Skip to main content
Science Progress logoLink to Science Progress
. 2019 Feb 27;86(4):271–282. doi: 10.3184/003685003783238635

Bacterial Responses to Alkaline Stress

Hiromi Saito 1, Hiroshi Kobayashi 1,*
PMCID: PMC10367479  PMID: 15508893

Abstract

Studies of bacterial adaptation to alkaline pH have been less extensive to date compared with those of acidic pH. Recent development of novel methods for global analysis of gene expression under various conditions revealed that many genes were induced at high pH. These data led us to question why so many genes are required for adaptation to alkaline pH. The internal pH of bacteria growing at extremely high pH remains unclear because the methods for measuring interior acidic ΔpH developed to date are not so accurate, but it is generally accepted that cytoplasmic pH increases with medium alkalization, although the increase is lower than that of the change in medium pH. Therefore, activities of enzymes working in neutral cytoplasm may decrease with cytoplasmic alkalization under extreme alkaline conditions. Based on these findings, we propose in this article that genes whose products have an optimum activity at high pH are induced under alkaline stress to compensate for the decrease in activities of systems functioning at neutral pH.

Keywords: bacterial adaptation, alkaline stress

Full Text

The Full Text of this article is available as a PDF (76.9 KB).

References

  • 1.Wiegert T., Homuth G., Versteeg S., & Schumann W. (2001) Alkaline shock induces the Bacillus subtilis sigma(W) regulon. Molec. Microbiol., 41, 59–71. [DOI] [PubMed] [Google Scholar]
  • 2.Cao M., Kobel P.A., Morshedi M.M., Wu M.F., Paddon C., & Helmann J.D. (2002) Defining the Bacillus subtilis sigma(W) regulon: a comparative analysis of promoter consensus search, run-off transcription/macroarray analysis (ROMA), and transcriptional profiling approaches. J. Molec. Biol., 316, 443–457. [DOI] [PubMed] [Google Scholar]
  • 3.Shechter E., Letellier L., & Simons E.R. (1982) Fluorescence dye as monitor of internal pH in Escherichia coli cells. FEBS Lett., 139, 121–124. [DOI] [PubMed] [Google Scholar]
  • 4.Kashket E.R. (1985) The proton motive force in bacteria: a critical assessment of methods. Annu. Rev. Microbiol., 39, 219–242. [DOI] [PubMed] [Google Scholar]
  • 5.Slonczewski J.L., Rosen B.P., Alger J.R., & Macnab R.M. (1981) pH homeostasis in Escherichia coli: measurement by 31P nuclear magnetic resonance of methylphosphonate and phosphate. Proc. Natl. Acad. Sci. U. S. A., 78, 6271–6275. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 6.Padan E., Zilberstein D., & Schuldiner S. (1981) pH homeostasis in bacteria. Biochim. Biophys. Acta, 650, 151–166. [DOI] [PubMed] [Google Scholar]
  • 7.Mugikura S., Nishikawa M., Igarashi K., & Kobayashi H. (1990) Maintenance of a neutral cytoplasmic pH is not obligatory for growth of Escherichia coli and Streptococcus faecalis at an alkaline pH. J. Biochem. (Tokyo)., 108, 86–91. [DOI] [PubMed] [Google Scholar]
  • 8.Kobayashi H., Saito H., Futatsugi L., & Kakegawa T. (1999) Cation movements at alkaline pH in bacteria growing without respiration. Novartis Found. Symp., 221, 235–242, discussion 242–245. [DOI] [PubMed] [Google Scholar]
  • 9.Blattner F.R., Plunkett G. 3rd, Bloch C.A., Perna N.T., Burland V., Riley M., Collado-Vides J., Glasner J.D., Rode C.K., Mayhew G.F., Gregor J., Davis N.W., Kirkpatrick H.A., Goeden M.A., Rose D.J., Mau B., & Shao Y. (1997) The complete genome sequence of Escherichia coli K-12. Science, 277, 1453–1474. [DOI] [PubMed] [Google Scholar]
  • 10.Harold F.M., Pavlasova E., & Baarda J.R. (1970) A transmembrane pH gradient in Streptococcus faecalis: origin, and dissipation by proton conductors and N,N'-dicyclohexylcarbodimide. Biochim. Biophys. Acta, 196, 235–244. [DOI] [PubMed] [Google Scholar]
  • 11.Kobayashi H., Suzuki T., & Unemoto T. (1986) Streptococcal cytoplasmic pH is regulated by changes in amount and activity of a proton-translocating ATPase. J. Biol. Chem., 261, 627–630. [PubMed] [Google Scholar]
  • 12.Kobayashi H. (1987) Regulation of cytoplasmic pH in streptococci. In Sugar transport and metabolism in gram-positive bacteria, Reizer J., and Peterkofsky A. (eds), pp. 255–269, Ellis Horwood Ltd., Chichester. [Google Scholar]
  • 13.Harold F.M. (1977) Membranes and energy transduction in bacteria. Curr. Top. Bioenerg., 6, 83–149. [Google Scholar]
  • 14.Kinoshita N., Unemoto T., & Kobayashi H. (1984) Sodium-stimulated ATPase in Streptococcus faecalis. J. Bacteriol., 158, 844–848. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 15.Kakinuma Y., & Igarashi K. (1989) Sodium-translocating adenosine triphosphatase in Streptococcus faecalis. J. Bioenerg. Biomembr., 21, 679–692. [DOI] [PubMed] [Google Scholar]
  • 16.Stancik L.M., Stancik D.M., Schmidt B., Barnhart D.M., Yoncheva Y.N., & Slonczewski J.L. (2002) pH-dependent expression of periplasmic proteins and amino acid catabolism in Escherichia coli. J. Bacteriol., 184, 4246–4258. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 17.Yohannes E., Barnhart D.M., & Slonczewski J.L. (2004) pH-dependent catabolic protein expression during anaerobic growth of Escherichia coli K-12. J. Bacteriol., 186, 192–199. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 18.Padan E., Zilberstein D., & Rottenberg H. (1976) The proton electrochemical gradient in Escherichia coli cells. Eur. J. Biochem., 63, 533–541. [DOI] [PubMed] [Google Scholar]
  • 19.Blankenhorn D., Phillips J., & Slonczewski J.L. (1999) Acid- and base-induced proteins during aerobic and anaerobic growth of Escherichia coli revealed by two-dimensional gel electrophoresis. J. Bacteriol., 181, 2209–2216. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 20.Castanie-Cornet M.P., Penfound T.A., Smith D., Elliott J.F., & Foster J.W. (1999) Control of acid resistance in Escherichia coli. J. Bacteriol., 181, 3525–3535. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 21.Tabor C.W., & Tabor H. (1985) Polyamines in microorganisms. Microbiol. Rev., 49, 81–99. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 22.Takayama M., Ohyama T., Igarashi K., & Kobayashi H. (1994) Escherichia coli cad operon functions as a supplier of carbon dioxide. Molec. Microbiol., 11, 913–918. [DOI] [PubMed] [Google Scholar]
  • 23.Kobayashi H., Saito H., & Kakegawa T. (2000) Bacterial strategies to inhabit acidic environments. J. Gen. Appl. Microbiol., 46, 235–243. [DOI] [PubMed] [Google Scholar]
  • 24.Plack R.H. Jr., & Rosen B.P. (1980) Cation/proton antiport systems in Escherichia coli: absence of potassium/proton antiporter activity in a pH-sensitive mutant. J. Biol. Chem., 255, 3824–3825. [PubMed] [Google Scholar]
  • 25.Kakinuma Y., & Igarashi K. (1999) Isolation and properties of Enterococcus hirae mutants defective in the potassium/proton antiporter system. J. Bacteriol., 181, 4103–4105. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 26.Fujisawa M., Wada Y., & Ito M. (2004) Modulation of the K+ efflux activity of Bacillus subtilis YhaU by YhaT and the C-terminal region of YhaS. FEMS Microbiol. Lett., 231, 211–217. [DOI] [PubMed] [Google Scholar]
  • 27.Padan E., & Schuldiner S. (1994) Molecular physiology of Na+/H+ antiporters, key transporters in circulation of Na+ and H+ in cells. Biochim. Biophys. Acta, 1185, 129–151. [DOI] [PubMed] [Google Scholar]
  • 28.Ohyama T., Igarashi K., & Kobayashi H. (1994) Physiological role of the chaA gene in sodium and calcium circulations at a high pH in Escherichia coli. J Bacteriol., 176, 4311–4315. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 29.Sakuma T., Yamada N., Saito H., Kakegawa T., & Kobayashi H. (1998) pH dependence of the function of sodium ion extrusion systems in Escherichia coli. Biochim. Biophys. Acta, 1363, 231–237. [DOI] [PubMed] [Google Scholar]
  • 30.Shijuku T., Yamashino T., Ohashi H., Saito H., Kakegawa T., Ohta M., & Kobayashi H. (2002) Expression of chaA, a sodium ion extrusion system of Escherichia coli, is regulated by osmolarity and pH. Biochim. Biophys. Acta, 1556, 142–148. [DOI] [PubMed] [Google Scholar]
  • 31.Mandel K.G., Guffanti A.A., & Krulwich T.A. (1980) Monovalent cation/ proton antiporters in membrane vesicles from Bacillus alcalophilus. J. Biol. Chem., 255, 7391–7396. [PubMed] [Google Scholar]
  • 32.Krulwich T.A., Mandel K.G., Bornstein R.F., & Guffanti A.A. (1979) A non-alkalophilic mutant of Bacillus alcalophilus lacks the Na+/H+ antiporter. Biochem. Biophys. Res. Commun., 91, 58–62. [DOI] [PubMed] [Google Scholar]
  • 33.Lewis R.J., Belkina S., & Krulwich T.A. (1980) Alkalophiles have much higher cytochrome contents than conventional bacteria and than their own non-alkalophilic mutant derivatives. Biochem. Biophys. Res. Commun., 95, 857–863. [DOI] [PubMed] [Google Scholar]
  • 34.Lewis R.J., Prince R.C., Dutton P.L., Knaff D.B., & Krulwich T.A. (1981) The respiratory chain of Bacillus alcalophilus and its nonalkalophilic mutant derivative. J. Biol. Chem., 256, 10543–10549. [PubMed] [Google Scholar]
  • 35.Szigeti R., Milescu M., & Gollnick P. (2004) Regulation of the tryptophan biosynthetic genes in Bacillus halodurans: common elements but different strategies than those used by Bacillus subtilis. J. Bacteriol. 186, 818–828. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 36.Sato M., Machida K., Arikado E., Saito H., Kakegawa T., & Kobayashi H. (2000) Expression of outer membrane proteins in Escherichia coli growing at acid pH. Appl. Environ. Microbiol., 66, 943–947. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 37.Foster J.W. (1995) Low pH adaptation and the acid tolerance response of Salmonella typhimurium. Crit. Rev. Microbiol., 21, 215–237. [DOI] [PubMed] [Google Scholar]
  • 38.Foster J.W., & Moreno M. (1999) Inducible acid tolerance mechanisms in enteric bacteria. Novartis Found. Symp., 221, 55–69; discussion 70–74. [DOI] [PubMed] [Google Scholar]
  • 39.Rowbury R.J. (2001) Cross-talk involving extracellular sensors and extracellular alarmones gives early warning to unstressed Escherichia coli of impending lethal chemical stress and leads to induction of tolerance responses. J. Appl. Microbiol., 90, 677–695. [DOI] [PubMed] [Google Scholar]
  • 40.Rowbury R.J., & Hussain N.H. (1996) Exposure of Escherichia coli to acid habituation conditions sensitizes it to alkaline stress. Lett. Appl. Microbiol., 22, 57–61. [DOI] [PubMed] [Google Scholar]
  • 41.Rowbury R. J. (1997) Regulatory components, including integration host factor, CysB and H-NS, that influence pH responses in Escherichia coli. Lett. Appl. Microbiol., 24, 319–328. [DOI] [PubMed] [Google Scholar]
  • 42.Bordi C., Théraulaz L., Méjean V., & Jourlin-Castelli C. (2003) Anticipating an alkaline stress through the Tor phosphorelay system in Escherichia coli. Molec. Microbiol., 48, 211–223. [DOI] [PubMed] [Google Scholar]
  • 43.Simon G., Méjean V., Jourlin C., Chippaux M., and Pascal M.C. (1994) The torR gene of Escherichia coli encodes a response regulator protein involved in the expression of the trimethylamine N-oxide reductase genes. J. Bacteriol., 176: 5601–5606. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 44.Jourlin C., Bengrine A., Chippaux M., and Méjean V. (1996) An unorthodox sensor protein (TorS) mediates the induction of the tor structural genes in response to trimethylamine N-oxide in Escherichia coli. Molec. Microbiol. 20, 1297–1306. [DOI] [PubMed] [Google Scholar]
  • 45.Booth I.R. (1985) Regulation of cytoplasmic pH in bacteria. Microbiol. Rev., 49, 359–378. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Science Progress are provided here courtesy of SAGE Publications

RESOURCES