Abstract
Alzheimer's disease is an incurable, fatal illness characterised by years of progressive mental decline. It afflicts half a million people in the UK–more than any other dementia. The primary risk factor is old age so this number is rising as we live longer. Current treatment is palliative while more potent drugs have encountered problems during clinical trials. It is known that the disease results from brain deterioration associated with the formation of microscopic lesions. Genetic mutations cause a small minority of cases but our knowledge of the underlying biological mechanisms is limited. The key to improved understanding may be a process vital to brain cells called axonal transport. Disruption of axonal transport seems to be an early event in the progression of the disease and is linked to lesion formation and brain dysfunction so a full investigation of this process should lead to a cure, if not prevention.
Keywords: Alzheimer's disease, axonal transport, kinesin, microtubule, amyloid hypothesis, tau hypothesis
Full Text
The Full Text of this article is available as a PDF (576.9 KB).
References
- 1.Knapp M., and Prince M. (2007) The Rising Cost of Dementia in the UK. Alzheimer's Society, London. [Google Scholar]
- 2.Terry R.D., Masliah E., Salmon D.P., Butters N., DeTeresa R., Hill R., Hansen L.A., and Katzman R. (1991) Physical basis of cognitive alterations in Alzheimer's disease: synapse loss is the major correlate of cognitive impairment. Ann. Neurol., 30, 572–580. [DOI] [PubMed] [Google Scholar]
- 3.Goedert M., and Spillantini M.G. (2006) A Century of Alzheimer's Disease. Science, 314, 777–781. [DOI] [PubMed] [Google Scholar]
- 4.Mount C., and Downton C. (2006) Alzheimer disease: progress or profit? Nat. Med., 12(7), 780–3. [DOI] [PubMed] [Google Scholar]
- 5.Arriagada R.V., Growdon J.H., Hedley-Whyte E.T., and Hyman B.T. (1992) Neurofibrillary tangles but not senile plaques parallel duration and severity of Alzheimer's disease. Neurology, 42, 631–639. [DOI] [PubMed] [Google Scholar]
- 6.Selkoe D.J. (2002) Alzheimer's disease is a synaptic failure. Science, 298, 789–791. [DOI] [PubMed] [Google Scholar]
- 7.Glenner D.G., and Wong C.W. (1984) Alzheimer's disease: initial report of the purification and characterization of a novel cerebrovascular amyloid protein. Biochem. Biophys. Res. Commun., 120(3), 885–90. [DOI] [PubMed] [Google Scholar]
- 8.Geula C., Wu C.K., Saroff D., Lorenzo A., Yuan M., and Yankner B.A. (1998) Aging renders the brain vulnerable to amyloid beta-protein neurotoxicity. Nat. Med., 4, 827–831. [DOI] [PubMed] [Google Scholar]
- 9.Knobloch M., Konietzko U., Krebs D.C., and Nitsch R.M. (2007) Intracellular Aβ and cognitive deficits precede β-amyloid deposition in transgenic arc Aβ mice. Neurobiol. Aging, 28, 1297–1306. [DOI] [PubMed] [Google Scholar]
- 10.Robinson S.R., and Bishop G.M. (2002) A-β as a bioflocculant: implications for the amyloid hypothesis of Alzheimer's disease. Neurobiol. Aging, 23, 1051–1072. [DOI] [PubMed] [Google Scholar]
- 11.Dobson C.B., Wozniak M.A., and Itzhaki R.F. (2003) Do infectious agents play a role in dementia? Trends Microbiol., 11(7), 312–317. [DOI] [PubMed] [Google Scholar]
- 12.Schenk D. (2002) Amyloid-β immunotherapy for Alzheimer's disease: the end of the beginning. Nat. Rev. Neurosci., 3(10), 824–8. [DOI] [PubMed] [Google Scholar]
- 13.White A.R., Du T., Laughton K.M., Volitakis I., Sharpies R.A., Xilinas M.E., Hoke D.E., Holsinger R.M.D., Evin G., Cherny R.A., Hill A.F., Barnham K.J., Li Q.-X., Bush A.I., and Masters C.L. (2006) Degradation of the Alzheimer's disease amyloid beta-peptide by metal-dependent up-regulation of metallprotease activity. J. Biol. Chem., 281(26), 17670–17680. [DOI] [PubMed] [Google Scholar]
- 14.Deane R., and Zlokovic B.V. (2007) Role of the blood-brain barrier in the pathogenesis of Alzheimer's disease. Curr Alzheimer Res., 4(2), 191–7. [DOI] [PubMed] [Google Scholar]
- 15.Parkin E.T., Watt N.T., Hussain I., Eckman E.A., Eckman C.B., Manson J.C., Baybutt H.N., Turner A.J., and Hooper N.M. (2007) Cellular prion protein regulates β-secretase cleavage of the Alzheimer's amyloid precursor protein. Proc. Natl. Acad. Sci., 104(26), 11062–11067. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 16.Ballatore C., Lee V.M.-Y., and Trojanowski J.Q. (2007) Tau-mediated neurodegeneration in Alzheimer's disease and related disorders. Nat. Rev. Neurosci., 8, 663–672. [DOI] [PubMed] [Google Scholar]
- 17.Li B., Chohan M.O., Grundke-Iqbal I., and Iqbal K. (2007) Disruption of microtubule network by Alzheimer abnormally hyperphosphorylated tau. Acta Neuropathol., 113(5), 501–11. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 18.Wang J.-Z., Grundke-Iqbal I., and Iqbal K. (2007) Kinases and phosphatases and tau sites involved in Alzheimer neurofibrillary degeneration. Eur. J. Neurosci., 25(1), 59–68. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 19.SantaCruz K., Lewis J., Spires T., Paulson J., Kotilinek L., Ingelsson M., Guimaraes A., DeTure M., Ramsden M., McGowan E., Forster C., Yue M., Orne J., Janus C., Mariash A., Kuskowski M., Hyman B., Hutton M., and Ashe K.H. (2005) Tau Suppression in a Neurodegenerative Mouse Model Improves Memory Function. Science, 309, 476–4481. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 20.Takashima A. (2006) GSK-3 is essential in the pathogenesis of Alzheimer's disease. J. Alzheimers Dis., 9(3 Suppl), 309–17. [DOI] [PubMed] [Google Scholar]
- 21.Zhang B., Maiti A., Shively S., Lakhani F., McDonald-Jones G., Bruce J., Lee E.B., Xie S.X., Joyce S., Li C., Toleikis P.M., Lee V.M.-Y., and Trojanowski J.Q. (2005) Microtubule-binding drugs offset tau sequestration by stabilizing microtubules and reversing fast axonal transport deficits in a tauopathy model. Proc. Natl. Acad. Sci., 102(1), 227–231. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 22.Roy S., Zhang B., Lee V.M.-Y., and Trojanowski J.Q. (2005) Axonal transport defects: a common theme in neurodegenerative diseases. Acta Neuropathol., 109, 5–13. [DOI] [PubMed] [Google Scholar]
- 23.Stokin G.B., Lillo C., Falzone T.L., Richard G., Brusch R.G., Rockenstein E., Mount S.L., Raman R., Davies P., Masliah E., Williams D.S., and Goldstein L.S.B. (2005) Axonopathy and Transport Deficits Early in the Pathogenesis of Alzheimer's Disease. Science, 307, 1282–88. [DOI] [PubMed] [Google Scholar]
- 24.Alberts B., Johnson A., Lewis J., Raff M., Roberts K., and Walter P. (2002) Molecular biology of the cell. Garland Science, NY. [Google Scholar]
- 25.Hirokawa N., and Takemura R. (2005) Molecular motors and mechanisms of directional transport in neurons. Nat. Rev. Neurosci., 6, 201–214. [DOI] [PubMed] [Google Scholar]
- 26.Hollenbeck P.J., and Saxton W.M. (2005) The axonal transport of mitochondria. J. Cell. Sci., 118, 5411–5419. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 27.Vale R.D. (2003) The molecular motor toolbox for intracellular transport. Cell., 112, 467–480. [DOI] [PubMed] [Google Scholar]
- 28.Asbury C.L. (2005) Kinesin: world's tiniest biped. Curr Opin. Cell. Biol., 17, 89–97. [DOI] [PubMed] [Google Scholar]
- 29.Viel A., Lue R.A., and Liebler J. (2006) animation at http://multimedia.mcb.-harvard.edu/anim_innerlife.html
- 30.Uemura S., Kawaguchi K., Yajima J., Edamatsu M., Toyoshima Y.Y., and Ishiwata S. (2002) Kinesin-microtubule binding depends on both nucleotide state and loading direction. Proc. Natl. Acad. Sci., 99(9), 5977–5981. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 31.Rice S., Lin A.W., Safer D., Hart C.L., Naber N., Carragher B.O., Cain S.M., Pechatnikova E., Wilson-Kubalek E.M., Whittaker M., Pate E., Cooke R., Taylor E.W., Milligan R.A., and Vale R.D. (1999) A structural change in the kinesin motor protein that drives motility. Nature, 402, 778–784. [DOI] [PubMed] [Google Scholar]
- 32.Sablin P.E., and Fletterick R.J. (2004) Coordination between Motor Domains in Processive Kinesins. J. Biol. Chem., 279(16), 15707–15710. [DOI] [PubMed] [Google Scholar]
- 33.Mather W.H., and Fox R.F. (2006) Kinesin's Biased Stepping Mechanism: Amplification of Neck Linker Zippering. Biophys. J., 91, 2416–2426. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 34.Kamal A., Almenar-Queralt A., LeBlanc J.F., Roberts E.A., and Goldstein L.S. (2001) Kinesin-mediated axonal transport of a membrane compartment containing beta-secretase and presenilin-1 requires APR Nature, 414, 643–648. [DOI] [PubMed] [Google Scholar]
- 35.King M.E., Kan H.-M., Baas P.W., Erisir A., Glabe C.G., and Bloom G.S. (2006) Tau-dependent microtubule disassembly initiated by prefibrillar β-amyloid. J. Cell. Biol., 175, 541–546. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 36.Gallo G. (2007) Tau is actin up in Alzheimer's disease. Nat. Cell. Biol., 9, 133–134. [DOI] [PubMed] [Google Scholar]
- 37.Itzhaki R.F., Lin W.-R., Shang D., Wilcock G.K., Faragher B., and Jamieson G.A. (1997) Herpes simplex virus type 1 in brain and risk of Alzheimer's disease. Lancet, 349, 241–4. [DOI] [PubMed] [Google Scholar]
- 38.Satpute-Rrishnan P., DeGiorgis J.A., and Bearer E.L. (2003) Fast anterograde transport of herpes simplex virus: role for the amyloid precursor protein of Alzheimer's disease. Aging Cell., 2, 305–18. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 39.Bachis A., Aden S.A., Nosheny R.L., Andrews P.M., and Mocchetti I. (2006) Axonal Transport of Human Immunodeficiency Virus Type 1 Envelope Protein Glycoprotein 120 Is Found in Association with Neuronal Apoptosis. J. Neurosci., 26(25), 6771–6780. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 40.Adalbert R., Gilley J., and Coleman M.P. (2007) Abeta, tau and ApoE4 in Alzheimer's disease: the axonal connection. Trends Mol. Med., 13(4), 135–42. [DOI] [PubMed] [Google Scholar]