Abstract
Responses induced by cold or heat are triggered following detection of temperature changes by specific sensing molecules, complexes or structures. Low temperature responses are often induced following sensing of cold-induced falls in membrane fluidity, such changes turning-on or -off enzymic activities in membrane proteins, although ribosomes and DNA may also function in cold perception. Many thermal sensors are components of structures damaged by the heat, with sensing involving changes to ribosomes, DNA, intracellular proteins and, less commonly, membrane fluidity. Additionally, secreted proteins (extracellular sensing components, ESCs) detect temperature increases i.e. act as thermometers, with ESC activation in the medium, by the stimulus, converting such sensors to extracellular signalling molecules, the extracellular induction components (EICs), which induce thermal responses. Several ESC/EIC pairs trigger thermal responses, and have the unique property of giving early warning of the stress by diffusing to regions (and organisms) not yet exposed to elevated temperatures.
Keywords: unique form of thermal sensor, external medium, bacterial sensor
Full Text
The Full Text of this article is available as a PDF (256.8 KB).
References
- 1.Neidhardt F. C., Ingraham J. L., and Schaechter M. (1990) In Physiology of the Bacterial Cell. Sinauer Associates Inc.: Sunderland, MA. [Google Scholar]
- 2.Rowbury R. J. (2001) Extracellular sensing components and extracellular induction component alarmones give early warning against stress in Escherichia coli. Adv. Microbial. Physiol., 44, 215–257. [DOI] [PubMed] [Google Scholar]
- 3.Rowbury R. J. (2001) Cross-talk involving extracellular sensors and extracellular alarmones gives early warning to unstressed Escherichia coli of impending lethal chemical stress and leads to induction of tolerance responses. J. Appl. Microbiol., 90, 677–695. [DOI] [PubMed] [Google Scholar]
- 4.Weber M. H. W., and Marahiel M. A. (2003) Bacterial cold shock responses. Sci. Prog., 86, 9–75. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 5.Kandror O., and Goldberg A. L. (1997) Trigger factor is induced upon cold shock and enhances viability of Escherichia coli at low temperatures. Proc. Nat. Acad. Sci. USA, 94, 4978–4981. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 6.Franks F. (1995) Protein destabilization at low temperatures. Adv. Protein Chem., 46, 105–139. [DOI] [PubMed] [Google Scholar]
- 7.Ng H., Ingraham J. L., and Marr A. G. (1962) Damage and derepression in Escherichia coli resulting from growth at low temperature. J. Bacteriol., 84, 331–339. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 8.Shaw M. K., and Ingraham J. L. (1967) Synthesis of macromolecules by Escherichia coli near the minimal temperature for growth. J. Bacteriol., 94, 157–164. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 9.Wolffe A. P. (1995) The cold-shock response in bacteria. Sci. Prog., 78, 301–310. [PubMed] [Google Scholar]
- 10.Suzuki L., Los D. A., Kanesaki Y., Mikami K., and Murata N. (2001) The pathway for perception and transduction of low-temperature signals in Synechocystis. EMBO J., 19, 1327–1334. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 11.Aguilar P. S., Hernandez-Arriaga A. M., Cybulski L. E., Erazo A. C., and de Mendoza D. (2001) Molecular basis of thermosensing, a two component signal transduction thermometer in Bacillus subtilis. EMBO J., 20, 1681–1691. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 12.Los D., Horvath I., Vigh L., and Murata N. (1993) The temperature-dependent expression of the desaturase gene desA in Synechocystis PCC6803. FEBS Lett., 318, 57–60. [DOI] [PubMed] [Google Scholar]
- 13.Vigh L., Los D. A., Horvath I., and Murata N. (1993) The primary signal in the biological perception of temperature, Pd-catalysed hydrogenation of membrane lipids stimulated the expression of the desA gene in Synechocystis PCC6803. Proc. Nat. Acad. Sci. USA, 90, 9090–9094. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 14.Suzuki I., Kanesaki Y., Mikami K., Kanehisa M., and Murata N. (2001) Cold-regulated genes under control of the cold sensor Hik33 in Synechocystis. Mol. Microbiol., 40, 235–244. [DOI] [PubMed] [Google Scholar]
- 15.Fabret C., Feher V. A., and Hoch J. A. (1999) Two component signal transduction in Bacillus subtilis, how one organism sees its world. J. Bacteriol., 181, 1975–1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 16.Aguilar P. S., Cronan J. E. Jr., and de Mendoza D. (1998) A B. subtilis gene induced by cold shock encodes a membrane phospholipid desaturase. J. Bacterial., 180, 2194–2200. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 17.Aguilar P. S., Lopez P., and de Mendoza D. (1999) Transcriptional control of the low temperature-inducible des gene, encoding the delta5 desaturase of Bacillus subtilis. J. Bacteriol., 181, 7028–7033. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 18.van Bogelen R. A., and Neidhardt F. C. (1990) Ribosomes as sensors of heat and cold shock in Escherichia coli. Proc. Nat. Acad. Sci. USA, 87, 5589–5593. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 19.Cashel M., Gentry D. R., Hernandez V. J., and Vinella D. (1996) The stringent response. In: Neidhardt F. C., Curtiss R. III, Ingraham J. L., Lin E. C. C., Low K. B., Magasanik B., Reznikoff W. S., Riley M., Schaechter M., and Umbarger H. E. (eds.) Escherichia coli and Salmonella, Cellular and Molecular Biology. American Society for Microbiology, Washington, DC, pp. 1458–1496. [Google Scholar]
- 20.Mackow E. R., and Chang F. N. (1983) Correlation between RNA synthesis and ppGpp content in Escherichia coli during temperature shifts. Mol. Gen. Genet., 192, 5–9. [DOI] [PubMed] [Google Scholar]
- 21.Jones P. G., Cashel M., Glaser G., and Neidhardt F. C. (1992) Function of a relaxed-like state following temperature downshifts in Escherichia coli. J. Bacterio., 174, 3903–3914. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 22.Beckering C. L., Steil L., Weber M. H. W., Volker U., and Marahiel M. A. (2002) Genomewide transcriptional analysis of the cold shock response in Bacillus subtilis. J. Bacteriol., 184, 6395–6402. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 23.Etchegaray J. P., and Inouye M. (1999) CspA, CspB and CspG, major cold shock proteins of Escherichia coli, are induced at low temperature under conditions that completely block protein synthesis. J. Bacteriol., 181, 1827–1830. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 24.Jones P. G., Mitta M., Kim Y., Jiang W., and Inouye M. (1996) Cold shock induces a major ribosomal-associated protein that unwinds double-stranded RNA in Escherichia coli. Proc. Nat. Acad. Sci. Wash., 93, 76–80. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 25.Chamot D., Magee W. C., Yu E., and Owttrim G. W. (1999) A cold shock-induced cyanobacterial RNA helicase. J. Bacteriol., 181, 1728–1732. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 26.Chamot D., and Owttrim G. W. (2000) Regulation of cold shock-induced RNA helicase gene expression in the cyanobacterium Anabaena sp. strain PCC 7120. J. Bacteriol., 182, 1251–1256. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 27.O'Connell K. P., Gustafson A. M., Lehmann M. D., and Thomashow M. F. (2000) Identification of cold shock gene loci in Sinorhizobium meliloti by using a luxAB reporter transposon. Appl. Environ. Microbiol., 66, 401–405. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 28.Majdalani N., Cunnung C., Sledjeski D., Elliot T., and Gottesman S. (1998) DsrA RNA regulates translation of RpoS message by an anti-sense mechanism, independent of its action as an antisilencer of transcription. Proc. Nat. Acad. Sci. USA, 95, 12462–12467. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 29.Repoila F., and Gottesman S. (2001) Signal transduction cascade for regulation of RpoS, temperature regulation of DsrA. J. Bacteriol., 183, 166–171. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 30.Lease R. A., and Belfort M. (2000) A trans-acting RNA as a control switch in Escherichia coli, DsrA modulates function by forming alternative structures. Proc. Nat. Acad. Sci. USA, 97, 9919–9924. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 31.Brandi A., Pietroni P., Gualerzi C. O., and Pon C. L. (1996) Post-transcriptional regulation of CspA expression in Escherichia coli. Mol. Microbiol., 19, 231–240. [DOI] [PubMed] [Google Scholar]
- 32.Goldenberg D., Azar I., and Oppenheim A. B. (1996) Differential m-RNA stability of the cspA gene in the cold-shock response. Mol. Microbiol., 19, 241–248. [DOI] [PubMed] [Google Scholar]
- 33.Krispin O., and Allmansberger R. (1995) Changes in DNA supertwist as a response of B. subtilis towards different kinds of stress. FEMS Microbiol. Lett., 134, 129–135. [DOI] [PubMed] [Google Scholar]
- 34.Mizushima T., Kataoka K., Ogata Y., Inoue R., and Sekimizu K. (1997) Increase in negative supercoiling of plasmid DNA in Escherichia coli exposed to cold shock. Mol. Microbiol., 23, 381–386. [DOI] [PubMed] [Google Scholar]
- 35.La Teana A., Brandi A., Falconi M., Spurio R., Pon C. L., and Gualerzi C. O. (1991) Identification of a cold shock transcriptional enhancer of the Escherichia coli gene encoding nucleoid protein H-NS. Proc. Nat. Acad. Sci. USA, 88, 10907–10911. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 36.Dersch P., Kneip S., and Bremer E. (1994) The nucleoid-associated DNA binding protein H-NS is required for the efficient adaptation of Escherichia coli K12 to a cold environment. Mol. Gen. Genet., 245, 255–259. [DOI] [PubMed] [Google Scholar]
- 37.Rowbury R. J. (1997) Regulatory components, including integration host factor, CysB and H- NS, that influence pH responses in Escherichia coli. Lett. Appl. Microbiol., 24, 319–328. [DOI] [PubMed] [Google Scholar]
- 38.Rowbury R. J., and Goodson M. (2001) Extracellular sensing and signalling pheromones switch-on thermotolerance and other stress responses in Escherichia coli. Sci. Prog., 84, 205–233. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 39.Nikolaev Y. A. (1996) General protective effect of exometabolite(s) produced by tetracycline-treated Escherichia coli. Microbiology (Moscow), 65, 652–655. [Google Scholar]
- 40.Nikolaev Y. A. (1997) Involvement of exometabolites in stress adaptation of Escherichia coli. Microbiology (Moscow), 66, 28–31. [Google Scholar]
- 41.Nikolaev Y. A. (1997) Comparative study of two extracellular protectants secreted by Escherichia coli cells at elevated temperatures. Microbiology (Moscow), 66, 661–665. [Google Scholar]
- 42.Nikolaev Y. A. (1997) Two novel extracellular adaptogenic factors of Escherichia coli K12. Microbiology (Moscow), 66, 657–660. [Google Scholar]
- 43.Cronan J. E. Jr., and Rock C. O. (1996) Biosynthesis of membrane lipids. Pp. 612–636. In: Neidhardt F. C., Curtiss R. III, Ingraham J. L., Lin E. C. C., Low K. B., Magasanik B., Reznikoff W. S., Riley M., Schaechter M., and Umbarger H. E. (eds.) Escherichia coli and Salmonella, Cellular and Molecular Biology. American Society for Microbiology, Washington, DC. [Google Scholar]
- 44.Pao C. C., and Dyas B. T. (1981) Stringent control of RNA synthesis in the absence of guanosine 5'- diphosphate-3'-diphosphate. J. Biol. Chem., 256, 2252–2257. [PubMed] [Google Scholar]
- 45.Falconi M., Colonna B., Prosseda G., Micheli G., and Gualerzi C. O. (1998) Thermoregulation of Shigella and Escherichia coli EIEC pathogenicity. A temperature-dependent structural transition of DNA modulates accessibility of virF promoter to transcriptional repressor H-NS. EMBO J., 17, 7033–7043. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 46.Hoe N. P., and Gougen J. D. (1993) Temperature sensing in Yersinia pestis, translation of the LcrF activator protein is thermally regulated. J. Bacterio., 175, 7901–7909. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 47.Bren A., and Eisenbach M. (2000) How signals are heard during bacterial Chemotaxis, protein- protein interactions in sensory signal propagation. J. Bacterial., 182, 6865–6873. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 48.Nishiyama S., Maruyama I. N., Homma M., and Kawagishi I. (1999) Inversion of thermosensing property of the bacterial receptor Tar by mutations in the second transmembrane region. J. Mol. Biol., 286, 1275–1284. [DOI] [PubMed] [Google Scholar]
- 49.Vigh L., Maresca B., and Harwood J. L. (1998) Does the membrane's physical state control the expression of heat shock and other genes? Trends Biochem. Sci., 23, 369–374. [DOI] [PubMed] [Google Scholar]
- 50.Hurme R., Berndt K., Namork E., and Rhen M. (1996) DNA binding exerted by a bacterial gene regulator with extensive coiled coil domains. J. Biol. Chem., 271, 12626–12631. [DOI] [PubMed] [Google Scholar]
- 51.Hurme R., Berndt K., Normark S. J., and Rhen M. (1997) A proteinaceous gene regulatory thermometer in Salmonella. Cell, 90, 55–64. [DOI] [PubMed] [Google Scholar]
- 52.McCarty J. S., and Walker G. C. (1991) DnaK as a thermometer, threonine-199 is site of autophosphorylation and is critical for ATPase activity. Proc. Nat. Acad. Sci. USA, 88, 9513–9517. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 53.Straus D., Walter W., and Gross C. (1990) DnaK, DnaJ and GrpE heat shock proteins negatively regulate heat shock gene expression by controlling the synthesis and stability of σ32. Genes Dev., 4, 2202–2209. [DOI] [PubMed] [Google Scholar]
- 54.Gamer J., Multhaup G., Tomoyasu T., McCarty J. S., Radiger S., Schonfeld H. J., Schirra C., Bujard H., and Bukau B. (1996) A cycle of binding and release of the DnaK, DnaJ and GrpE chaperones regulates the activity of the Escherichia coli heat shock transcription factor σ32. EMBO J., 15, 607–617. [PMC free article] [PubMed] [Google Scholar]
- 55.Rowbury R. J. (1982) Methionine biosynthesis and its regulation. In: Somerville R., and Hermann K.M. (eds.) Amino acids, biosynthesis and genetic regulation, pp. 191–211. Addison-Wesley, New York. [Google Scholar]
- 56.Ron E. Z., and Davis B. D. (1971) Growth rate of Escherichia coli at elevated temperatures, limitation by methionine. J. Bacteriol., 107, 391–396. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 57.Baker R. C., Hotchkiss J. H., and Quereshi R. A. (1985) Elevated CO2 atmospheres for packaging poultry. 1. Effects on ground chicken. Poultry Sci., 64, 328–332. [Google Scholar]
- 58.Knoche W. (1980) Chemical reactions of CO2 in water. In: Bauer C., Gros G., and Bartels H. (eds.) Biophysics and Physiology of CO2; p. 3. Springer-Verlag, New York. [Google Scholar]
- 59.Ogrydziak D. M., and Brown W. D. (1982) Temperature effects in modified atmosphere storage of seafoods. Food Technol., 5, 86–88, 90–91, 94–96. [Google Scholar]
- 60.Rowbury R. J. (2003) Extracellular proteins as enterobacterial thermometers. Sci. Prog., 86, 139–156. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 61.Rowbury R. J., and Goodson M. (1999) An extracellular acid stress-sensing protein needed for acid tolerance induction in Escherichia coli. FEMS Microbiol. Lett., 174, 49–55. [DOI] [PubMed] [Google Scholar]
- 62.Rowbury R. J. (1999) Acid tolerance induced by metabolites and secreted proteins and how tolerance can be counteracted. In: Chadwick D. J., and Cardew G. (eds.) Bacterial Responses to pH. Novartis Found Symp. 221, 93–111. Wiley, New York. [DOI] [PubMed] [Google Scholar]
- 63.Rowbury R. J. (2003) Physiology and molecular basis of stress adaptation, with particular reference to the subversion of stress adaptation, and to the involvement of extracellular components in adaptation. In: Yousef A. E., and Juneja V. K. (eds.) Microbial stress adaptation and food safety, pp. 247–302. CRC Press, Boca Raton. [Google Scholar]
- 64.Rowbury R. J., and Goodson M. (1999) An extracellular stress-sensing protein is activated by heat and UV irradiation as well as by mild acidity, the activation producing an acid tolerance-inducing protein. Lett. Appl. Microbiol., 29, 10–14. [Google Scholar]
- 65.Mackey B. M., and Derrick C. M. (1986) Changes in the heat resistance of Salmonella typhimurium during heating at rising temperatures. Lett. Appl. Microbiol., 4, 13–16. [Google Scholar]
- 66.Rowbury R. J. (2002) Microbial disease, recent studies show that novel extracellular components can enhance microbial resistance to lethal host chemicals and increase virulence. Sci. Prog., 85, 1–11. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 67.Walker G. C. (1984) Mutagenesis and inducible responses to deoxyribonucleic acid damage in Escherichia coli. Microbiol. Rev., 48, 60–93. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 68.Spiess C., Beil A., and Ehrmann M. (1999) A temperature-dependent switch from chaperone to protease in a widely conserved heat-shock protein. Cell, 97, 339–347. [DOI] [PubMed] [Google Scholar]
- 69.Hazel J. R. (1995) Thermal adaptation in biological membranes, is homeoviscous adaptation the explanation? Ann. Rev. Physio., 57, 19–42. [DOI] [PubMed] [Google Scholar]