtesy of SAGE Publications

RESOURCES