Skip to main content
Science Progress logoLink to Science Progress
. 2019 Feb 27;87(1):1–24. doi: 10.3184/003685004783238599

Compatible and Counteracting Solutes: Protecting Cells from the Dead Sea to the Deep Sea

Paul H Yancey 1
PMCID: PMC10367508  PMID: 15651637

Abstract

Cells of many organisms accumulate certain small organic molecules -called compatible and counteracting solutes, compensatory solutes, or chemical chaperones – in response to certain physical stresses. These solutes include certain carbohydrates, amino acids, methylamine and methylsulphonium zwitterions, and urea. In osmotic dehydrating stress, these solutes serve as cellular osmolytes. Unlike common salt ions and urea (which inhibit proteins), some organic osmolytes are compatible; i.e., they do not perturb macromolecules such as proteins. In addition, some may protect cells through metabolic processes such as antioxidation reactions and sulphide detoxification. Other osmolytes, and identical or similar solutes accumulated in anhydrobiotic, heat and pressure stresses, are termed counteracting solutes or chemical chaperones because they stabilise proteins and counteract protein-destabilising factors such as urea, temperature, salt, and hydrostatic pressure. Stabilisation of proteins, not necessarily beneficial in the absence of a perturbant, may result indirectly from effects on water structure. Osmotic shrinkage of cells activates genes for chaperone proteins and osmolytes by mechanisms still being elucidated. These solutes have applications in agriculture, medicine and biotechnology.

Keywords: osmolyte, antioxidant, pressure, urea, trimethylamine oxide, temperature, compatible, counteracting, compensatory, chaperone

Full Text

The Full Text of this article is available as a PDF (342.7 KB).

References

  • 1.Brown A., and Simpson J. (1972) Water relations of sugar-tolerant yeasts: the role of intracellular polyols. J. Gen Microbiol., 72, 589–591. [DOI] [PubMed] [Google Scholar]
  • 2.Yancey P.H., Clark M.E., Hand S.C., Bowlus R.D., and Somero G.N. (1982) Living with water stress: the evolution of osmolyte systems. Science, 217, 1212–1222. [DOI] [PubMed] [Google Scholar]
  • 3.Gilles R. (1997) ‘Compensatory’ organic osmolytes in high osmolarity and dehydration stresses: history and perspectives. Comp. Biochem. Physiol., 117A, 279–290. [DOI] [PubMed] [Google Scholar]
  • 4.Tatzelt J., Prusiner S.B., & Welch W.J. (1996) Chemical chaperones interfere with the formation of scrapie prion protein. EMBO J., 15, 6363–6373. [PMC free article] [PubMed] [Google Scholar]
  • 5.Miller T.J., Hanson R.D., and Yancey P.H. (2000) Developmental changes in organic osmolytes in prenatal and postnatal rat tissues. Compar. Biochem. Physiol., 125, 45–56. [DOI] [PubMed] [Google Scholar]
  • 6.Cai Q., Ferraris J.D., and Burg M.B. (2004) Greater tolerance of renal medullary cells for a slow increase in osmolality is associated with enhanced expression of HSP70 and other osmoprotective genes. Am. Physiol. Renal Physiol., 286(1), F58–67. [DOI] [PubMed] [Google Scholar]
  • 7.Crowe J.H., Carpenter J.F., and Crowe L.M. (1998) The role of vitrification in anhydrobiosis. Ann. Rev. Physiol., 60, 73–103. [DOI] [PubMed] [Google Scholar]
  • 8.Yancey P.H., Blake W., and Conley J. (2002) Unusual organic osmolytes in deep-sea animals: Adaptations to hydrostatic pressure and other perturbants. Comp. Biochem. Physiol., 133A, 667–676. [DOI] [PubMed] [Google Scholar]
  • 9.Wyn Jones R.G., Storey R., Leigh R.A., Ahmad N., and Pollard A. (1977) A hypothesis on cytoplasmic osmoregulation. In Regulation of Cell Membrane Activities in Plants (Marre E., & Ciferri O., eds), pp. 121–136. Elsevier Press, Amsterdam. [Google Scholar]
  • 10.Cushman J.C. (2001) Osmoregulation in plants: implications for agriculture. Amer. Zool., 41, 758–769. [Google Scholar]
  • 11.Yancey P.H. (2001) Protein, osmolytes and water stress. Amer. Zool., 41, 699–709. [Google Scholar]
  • 12.Shen B., Hohman S., Jensen R.G., and Bohnert H.J. (1999) Role of sugar alcohols in osmotic stress adaptation. Replacement of glycerol by mannitol and sorbitol in yeast. Plant Physiol., 121, 45–52. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 13.Schaffer S., Azuma J., Takahashi K., and Mozaffari M. (2003) Why is taurine cytoprotective? In Taurine 5 (Lombardini B., Schaffer S., and Azuma J., eds), pp. 307–321. Kluwer Plenum, New York. [DOI] [PubMed] [Google Scholar]
  • 14.Aruoma O.I., Halliwell B., Hoey B.M., and Butler J. (1988) The antioxidant action of taurine, hypotaurine and their metabolic precursors. Biochem. J., 256, 251–255. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 15.Setchell B.P., Sanchez-Partida L.G., and Chairussyuhur A. (1993) Epididymal constituents and related substances in the storage of spermatozoa: a review. Repro. Fert. Devel., 5, 601–612. [DOI] [PubMed] [Google Scholar]
  • 16.Pruski A.M., Fiala-Médioni A., Prodon R., and Colomines J.C. (2000) Thiotaurine is a biomarker of sulfide-based symbiosis in deep-sea bivalves. Limn. Oceanogr., 45, 1860–1867. [Google Scholar]
  • 17.Yin M., Palmer H.R., Fyfe-Johnson A.L., Bedford J.J., Smith R.A., and Yancey P.H. (2000) Hypotaurine, N-methyltaurine, taurine, and glycine betaine as dominant osmolytes of vestimentiferan tubeworms from hydrothermal vents and cold seeps. Phys. Biochem. Zool., 73, 629–637. [DOI] [PubMed] [Google Scholar]
  • 18.Rosenberg N.B., Lee R.W., and Yancey P.H. (2003) Adaptation to environmental stresses with osmolytes: possible roles for betaine, hypotaurine and thio-taurine in gastropods from hydrothermal vents. Comp. Biochem. Physiol., 134, S120. [Google Scholar]
  • 19.Ansell R., Granath K., Hohmann S., Thevelein J.M., and Adler L. (1997) The two isoenzymes for yeast NAD+-dependent glycerol 3-phosphate dehydrogenase encoded by GPD1 and GPD2 have distinct roles in osmoadaptation and redox regulation. EMBO J., 16, 2179–2187. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 20.Wolfe G.V. (2000) The chemical defense ecology of marine unicellular plankton: Contraints, mechanisms, and impacts. Biol. Bull., 198, 225–244. [DOI] [PubMed] [Google Scholar]
  • 21.Fiess J.C., Hom J.R., Hudson H.A., Kato C., and Yancey P.H. (2002) Phosphodiester amine, taurine and derivatives, and other osmolytes in vesicomyid bivalves: correlations with depth and symbiont metabolism. Cahiers Biol. Mar, 43, 337–340. [Google Scholar]
  • 22.Yancey P.H., and Burg M.B. (1990) Counteracting effects of urea and betaine on colony-forming efficiency of mammalian cells in culture. Am. J. Physiol., 258, R198–204. [DOI] [PubMed] [Google Scholar]
  • 23.Gluick T.C., and Yadav S. (2003) Trimethylamine N-oxide stabilises RNA tertiary structure and attenuates the denaturating effects of urea. J. Am. Chem. Soc., 125, 4418–4419. [DOI] [PubMed] [Google Scholar]
  • 24.Pollard A., & Wyn Jones R.G. (1979). Enzyme activities in concentrated solutions of glycinebetaine and other solutes. Planta 144, 291–298. [DOI] [PubMed] [Google Scholar]
  • 25.Tunnacliffe A., and Lapinski J. (2003). Resurrecting Van Leeuwenhoek's rotifers: a reappraisal of the role of disaccharides in anhydrobiosis. Phi.l Trans: R Soc Lond, B, 358, 1755–1771. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 26.Storey K.B. (1997) Organic solutes in freezing tolerance. Comp. Biochem. Physiol., 117A, 319–326. [DOI] [PubMed] [Google Scholar]
  • 27.Singer M.A., and Lindquist S. (1998) Thermotolerance in Saccharomyces cerevisiae: the yin and yang of trehalose. Trends Biotechnol., 16, 460–468. [DOI] [PubMed] [Google Scholar]
  • 28.Santos H., and da Costa M.S. (2002) Compatible solutes of organisms that live in hot saline environments. Env. Microbiol., 4, 501–509. [DOI] [PubMed] [Google Scholar]
  • 29.Kelly R.H., and Yancey P.H. (1999) High contents of trimethylamine oxide correlating with depth in deep-sea teleost fishes, skates, and decapod crustaceans. Biol. Bull., 196, 18–25. [DOI] [PubMed] [Google Scholar]
  • 30.Yancey P.H., Rhea M.D., Kemp K.M., and Bailey D.M. Trimethylamine oxide, betaine and other osmolytes in deep-sea animals: depth trends and effects on enzymes under hydrostatic pressure. Cell. Molec. Biol., 50, 371–376. [PubMed] [Google Scholar]
  • 31.Seibel B.A., and Walsh P.J. (2002) Trimethylamine oxide accumulation in marine animals: relationship to acylglycerol storage. J. Exp. Biol., 205, 297–306. [DOI] [PubMed] [Google Scholar]
  • 32.Saad-Nehme J., Silva J.L., and Meyer-Fernandes J.R. (2001) Osmolytes protect mitochondrial F0F1-ATPase complex against pressure inactivation. Biochim. Biophys. Acta, 1546, 164–17. [DOI] [PubMed] [Google Scholar]
  • 33.Martin D.D., Bartlett D.H., and Roberts M.F. (2002) Solute accumulation in the deep-sea bacterium Photobacterium profundum. Extremophiles, 6, 507–514. [DOI] [PubMed] [Google Scholar]
  • 34.Timasheff S.N. 1992. A physicochemical basis for the selection of osmolytes by nature. In Water and Life: A Comparative Analysis of Water Relationships at the Organismic, Cellular, and Molecular Levels (Somero G.N., Osmond C.B., and Bolis C.L. eds.), pp. 70–84. Springer-Verlag, Berlin. [Google Scholar]
  • 35.Bolen D.W., and Baskakov I.V. (2001) The osmophobic effect: natural selection of a thermodynamic force in protein folding. J. Mol. Biol., 310, 955–963. [DOI] [PubMed] [Google Scholar]
  • 36.Bennion B.J., and Daggett V. (2004) Counteraction of urea-induced protein denaturation by trimethylamine N-oxide: A chemical chaperone at atomic resolution. Proc. Natl. Acad. Sci. USA, 101, 6433–6438. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 37.Devlin G.L., Parfrey H., Tew D.J., Lomas D.A., and Bottomley S.P. (2001) Prevention of polymerisation of M and Z 1-antitrypsin (1-AT) with trimethylamine N-oxide. Implications for the treatment of 1-AT deficiency. Am. J. Resp. Cell. Mol. Biol., 24, 727–732. [DOI] [PubMed] [Google Scholar]
  • 38.Huang Z., and Tunnacliffe A (2004) Response of human cells to desiccation: comparison with hyperosmotic stress response. J. Physiol., 558: 181–191 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 39.Laminita S.T., Morrison R., Moeckel G.W., and Strange K. (2004) Adaptation of the nematode Caenorhabditis elegans to extreme osmotic stress. Am. J. Physiol. Cell Physiol., 286, C785–C791. [DOI] [PubMed] [Google Scholar]
  • 40.Howard M., Fischer H., Roux J., Santos B.C., Gullans S.R., Yancey P.H., and Welch W.J. (2003) Mammalian osmolytes and s-nitrosoglutathione promote AF508 cystic fibrosis transmembrane conductance regulator (CFTR) protein maturation and function. J. Biol. Chem., 278, 35159–35167. [DOI] [PubMed] [Google Scholar]
  • 41.Tanaka M., Machida Y., Niu S., Ikeda T., Jana N.R., Doi H., Kurosawa M., Nekooki M., & Nukina N. (2004) Trehalose alleviates polyglutamine-mediated pathology in a mouse model of huntington disease. Nat Med., 10, 148–154. [DOI] [PubMed] [Google Scholar]

Articles from Science Progress are provided here courtesy of SAGE Publications

RESOURCES