Abstract
For the treatment of tumours and other proliferative conditions, widespread uptake of photodynamic therapy (PDT) has to some extent been hindered by its inability to target specifically photosensitisers (PSs) to localised lesions in the body. PSs may be deposited in the skin, leading to painful and disfiguring photosensitivity, sometimes for weeks after initial treatment. Targeting PSs specifically could not only avoid such side-effects, it could greatly improve PDT's therapeutic margin.
This review describes photoimmunoconjugates (PICs) produced via successful combination of PSs with recombinant monoclonal antibody fragments (sc-Fvs). PICs can not only target specifically and destroy tumour cells in vitro and in vivo, but counter-intuitively, it is possible to conjugate many more PSs to an sc-Fv than to the much larger parent monoclonal antibody.
The general utility of PICs is demonstrated by significant improvements to the potency and selectivity of already existing PSs. Furthermore, critical features of sc-Fvs are discussed that enable them to make effective PICs. This has implications for the future engineering of scFv carriers for PDT, in order to control the number and function of the PSs that can be coupled.
Keywords: photodynamic therapy, cancer targeting, monoclonal antibody fragments, photosensitisers
Full Text
The Full Text of this article is available as a PDF (1.9 MB).
References
- 1.Dolmans D. E., Fukumura D., and Jain R. K. (2003) Photodynamic therapy for cancer. Nat. Rev. Cancer, 3, 380–387. [DOI] [PubMed] [Google Scholar]
- 2.Bonnett R. (2000) Chemical aspects of photodynamic therapy, Gordon and Breach Science Publishers, Amsterdam. [Google Scholar]
- 3.Milgrom L. R. (1997) The colours of life, pp. 207–214. University Press, Oxford. [Google Scholar]
- 4.Lou P. J., Jones L., and Hopper C. (2003) Clinical outcomes of photodynamic therapy for head-and-neck cancer. Technol. Cancer Res. Treat., 2, 311–317. [DOI] [PubMed] [Google Scholar]
- 5.Sickenberg M. (2001) Verteporfm therapy for subfoveal choroidal neovascularization in age-related macular degeneration, from clinical trials to clinical practice. Semin. Ophthalmol., 16, 207–12. [DOI] [PubMed] [Google Scholar]
- 6.Hamblin M. R., and Hasan T. (2004) Photodynamic Therapy, a new antimicrobial approach to infectious disease? Photochem. Photobiol. Sci., 3, 436–450. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 7.Embleton M. L., Nair S. P., Cookson B. D., and Wilson M. (2004) Antibody-directed photodynamic therapy of methicillin resistant Staphylococcus aureus. Microb. Drug Resist., 10, 92–97. [DOI] [PubMed] [Google Scholar]
- 8.Solban N., Rizvi I., and Hasan T. (2006) Targeted photodynamic therapy. Lasers Surg. Med., 38, 522–531. [DOI] [PubMed] [Google Scholar]
- 9.Pervaiz S. (2001) Reactive oxygen-dependent production of novel photochemotherapeutic agents. FASEB J., 15, 612–617. [DOI] [PubMed] [Google Scholar]
- 10.Cox J. P. L., Jankowski K. J., Katzky R., Parker D., Beeley N. R. A., Harrison A., and Walker C. (1989) Chem Commun., 797. [Google Scholar]
- 11.Jiang F. N., Jiang S., Liu D. J., Richter A., and Levy J. G. (1990) J. Immun. Meth., 134, 139. [DOI] [PubMed] [Google Scholar]
- 12.Jiang F. N., Liu D., Neyndorff H., Chester M., Jiang S., and Levy J. G. (1991) J. Natl. Cancer Inst., 83, 1218. [DOI] [PubMed] [Google Scholar]
- 13.Egorov Yu. S., Krasnovskii A. A. Jr., Papkovskii D. B., Ponomarev G. V., and Savitskii A. P. (1990) Bull. Exp. Biol. Med., 109, 454. [Google Scholar]
- 14.Milgrom L. R., and O'Neill F. (1995) Towards synthetic-porphyin/monoclonal antibody conjugates. Tetrahedron, 51, 2137–2144. [Google Scholar]
- 15.Brand F. X., Ravanel N., Gauchez A. S., Pasquier D., Payan R., Fagret D., and Mousseau M. (2006) Prospect for anti-HER2 receptor therapy in breast cancer. Anticancer Res., 26, 463–470. [PubMed] [Google Scholar]
- 16.van Dongen G. A., Visser G. W., and Vrouenraets M. B. (2004) Photosensitizer-antibody conjugates for detection and therapy of cancer, Adv. Drug Deliv. Rev., 56, 31–52. [DOI] [PubMed] [Google Scholar]
- 17.Molpus K. L., Hamblin M. R., Rizvi I., and Hasan T. (2000) Intraperitoneal photoimmunotherapy of ovarian carcinoma xenografts in nude mice using charged photoimmunoconjugates. Gynecol. Oncol., 76, 397–404. [DOI] [PubMed] [Google Scholar]
- 18.Vrouenraets M. B., Visser G. W., Stewart F. A., Stigter M., Oppelaar H., Postmus P. E., Snow G. B., and van Dongen G. A. (1999) Development of meta-tetrahydroxyphenylchlorin-monoclonal antibody conjugates for photoimmunotherapy. Cancer Res., 59, 1505–1513. [PubMed] [Google Scholar]
- 19.Dougherty T. J. (1993) Photodynamic therapy. Photochem. Photobiol., 58, 895–900. [DOI] [PubMed] [Google Scholar]
- 20.Embleton M. L., Nair S. P., Cookson B. D., and Wilson M. (2004) Antibody-directed photodynamic therapy of methicillin resistant Staphylococcus aureus. Microb. Drug Resist., 10, 92–97. [DOI] [PubMed] [Google Scholar]
- 21.Savellano M. D., and Hasan T. (2003) Targeting cells that over-express the epidermal growth factor receptor with polyethylene glycolated BPD verteporfm photosensitiser immunoconjugates. Photochem. Photobiol., 77, 431–439. [DOI] [PubMed] [Google Scholar]
- 22.Hudson R., Carcenac M., Smith K., Madden L., Clarke O. J., Pelegrin A., Greenman J., and Boyle R.W. (2005) The development and characterisation of porphyrin isothiocyanate- monoclonal antibody conjugates for photoimmunotherapy. Br. J. Cancer, 92, 1442–1449. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 23.Vrouenraets M. B., Visser G. W., Loup C., Meunier B., Stigter M., Oppelaar H., Stewart F. A., Snow G. B., and van Dongen G. A. (2000) Targeting of a hydrophilic photosensitiser by use of internalizing monoclonal antibodies, A new possibility for use in photodynamic therapy. Int. J. Cancer, 88, 108–114. [DOI] [PubMed] [Google Scholar]
- 24.Aveline B. M., Hasan T., and Redmond R. W. (1995) The effects of aggregation, protein binding and cellular incorporation on the photophysical properties of benzoporphyrin derivative monoacid ring A (BPDMA). J. Photochem. Photobiol., B, 30, 161–169. [DOI] [PubMed] [Google Scholar]
- 25.Kuimova M. K., Bhatti M., Deonarain M. P., Yahioglu G., Levitt J. A., Stamati I., Suhling K., and Phillips D. (2007) Fluorescence characterisation of multiply-loaded anti-HER2 single-chain Fv-photosensitiser conjugates suitable for photodynamic therapy. Photochem. Photobiol. Sci., 6, 933–939. [DOI] [PubMed] [Google Scholar]
- 26.Bhatti M., Yahioglu G., Milgrom I. R., Garcia-Maya M., Chester K. A., and Deonarain M. P. (2008) Targeted photodynamic therapy with multiply loaded recombinant antibody fragments. Int. J. Cancer, 122, 1155–1163. [DOI] [PubMed] [Google Scholar]
- 27.Adams G. P., Schier R., Marshall K., Wolf E. J., McCall A. M., Marks J. D., and Weiner L. M. (1999) Increased affinity leads to improved selective tumour delivery of single-chain Fv antibodies. Cancer Res., 58, 485–490. [PubMed] [Google Scholar]
- 28.Hendriks B. S., Opresko L. K., Wiley H. S., and Lauffenburger D. (2003) Quantitative analysis of HER2-mediated effects on HER2 and epidermal growth factor receptor endocytosis, distribution of homo-and heterodimers depends on relative HER2 levels. J. Biol. Chem., 278, 23343–23351. [DOI] [PubMed] [Google Scholar]
- 29.Savellano M. D., Pogue B. W., Hoopes P. J., Vitetta E. S., and Paulsen K. D. (2005) Multiepitope HER2 targeting enhances photoimmunotherapy of HER2-overexpressing cancer cells with pyropheophorbide-a immunoconjugates. Cancer Res., 65, 6371–6379. [DOI] [PubMed] [Google Scholar]
- 30.Khurana M., Collins H. A., Karotki A., Anderson H. L., Cramb D. T., and Wilson B. C. (2007) Quantitative in vitro demonstration of two-photon photodynamic therapy using Photofrin® and Visudyne®. Photochem. Photobiol., 83, 1441–1448. [DOI] [PubMed] [Google Scholar]
- 31.Batra S. K., Jain M., Wittel U. A., Chauhan S. C., and Colcher D. (2002) Pharmacokinetics and biodistribution of genetically engineered antibodies. Curr Opin. Biotechnol., 13, 603–608. [DOI] [PubMed] [Google Scholar]
- 32.Chester K. A., Bhatia J., Boxer G., Cooke S. P., Flynn A. A., Huhalov A., Mayer A., Pedley R. B., Robson L., Sharma S. K., Spencer D. I., and Begent R. H. (2000) Clinical applications of phage-derived sc-Fvs and sc-Fv fusion proteins. Dis. Markers, 16, 53–62. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 33.Birchler M., Viti F., Zardi L., Spiess B., and Neri D. (1999) Selective targeting and photocoagulation of ocular angiogenesis mediated by a phage-derived human antibody fragment. Nat. Biotechnol., 17, 984–988. [DOI] [PubMed] [Google Scholar]
- 34.Fabbrini M., Trachsel E., Soldani P., Bindi S., Alessi P., Bracci L., Kosmehl H., Zardi L., Neri D., and Neri P. (2006) Selective occlusion of tumour blood vessels by targeted delivery of an anti-bodyphotosensitiser conjugate. Int. J. Cancer, 118, 1805–1823. [DOI] [PubMed] [Google Scholar]
- 35.Begent R. H., Verhaar M. I., Chester K. A., Casey J. L., Green A. J., Napier M. P., Hope-Stone L. D., Cushen N., Keep P. A., Johnson C. J., Hawkins R. E., Hilson A. J., and Robson L. (1996) Clinical evidence of efficient tumour targeting based on single-chain Fv antibody selected from a combinatorial library. Nat. Med., 2, 979–984. [DOI] [PubMed] [Google Scholar]
- 36.Adams G. P., Schier R., Marshall K., Wolf E. I., McCall A. M., Marks J. D., and Weiner L. M. (1999) Increased affinity leads to improved selective tumour delivery of single-chain Fv antibodies. Cancer Res., 58, 485–490. [PubMed] [Google Scholar]
- 37.Haddad R., Kaplan O., Greenberg R., Siegal A., Skornick Y., and Kashtan H. (2000) Photodynamic therapy of murine colon cancer and melanoma using systemic aminolevulinic acid as a photosensitiser. Int. J. Surg. Investig., 2, 171–178. [PubMed] [Google Scholar]
- 38.Cuenca R. E., Allison R. R., Sibata C., and Downie G. H. (2004) Breast cancer with chest wall progression, treatment with photodynamic therapy. Ann. Surg. Oncol., 11, 322–327. [DOI] [PubMed] [Google Scholar]
- 39.Muschter R. (2003) Photodynamic therapy, a new approach to prostate cancer. Curr Urol. Rep., 4, 221–228. [DOI] [PubMed] [Google Scholar]
- 40.Hackbarth S., Horneffer V., Wiehe A., Hillenkamp F., and Roder B. (2001) Photophysical properties of pheophorbide-a substituted with a diamonobuta-nepolypropylene-imine dendrimer. Chem. Phys., 269, 339–346. [Google Scholar]
- 41.Renard M., Belkadi L., and Bedouelle H. (2003) Deriving topological constraints from functional data for the design of reagent-less fluorescent immunosensors. J. Mol. Biol., 326, 167–175. [DOI] [PubMed] [Google Scholar]
- 42.Peer D., Karp J. M., Hong S., Farokhzad O. C., Margalit R., and Langer R. (2007) Nature Nanotechnol., 2, 751–760. [DOI] [PubMed] [Google Scholar]