Skip to main content
Science Progress logoLink to Science Progress
. 2019 Feb 27;86(4):245–270. doi: 10.3184/003685003783238626

Weak Organic Acids: A Panoply of Effects on Bacteria

Irvin N Hirshfield 1, Stephanie Terzulli 2, Conor O'Byrne 3
PMCID: PMC10367495  PMID: 15508892

Abstract

Weak organic acids have been used for centuries to preserve foods, but only recently has the possible mechanism for bacterial growth inhibition been investigated. Although the lowering of internal pH was favored as the cause of growth inhibition, the emphasis has shifted to the anion and its specificity. There are a number of applications of weak organic acids to foods and in the food industry be they pre-or postharvest, However, there is concern that the ability of foodborne pathogens to adapt to these acids may allow longer survival in these commodities and also to better survive transit through the gastric acid barrier of the stomach. Genomic and proteomic approaches have been applied to the identification of genes and proteins that may allow prokaryotes to cope with organic acid stress. These technologies in combination with genetic approaches may provide better identification of genes essential for survival to organic acids. These acids may have other roles: they can induce phenotypic antibiotic resistance, and the high concentrations of these acids in the colon may signal a relationship to diet, colonic microflora, and human health.

Keywords: organic acids, short-chain fatty acids, food preservatives, anions, acid adaptation, acid tolerance, habituation, mar operon, cyclopropane fatty acids, colonic weak acids

Full Text

The Full Text of this article is available as a PDF (435.0 KB).

References

  • 1.Marquis R.E., Clock S.A., & Mota-Meira M. (2003) Fluoride and organic weak acids as modulators of microbial physiology. FEMS Microbiol. Rev., 26, 493–510. [DOI] [PubMed] [Google Scholar]
  • 2.Cummings J.H., Pomare E. W., Branch W. J., Naylor C.P.E., & Macfarlane G.T. (1987) Short chain fatty acids in human large intestine, portal, hepatic, and venous blood. Gut, 28, 1221–1227. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 3.Maczulak A. E., Wolin M. J., & Miller T. L. (1993) Amounts of viable anaerobes, methanogens and bacterial fermentation products in feces of rats fed high-fiber or fiber free diets. Appl. Environ. Microbiol., 59, 657–667. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 4.Macfarlane S., & Macfarlane G. T. (2003) Regulation of short-chain fatty acid production. Proc. Nutr. Soc., 62, 67–72. [DOI] [PubMed] [Google Scholar]
  • 5.Ricke S.C. (2003) Perspectives on the use of organic acids and short chain fatty acids as antimicrobials. Poultry Sci., 82, 632–639. [DOI] [PubMed] [Google Scholar]
  • 6.Brul S., and Coote P. (1999) Preservative agents in foods:Mode of action and microbial resistance mechanisms. Int. J. Food Microbiol., 50, 1–17. [DOI] [PubMed] [Google Scholar]
  • 7.Cherrington C.A., Hinton M., Mead G.C., & Chopra I. (1991) Organic acids: chemistry, antibacterial activity and practical applications. Adv. Microb. Physiol., 32, 87–108. [DOI] [PubMed] [Google Scholar]
  • 8.Salmond C. V., Kroll R.G., & Booth I. R. (1984) The effect of food preservatives on pH homeostasis in Escherichia coli. J. Gen. Microbiol., 130, 2845–2850. [DOI] [PubMed] [Google Scholar]
  • 9.Cole M.B., & Keenan M.H. (1986) Synergistic effects of weak-acid preservatives and pH on the growth of Zygosaccharomyces bailii. Yeast, 2, 93–100. [DOI] [PubMed] [Google Scholar]
  • 10.Roe A. J., Mclaggan D., Davidson I., O'Byrne C., & Booth I. R. (1998). Perturbation of anion balance during inhibition of growth of Escherichia coli by weak acids. J. Bacteriol., 180, 767–772. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 11.Young K.M., & Foegeding P.M. (1993) Acetic, lactic and citric acids and pH inhibition of Listeria monocytogenes Scott A and the effect on intracellular pH. J. Appl. Bacteriol., 74, 515–520. [PubMed] [Google Scholar]
  • 12.Freese E., Sheu C.W., & Galliers E. (1973) Function of lipophilic acids as antimicrobial food additives. Nature, 241, 321–325. [DOI] [PubMed] [Google Scholar]
  • 13.Stratford M., & Anslow P.A. (1998) Evidence that sorbic acid does not inhibit yeast as a classic ‘weak acid preservative’. Lett. Appl. Microbiol., 27, 203–206. [DOI] [PubMed] [Google Scholar]
  • 14.Russell J.B., & Diez-Gonzalez F. (1998) The effects of fermentation acids on bacterial growth. Adv. Microb. Physiol., 39, 205–234. [DOI] [PubMed] [Google Scholar]
  • 15.McLaggan D., Naprstek J., Buurman E.T., & Epstein W. (1994) Inter-dependence of K+ and glutamate accumulation during osmotic adaptation of Escherichia coli. J. Biol. Chem., 269, 1911–1917. [PubMed] [Google Scholar]
  • 16.Roe A.J., O'Byrne C., McLaggan D., & Booth I.R. (2002) Inhibition of Escherichia coli growth by acetic acid: a problem with methionine biosynthesis and homocysteine toxicity. Microbiology, 148, 2215–2222. [DOI] [PubMed] [Google Scholar]
  • 17.Goodson M., & Rowbury R. J. (1989) Habituation to normal lethal acidity by prior growth of Escherichia coli at a sub-lethal acid pH value. Lett. Appl. Microbiol., 8, 77–79. [Google Scholar]
  • 18.Foster J. W., & Hall H. K. (1990) Adaptive acidification tolerance response of Salmonella typhimurium. J. Bacteriol., 172, 771–778. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 19.Foster J. W., & Hall H. K. (1991) Inducible pH homeostasis and the acid tolerance response of Salmonella typhimurium, J. Bacteriol., 173, 5129–5135. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 20.Foster J.W. (1993) The acid tolerance response of Salmonella typhimurium involves the synthesis of key acid shock proteins. J. Bacteriol., 175, 1981–1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 21.Foster J.W. (2000). Microbial Responses to Acid Stress. Bacterial Stress Responses, Chap. 7, pp. 99–115. ASM Press, Washington, D.C. [Google Scholar]
  • 22.Bearson S., Bearson B., & Foster J. (1997) Acid stress responses in enterobacteria. FEMS Microbiol. Lett., 147, 173–180. [DOI] [PubMed] [Google Scholar]
  • 23.Goodson M., & Rowbury R. J (1989) Resistance of acid-habituated Escherichia coli to organic acids and its medical and applied significance. Lett. Appl. Microbiol., 8, 211–214. [Google Scholar]
  • 24.Guilfoyle D.E., & Hirshfield I.N. (1996) The survival benefit of short-chain organic acids and the inducible arginine and lysine decarboxylase genes for Escherichia coli. Lett. Appl. Microbiol., 22, 393–396. [DOI] [PubMed] [Google Scholar]
  • 25.Kwon Y. M., & Ricke S. C. (1998) Induction of acid resistance of Salmonella typhimurium by exposure to short-chain fatty acids. Appl. Environ. Microbiol., 64, 3458–3463. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 26.Baik H. S., Bearson S., Dunbar S, & Foster J. W. (1996) The acid tolerance response of Salmonella provides protection against organic acids. Microbiology, 142, 3195–3200. [DOI] [PubMed] [Google Scholar]
  • 27.Kwon Y. M., Park S. Y., Birkhold S. G., & Ricke S. C. (2000) Induction of resistance of Salmonella typhimurium to environmental stresses by exposure to short-chain fatty acids. J. Food Sci., 65, 1037–1040. [Google Scholar]
  • 28.Barua S., Yamashino T., Hasegawa T., Yokoyama K., Torii K., & Ohta M. (2002) Involvement of surface polysaccharides in the organic acid resistance of Shiga Toxin-producing Escherichia coli O157:H7. Mol. Microbiol., 43, 629–640. [DOI] [PubMed] [Google Scholar]
  • 29.Hirshfield I. N., Siegerman D., Aravantinou M., Dong K., Krotowsky L., and Rizos P. (2004) Survival of an acid-resistant Escherichia coli small colony variant in orange juice and apple cider. Submitted.
  • 30.White S., Tuttle F. E., Blankenhorn D., Dosch D. C., & Slonczewski J. L. (1992) pH dependence and gene structure of inaA in Escherichia coli. J. Bacteriol., 174, 1537–1543. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 31.Mukhopadhyay S., & Schellhorn H. E. (1994). Induction of Escherichia coli hydroperoxidase I by acetate and other weak acids. J. Bacteriol., 176, 2300–2307. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 32.Guilfoyle D. E., & Hirshfield I. N. (1994) The molecular response of Escherichia coli to the short chain organic acid butyrate. Ann. N.Y. Acad. Sci., 730, 246–248. [DOI] [PubMed] [Google Scholar]
  • 33.Lambert L. A., Abshire K., Blankenhorn D., & Slonczewski J. L. (1997) Proteins induced in Escherichia coli by benzoic acid. J. Bacteriol., 179, 7595–7599. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 34.Arnold C. N., McElhanon J., Lee A., Leonhart R., & Siegele D. A. (2001) Global analysis of Escherichia coli gene expression during the acetate-induced acid tolerance response. J. Bacteriol., 183, 2178–2186. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 35.Kirkpatrick C., Mauer L. M., Oyelakin N. E., Yoncheva Y. N., Maurer R., & Slonczewski J. L. (2001) Acetate and formate stress: opposite responses in the proteome of Escherichia coli. J. Bacteriol., 183, 6466–6477. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 36.Barker H.C., Kinsella N., Jaspe A., Friedrich T., & O'Connor C. D. (2000) Formate protects stationary-phase Escherichia coli and Salmonella cells from killing by a cationic antimicrobial peptide. Mol. Microbiol., 35, 1518–1529. [DOI] [PubMed] [Google Scholar]
  • 37.El-Gedaily A., Paesold G., Chen C.-Y., Guiney D.G., & Krause M. (1997) Plasmid virulence gene expression induced by short-chain fatty acids in Salmonella Dublin: Identification of rpoS-dependent and rpoS-independent mechanisms. J. Bacteriol., 179, 1409–1412. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 38.Rosner J.L. (1985) Nonheritable resistance to chloramphenicol and other antibiotics induced by salicylates and other chemotactic repellents in Escherichia coli K-12. Proc. Natl. Acad. Sci. USA., 82, 8771–8774. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 39.Cohen S.P., McMurry L.M., & Levy S.B. (1988) marA locus causes decreased expression of OmpF porin in multiple-antibiotic resistant (mar) mutants of Escherichia coli. J. Bacteriol., 170, 5416–5422. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 40.George A.M., & Levy S.B. (1983) Gene in the major cotransduction gap of Escherichia coli K-12 linkage map required for expression of chromosomal resistance to tetracycline and other antibiotics. J. Bacteriol., 155, 541–548. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 41.Cohen S.P., Hachler H., & Levy S.B. (1993) Genetic and functional analysis of the multiple antibiotic resistance (mar) locus in Escherichia coli. J. Bacteriol., 175, 1484–1492. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 42.Cohen S.P., Levy S.B., Foulds J., & Rosner J.L. (1993) Salicylate induction of antibiotic resistance in Escherichia coli: activation of the mar operon and a mar-independent pathway. J. Bacteriol., 175, 7856–7862. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 43.Barbosa T.M., and Levy S.B. (2000) Differential expression of over 60 chromosomal genes in Escherichia coli by constitutive expression of MarA. J. Bacteriol., 182, 3467–3474. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 44.Brown J.L., Ross T., McMeeekin T., & Nichols P.D. (1997) Acid habituation of Escherichia coli and the potential role of cyclopropane faty acids in low pH tolerance. Int. J. Food Microbiol., 37, 163–173. [DOI] [PubMed] [Google Scholar]
  • 45.Chang Y.-Y., & Cronan J.E. Jr. (1999) Membrane cyclopropane fatty acid content is a major factor in acid resistance of Escherichia coli. Mol. Microbiol., 33, 249–259. [DOI] [PubMed] [Google Scholar]
  • 46.Grogan D. W., & Cronan J.E. Jr. (1997) Cyclopropane ring formation in membrane lipids of bacteria. Microbiol. Molec. Biol. Rev., 61, 429–441. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 47.Knivett V.A., & Cullen J. (1965) Some factors affecting cyclopropane acid formation in Escherichia coli. Biochem. J., 96, 771–776. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 48.Mead P.S., Slutsker L., Dietz V., McCraig L.F., Bresee J.S., & Tauxe R.V. (1999) Food-related illness and death in the United States. Emerg. Infect. Dis., 5, 607–625. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 49.Marshall R.T. (2003) Acids, pathogens, foods and us. Food Protect. Trends, 23, 882–886. [Google Scholar]
  • 50.Breidt F. Jr., Hayes J.S. & McFeeters R.F. (2004) Independent effects of acetic acid and pH on survival of Escherichia coli in simulated acidified pickle products. J. Food Protect., 67, 12–18. [DOI] [PubMed] [Google Scholar]
  • 51.Uljas H. E., & Ingham S. C. (1999) Combinations of intervention treatments resulting in 5-log10 -unit reductions in numbers of Escherichia coli O157H:7 and Salmonella typhimurium DT104 organisms in apple cider. Appl. Environ. Microbiol., 65, 1924–1929. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 52.Leyer G. J., Wang L.-L., & Johnson E.A. (1995) Acid adaptation of Escherichia coli O157H:7 increases survival in acidic foods. Appl. Environ. Microbiol., 61, 3752–3755. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 53.Leyer G. J., & Johnson E.A. (1992) Acid adaptation promotes survival of Salmonella spp. In cheese. Appl. Environ. Microbiol., 58, 2075–2080. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 54.Eggenberger-Solorzano L., Niebuhr S. E., Acuff G.R., & Dickson J.S. (2002) J. Food. Protect., 65, 1248–1252. [DOI] [PubMed] [Google Scholar]
  • 55.Berry E. D., & Cutter C. N. (2000) Effects of acid adaptation of Escherichia coli O157H:7 on efficacy of acetic acid spray washes to decontaminate beef carcass tissue. Appl. Environ. Microbiol., 66, 1493–1498. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 56.Samelis J., Kendall P., Smith G.C., & Sofos J.N. (2004) Acid tolerance of acid-adapted and nonadapted Escherichia coli O157H:7 following habituation (10° C) in fresh beef decontamination runoff fluids of different pH values. J. Food Protect., 67, 638–645. [DOI] [PubMed] [Google Scholar]
  • 57.Waterman S. C., & Small P. L. C. (1998) Acid-sensitive enteric pathogens are protected from killing under extremely acidic conditions of pH 2.5 when they are inoculated onto certain solid food sources. Appl. Environ. Microbiol., 64, 3882–3886. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 58.Gibson G.R., & Rastall G.A. (2004) When we eat, which bacteria should we be feeding? ASM News, 70, 224–231. [Google Scholar]
  • 59.Macfarlane G.T., Gibson G.R., & Cummings J.H. (1992) Comparison of fermentation reactions in different regions in the human colon. J. Appl. Bacteriol., 72, 57–74. [DOI] [PubMed] [Google Scholar]
  • 60.Diez-Gonzalez F., Callaway T. R., Kizoulis M.G., & Russell J. B. (1998) Grain feeding and the dissemination of acid-resistant Escherichia coli from cattle. Science, 281, 1666–1668. [DOI] [PubMed] [Google Scholar]
  • 61.Hovde C. J., Austin P. R., Cloud K.A., Williams C.J., & Hunt C.W. (1999) Effects of cattle diet on Escherichia coli O157H:7 acid resistance. Appl. Environ. Microbiol., 65, 3233–3235. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 62.Hayes F. (2003) Transposon-based strategies for microbial functional genomics and proteomics. Annu. Rev. Genet., 37, 3–29. [DOI] [PubMed] [Google Scholar]

Articles from Science Progress are provided here courtesy of SAGE Publications

RESOURCES