Skip to main content
Science Progress logoLink to Science Progress
. 2019 May 7;82(4):313–325. doi: 10.1177/003685049908200403

Computer Simulations of the Mechanical Properties of Metals

J Schiøtz 1, T Vegge 2
PMCID: PMC10367502  PMID: 10755916

Abstract

Atomic-scale computer simulations can be used to gain a better understanding of the mechanical properties of materials. In this paper we demonstrate how this can be done in the case of nanocrystalline copper, and give a brief overview of how simulations may be extended to larger length scales. Nanocrystalline metals are metals with grain sizes in the nanometre range, they have a number of technologically interesting properties such as much increased hardness and yield strength. Our simulations show that the deformation mechanisms are different in these materials than in coarsegrained materials. The main deformation is occurring in the grain boundaries, and only little dislocation activity is seen inside the grains. This leads to a hardening of the material as the grain size is increased, and the volume fraction of grain boundaries is decreased.

Full Text

The Full Text of this article is available as a PDF (1.2 MB).

References

  • 1.Bulato v V., Abraham F.F., Kubin L., Devincre B. & Yip S. (1998) Nature, 391, 669–672. [Google Scholar]
  • 2.Zhou S.J., Beazley D.M., Lomdahl P.S. & Holian B.L. (1997) Phys. Rev. Lett., 78, 479–482. [Google Scholar]
  • 3.Siegel R.W. & Fougere G.E. (1994) In: Hadjipanayis G.C. & Siegel R.W. (eds) Nanophase Materials: Synthesis-Properties-Applications, Vol. 260 of NATO-ASI Series E: Applied Sciences, pp. 233–261, Kluwer, Dordrecht. [Google Scholar]
  • 4.Siegel R.W. (1994) J. Phys. Chem. Solids, 55, 1097–1106. [Google Scholar]
  • 5.Keblinski P., Phillpot R., Wolf D. & Gleiter H. (1997) Acta Mater., 45, 987–998. [Google Scholar]
  • 6.Schiøtz J., Di Tolla F.D. & Jacobsen K.W. (1998) Nature, 391, 561–563. [Google Scholar]
  • 7.Schiøtz J., Vegge T., Di Tolla F.D. & Jacobsen K.W. (1998) In: Carstensen J.V. et al. (eds) Modelling of Structure and Mechanics of Materials from Microscale to Product, Proceedings of the 19th Risø International Symposium on Materials Science, pp. 133–148. Risø National Laboratory, Roskilde. [Google Scholar]
  • 8.Schiøtz J., Vegge T. & Jacobsen K.W. In: Bulatov V. et al. (eds) Multiscale Modeling of Materials, Vol. 538of Mater. Res. Soc. Symp. Proc., pp. 299–308, Mater. Res. Soc, Warrendale. [Google Scholar]
  • 9.Schiøtz J., Vegge T., Di Tolla F.D. & Jacobsen K.W. (1999) Atomic-scale simulations of nanocrystalline metals, Phy. Rev. B. 60, 11971–11983. [Google Scholar]
  • 10.Van Swygenhoven H. & Caro A. (1997) Appl. Phys. Lett., 71, 1652–1654; NanoStructured Materials, 9, 669–672; (1998) Phys. Rev. B, 58, 11246–11251. [Google Scholar]
  • 11.Van Swygenhoven H., Spaczér M. & Caro A. (1998) NanoStruct. Mater., 10, 819–828. [Google Scholar]
  • 12.Weertman J.R., Farkas D., Hemker K., Kung H., Mayo M., Mitra R. & Swygenhoven H.V. (1999) MRS Bull., 24(2), 44–49. [Google Scholar]
  • 13.Jacobsen K.W., Nørskov J.K. & Puska M.J. (1987) Phys. Rev. B, 35, 7423–7442. [DOI] [PubMed] [Google Scholar]
  • 14.Jacobsen K.W., Stoltze P. & Nørskov J.K. (1996) Surf. Sci., 366, 394–402. [Google Scholar]
  • 15.Clarke A.S. & Jónsson H. (1993) Phys. Rev. E, 47, 3975–3984. [DOI] [PubMed] [Google Scholar]
  • 16.Sanders P.G., Youngdahl C.J. & Weertman J.R. (1997) Mater. Sci. Eng. A, 234–236, 77–82. [Google Scholar]
  • 17.Sanders P.G., Eastman J.A. & Weertman J.R. (1997) Acta Mater., 45, 4019–4025. [Google Scholar]
  • 18.Carlsson A.E. & Thomson R. (1998) Solid State Physics, 51, 233–280. [Google Scholar]
  • 19.Gulluoglu A.N., Srolovitz D.J., LeSar R. & Lomdahl P.S. (1989) Scr. Met., 23, 1347–1352. [Google Scholar]
  • 20.Kubin L.P., Canova G., Condat M., Devincre B., Pontikis V. & Bréchet Y. (1992) Solid State Phenomena, 23–24, 455–472. [Google Scholar]
  • 21.Devincre B. & Kubin L.P. (1997) Mater. Sci. Eng. A, 234–236, 8–14. [Google Scholar]
  • 22.Barts D.B. & Carlsson A.E. (1997) Phil. Mag. A, 75, 541–562. [Google Scholar]
  • 23.Cleveringa H.H.M., Van der Giessen E. & Needleman A. (1997) Acta Mater., 45, 3163–3179. [Google Scholar]
  • 24.Zhou S.J., Preston D.L., Lomdahl P.S. & Beazley D.M. (1998) Science, 279, 1525–1527. [DOI] [PubMed] [Google Scholar]
  • 25.Kohlhoff S., Gumbsch P. & Fischmeister H.F. (1991) Phil. Mag. A, 64, 851–878. [Google Scholar]
  • 26.Gumbsch P. (1995) J. Mater. Res., 10, 2897–2907. [Google Scholar]
  • 27.Thomson R., Zhou S.J., Carlsson A.E. & Tewary V.K. (1992) Phys. Rev. B, 46, 10613–10622. [DOI] [PubMed] [Google Scholar]
  • 28.Schiøtz J., Canel L.M. & Carlsson A.E. (1997) Phys. Rev. B, 55, 6211–6221. [Google Scholar]
  • 29.Rao S., Hernandez C., Simmons J.P., Parthasarathy T.A. & Woodward C. (1998) Phil. Mag. A, 77, 231–256. [Google Scholar]
  • 30.Tadmor E.B., Ortiz M. & Phillips R. (1996) Phil. Mag. A, 73, 1529–1564. [Google Scholar]
  • 31.Shenoy V.B., Miller R., Tadmor E.B., Phillips R. & Ortiz M. (1998) Phys. Rev. Lett., 80, 742–745. [Google Scholar]

Articles from Science Progress are provided here courtesy of SAGE Publications

RESOURCES