Skip to main content
Science Progress logoLink to Science Progress
. 2019 Feb 27;84(1):45–68. doi: 10.3184/003685001783239050

Use of EPR Spectroscopy to Study Macromolecular Structure and Function

Roopa Biswas 1,, Henriette KÜhne 2, Gary W Brudvig 2, Venkat Gopalan 1,
PMCID: PMC10367463  PMID: 11382137

Abstract

Electron paramagnetic resonance (EPR) spectroscopy is now part of the armory available to probe the structural aspects of proteins, nucleic acids and protein–nucleic acid complexes. Since the mobility of a spin label covalently attached to a macromolecule is influenced by its microenvironment, analysis of the EPR spectra of site-specifically incorporated spin labels (probes) provides a powerful tool for investigating structure–function correlates in biological macromolecules. This technique has become readily amenable to address various problems in biology in large measure due to the advent of techniques like site-directed mutagenesis, which enables site-specific substitution of cysteine residues in proteins, and the commercial availability of thiol-specific spin-labeling reagents (Figure 1)1. In addition to the underlying principle and the experimental strategy, several recent applications are discussed in this review.

Full Text

The Full Text of this article is available as a PDF (453.2 KB).

References

  • 1.Bobst A. M. (1979) Applications of spin labeling to nucleic acids. In: Berliner L.J. (ed.) Spin Labeling II–Theory and Applications, Academic Press, New York, NY. [Google Scholar]
  • 2.Millhauser G. L., Fiori W. R., & Miick S. M. 1995. Electron spin labels. Methods Enzymol., 246, 589–610. [DOI] [PubMed] [Google Scholar]
  • 3.Weil J. A., Bolton J. R., & Wertz J. E. (1994) Electron Paramagnetic Resonance-Elementary Theory and Practical Applications. John Wiley & Sons, Inc., New York, NY. [Google Scholar]
  • 4.Stone T. J., Buckman T., Nordio P. L., & McConnell H. M. (1965) Spin-labeled biomolecules. Proc. Natl. Acad. Sci. USA, 54, 1010–1017. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 5.Hara H., Horiuchi T., Saneyoshi M., & Nichimura S. (1970) 4-Thiouridine-specific spin-labeling of E. coli transfer RNA. Biochem. Biophys. Res. Commun. 38, 305–311. [DOI] [PubMed] [Google Scholar]
  • 6.Hilhorst H. W. M., Postma U. D., & Hemminga M. (1982) An EPR study of the kinetics of encapsidation of spin-labeled polyadenylic acid by TMV protein. FEBS Lett., 142, 301–304. [Google Scholar]
  • 7.Smith I. C. P., & Yamane T. (1967) Spin-labeled nucleic acids. Proc. Natl. Acad. Sci. USA, 58, 884–887. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 8.Macosko J. C., Pio M. S., Tinoco I. Jr., & Shin Y.-K. (1999) A novel 5′ displacement spin-labeling technique for electron paramagnetic resonance spectroscopy of RNA. RNA, 5, 1158–1166. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 9.Harris M. E., & Christian E. L. (1999) Use of circular permutation and end modification to position photoaffinity probes for structural analysis of RNA. METHODS- A companion to Methods in Enzymology, 18, 51–59. [DOI] [PubMed] [Google Scholar]
  • 10.Nolan J. M., Burke D. H., & Pace N. R. (1993) Circularly permuted tRNAs as specific photoaffinity probes of ribonuclease P RNA structure. Science, 261, 762–765. [DOI] [PubMed] [Google Scholar]
  • 11.Thomas B. C., Kazantsev A. V., Chen J.-L., & Pace N. R. (2000) Photoaffinity cross-linking and RNA structure analysis. Methods Enzymol., 318, 136–147. [DOI] [PubMed] [Google Scholar]
  • 12.Cohen S.B., & Cech T.R. (1997) Dynamics of thermal motions within a large catalytic RNA investigated by cross-linking with thiol-disulfide interchange. J. Am. Chem. Soc., 119, 6259–6268. [Google Scholar]
  • 13.Hubbell W. L., Mchaourab H. S., Altenbach C., & Lietzow M. A. (1996) Watching proteins move using site-directed spin-labeling. Structure 4, 779–783. [DOI] [PubMed] [Google Scholar]
  • 14.Galli C., Innes J. B., Hirsh D. J., & Brudvig G. W. (1996) Effects of dipoledipole interactions on microwave progressive power saturation of radicals in proteins. J. Magn. Res. Series B, 110, 284–287. [DOI] [PubMed] [Google Scholar]
  • 15.Hustedt E. J., & Beth A. H. (1999) Nitroxide spin-spin interactions: Applications to protein structure and dynamics. Ann. Rev. Biophys. Biomol. Str., 28, 129–153. [DOI] [PubMed] [Google Scholar]
  • 16.Budker V., Du J.-L., Seiter M., Eaton G. R., & Eaton S. S. (1995) Electron-electron spin-spin interaction in spin-labeled low-spin methemoglobin. Biophys. J., 68, 2531–2542. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 17.Eaton G. R., Eaton S. S., & Berliner L. J. (2001) Distance measurements in biological systems by EPR. Biological Magnetic Resonance, Vol. 19, Kluwer Academic/Plenum Publishers, New York. [Google Scholar]
  • 18.Qu K., Vaughn J. L., Sienkiewicz A., Scholes C. P., & Fetrow J. S. (1997) Kinetics and motional dynamics of spin-labeled yeast iso-1-cytochrome c: 1. Stopped-flow electron paramagnetic resonance as a probe for protein folding/unfolding of the C-terminal helix spin-labeled at cysteine 102. Biochemistry, 36, 2884–2897. [DOI] [PubMed] [Google Scholar]
  • 19.Bobst E. V., Keyes R. S., Cao Y. Y., & Bobst A. M. (1996) Spectroscopic probe for the detection of local DNA bending at an AAA triplet. Biochemistry, 35, 9309–9313. [DOI] [PubMed] [Google Scholar]
  • 20.Kaback H. R., Voss J., & Wu J. (1997) Helix packing in polytopic membrane proteins: the lactose permease of Escherichia coli. Curr. Opin. Struct. Biol., 7, 537–542. [DOI] [PubMed] [Google Scholar]
  • 21.Koteiche H. A., Berengian A. R., & Mchaourab H. S. (1998) Identification of protein folding patterns using site-directed spin labeling. Structural characterization of a β-sheet and putative substrate binding regions in the conserved domain of αA-crystallin. Biochemistry, 371, 12681–12688. [DOI] [PubMed] [Google Scholar]
  • 22.Berengian A. R., Parfenova M., & Mchaourab H. S. (1999) Site-directed spin labeling study of subunit interactions in the αA-crystallin domain of small heat-shock proteins. J. Biol. Chem., 274, 6305–6314. [DOI] [PubMed] [Google Scholar]
  • 23.Jung K., Voss J., He M., Hubbell W. L., & Kaback H. R. (1995) Engineering a metal binding site within a polytopic membrane protein, the lactose permease of Escherichia coli. Biochemistry, 34, 6272–6277. [DOI] [PubMed] [Google Scholar]
  • 24.Kaback H. R., & Wu J. (1999) What to do while awaiting crystals of a membrane transport protein and thereafter. Acc. Chem. Res., 32, 805–813. [Google Scholar]
  • 25.Voss J., Hubbell W. L., & Kaback H. R. (1998) Helix packing in the lactose permease determined by metal-nitroxide interaction. Biochemistry, 37, 211–216. [DOI] [PubMed] [Google Scholar]
  • 26.Altenbach C., Marti T., Khorana H. G., & Hubbell W. L. (1990) Transmembrane protein structure: spin labeling of bacteriorhodopsin mutants. Science, 248, 1088–1092. [DOI] [PubMed] [Google Scholar]
  • 27.Steinhoff H.-J., Mollaaghababa R., Altenbach C., Khorana H. G., & Hubbell W. L. (1995) Site-directed spin labeling studies of structure and dynamics in bacteriorhodopsin. Biophys. Chem., 56, 89–94. [DOI] [PubMed] [Google Scholar]
  • 28.Altenbach C., Greenhalgh D. A., Khorana H. G., & Hubbell W. L. (1994) A collision gradient method to determine the immersion depth of nitroxides in lipid bilayers: Application to spin-labeled mutants of bacteriorhodopsin. Proc. Natl. Acad. Sci.USA, 91, 1667–1671. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 29.Pebay-Peyroula E., Rummel G., Rosenbusch J. P., & Landau E. M. (1997) X-ray structure of bacteriorhodopsin at 2.5 angstroms from microcrystals grown in lipidic cubic phases. Science 277, 1676–1681. [DOI] [PubMed] [Google Scholar]
  • 30.Danielson M. A., Bass R. B., & Falke J. J. (1997) Cysteine and disulfide scanning reveals a regulatory α-helix in the cytoplasmic domain of the aspartate receptor. J. Biol. Chem., 272, 32878–32888. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 31.Oh K. J., Zhan H., Cui C., Hideg K., Collier R. J., & Hubbell W. L. (1996) Organization of diphtheria toxin T domain in bilayers: a site-directed spin labeling study. Science, 273, 810–812. [DOI] [PubMed] [Google Scholar]
  • 32.Faber H. R., & Matthews B. W. (1990) A mutant T4 lysozyme displays five different crystal conformations. Nature, 348, 263–266. [DOI] [PubMed] [Google Scholar]
  • 33.Mchaourab H. S., Lietzow M. A., Hideg K., & Hubbell W. L. (1996) Motion of spin-labeled side chains in T4 lysozyme. Correlation with protein structure and dynamics. Biochemistry, 35, 7692–7704. [DOI] [PubMed] [Google Scholar]
  • 34.Mchaourab H. S., Oh K. J., Fang C. J., & Hubbell W. L. (1997) Conformation of T4 lysozyme in solution. Hinge-bending motion and the substrate-induced conformational transition studied by site-directed spin labeling. Biochemistry, 36, 307–316. [DOI] [PubMed] [Google Scholar]
  • 35.Shin Y.-K., Levinthal C., Levinthal F., & Hubbell W. L. (1993) Colicin E1 binding to membranes: time-resolved studies of spin-labeled mutants. Science, 259, 960–963. [DOI] [PubMed] [Google Scholar]
  • 36.Hagerman P. J. (1985) Sequence dependence of the curvature of DNA: a test of the phasing hypothesis. Biochemistry, 24, 7033–7037. [DOI] [PubMed] [Google Scholar]
  • 37.Young M. A., Ravishanker G., Beveridge D. L., & Berman H. M. (1995) Analysis of local helix bending in crystal structures of DNA oligonucleotides and DNA-protein complexes. Biophys. J., 68, 2454–2468. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 38.Woo N. H., Roe B. A., & Rich A. (1980) Three-dimensional structure of Escherichia coli initiator tRNAfMet. Nature, 286, 346–351. [DOI] [PubMed] [Google Scholar]
  • 39.Pscheidt R. H., & Wells B. D. (1986) Different conformations of the 3’ termini of initiator and elongator transfer ribonucleic acids. J. Biol. Chem., 216, 7253–7256. [PubMed] [Google Scholar]
  • 40.Frederick C. A., Grable J., Melia M., Samudzi C., Jen-Jacobson L., Wang B.-C., Greene P., Boyer H. W., & Rosenberg J. M. (1984) Kinked DNA in crystalline complex with EcoR I endonuclease. Nature, 309, 327–331. [DOI] [PubMed] [Google Scholar]
  • 41.Keyes R. S., Cao Y. Y., Bobst E. V., Rosenberg J. M., & Bobst A. M. (1996) Spin-labeled nucleotide mobility in the boundary of the EcoR I endonuclease binding site. J. Biomol. Struct. Dyn., 14, 163–172. [DOI] [PubMed] [Google Scholar]
  • 42.Bobst A. M., Ireland J. C., & Bobst E. V. (1982) Nucleic acid binding affinity of fd gene 5 in the cooperative binding mode. J. Biol. Chem., 259, 2130–2134. [PubMed] [Google Scholar]
  • 43.Gopalan V., Kühne H., Biswas R., Li H., Brudvig G. W., & Altman S. (1999) Mapping RNA-protein interactions in ribonuclease P from Escherichia coli using electron paramagnetic resonance spectroscopy. Biochemistry, 38, 1705–1714. [DOI] [PubMed] [Google Scholar]
  • 44.Biswas R., Ledman D. W., Fox R. O., Altman S., & Gopalan V. (2000) Mapping RNA-protein interactions in ribonuclease P from Escherichia coli using disulfide-linked EDTA-Fe. J. Mol. Biol., 296, 19–31. [DOI] [PubMed] [Google Scholar]
  • 45.Rabenstein M. D., & Shin Y.-K. (1995) Determination of the distance between two spin labels attached to a macromolecule. Proc. Natl. Acad. Sci. USA, 92, 8239–8243. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 46.Battiste J. L., Mao H., Rao S. N., Tan R., Muhandiran D. R., Kay L. E., Frankel A. D., & Williamson J. R. (1996) αHelix-RNA major groove recognition in an HIV-1 rev peptide-RRE RNA complex. Science, 273, 1547–1551. [DOI] [PubMed] [Google Scholar]

Articles from Science Progress are provided here courtesy of SAGE Publications

RESOURCES