Skip to main content
Science Progress logoLink to Science Progress
. 2019 Feb 27;88(4):237–248. doi: 10.3184/003685005783238372

The chemistry of the Bio-Control Agent, Trichoderma Harzianum

James R Hanson 1,
PMCID: PMC10367512  PMID: 16961094

Abstract

The role of 6-n-pentyl-2H-pyran-2-one and other metabolites of the fungus Trichoderma harzianum, in its application as a bio-control agent, is discussed.

Keywords: Trichoderma harzianum, bio-control, antifungal agents, 6-n-pentyl-2H-pyran-2-one

Full Text

The Full Text of this article is available as a PDF (195.1 KB).

References

  • 1.See, for example, Paulitz T. C., and Belanger P. R. (2001) Biological control in greenhouse systems. Ann. Rev. Phytopathol., 39, 103–133. [DOI] [PubMed] [Google Scholar]
  • 2.Papvizas G. C. (1985) Trichoderma and Gliodadium: biology, ecology and potential for bio-control. Ann. Rev. Phytopathol., 23, 23–54. [Google Scholar]
  • 3.Lynch J. M., and Crook N. S. (1992) Biological control agents. Chem. Brit., 42. [Google Scholar]
  • 4.Dickinson J. M., Hanson J. R., and Truneh A. (1995) Metabolites of some biological control agents. Pestic. Sci., 44, 389–393. [Google Scholar]
  • 5.Ghisalberti E. L., and Sivasithamparam K. (1991) Antifungal antibiotics produced by Trichoderma species. Soil Biol. Biochem., 23, 1011–1020. [Google Scholar]
  • 6.Rifai M. (1969) A revision of the genus, Trichoderma. Mycological Papers, 116, 1–56. [Google Scholar]
  • 7.Dennis C., and Webster J. (1971) Antagonistic properties of species groups of Trichoderma (I) production of non-volatile antibiotics. Trans. Br. mycol. Soc., 57, 25–39. [Google Scholar]
  • 8.Dennis C., and Webster J. (1971) Antagonistic properties of species groups of Trichoderma (II) production of volatile antibiotics. Trans. Br. mycol. Soc., 57, 41–48. [Google Scholar]
  • 9.Dennis C., and Webster J. (1971) Antagonistic properties of species groups of Trichoderma (III) hyphal interactions. Trans. Br. mycol. Soc., 57, 363–369. [Google Scholar]
  • 10.Ridout C. J., Coley-Smith J. R., and Lynch J. M. (1988) Fractionation of extracellular enzymes from a mycoparasitic strain of Trichoderma harzianum. Enzyme Microb. Technol., 10, 180–187. [Google Scholar]
  • 11.Collins R. P., and Halim A. F. (1972) Characterization of the major aroma constituent of the fungus, Trichoderma viride. J. Agric Food Chem., 20, 437. [Google Scholar]
  • 12.Claydon N., Allan M., Hanson J. R., and Avent A. G. (1987) Antifungal alkylpyrones from Trichoderma harzianum. Trans. Br. mycol. Soc., 88, 503–513. [Google Scholar]
  • 13.Ghisalberti E. L., Narbey M. J., Dewan M. M., and Sivasithamparam K. (1990) Variability among strains of Trichoderma harzianum in their ability to reduce take-all and to produce pyrones. Plant and Soil, 121, 287–291. [Google Scholar]
  • 14.Kikuchi T., Mimura T., Harimaya K., Yano H., Arimoto T., Masada Y., and Inoue T. (1974) Volatile metabolites of aquatic fungi. Identification of 6-pentyl-α-pyrone from Trichoderma and Aspergillus species. Chem. Pharm. Bull., 22, 1946–1948. [DOI] [PubMed] [Google Scholar]
  • 15.Sevenants M. R., and Jennings W. G. (1971) The occurrence of 6-pentylpyrone in peaches. J. Food Sci., 36, 536. [Google Scholar]
  • 16.Nobuhara A. (1969) Flavorous nature of δ-lactones having the double bond at various sites. Agr. Biol. Chem., 33, 1264–1269. [Google Scholar]
  • 17.Pittet A. O., and Kleiber E. M. (1975) Synthesis and flavour properties of some alkyl substituted α-pyrone derivatives. J. Agric. Food Chem., 23, 1189–1195. [Google Scholar]
  • 18.Jones T. H., and Fales H. M. (1983) E-6–(1'-pentenyl)-2H-pyran-2-one from carpenter ants. Tetrahedron Lett., 24, 5439–5440. [Google Scholar]
  • 19.Dickinson J. M., and Hanson J. R. (unpublished work), Dickinson, J. M. (1988), D.Phil. thesis, University of Sussex. [Google Scholar]
  • 20.Biagetti M., Bellina F., Carpita A., and Rossi R. (2003) 6-Chloro-2H-pyran-2-one, a new 2H-pyran-2-one synthon. Tetrahedron Lett., 44, 607–609. [Google Scholar]
  • 21.Anastasia L., Xu C., and Negishi E. (2002) Catalytic and selective conversion of (Z)-2-en-4-ynoic acids to 2H-pyran-2-ones in the presence of ZnBr2. Tetrahedron Lett., 43, 5673–5676. [Google Scholar]
  • 22.Zhang O., Wang X. C., Zhang F. N., and Pan X. F. (1996) A facile total synthesis of 6-pentyl-α-pyrone. Chinese Chem. Lett., 7, 317–318. [Google Scholar]
  • 23.Wang Y., and Burton D. J. (2006) A facile general synthesis of 3,4-difluoro-6-substituted-2-pyrones. J. Org. Chem., 71, 3859–3862. [DOI] [PubMed] [Google Scholar]
  • 24.Moss M. O., Jackson R. M., and Rogers D. (1975) The characterization of 6- (pent-l-enyl)-α-pyrone from Trichoderma viride. Phytochemistry, 14, 2706–2708. [Google Scholar]
  • 25.Rocca J. R., Tomlinson J. H., Glancey B. M., and Lofgren C. S. (1983) The queen recognition pheromone of Solenopsis invicta, preparation of (E)-6-(1-pentenyl)-2H-pyran-2-one. Tetrahedron Lett., 24, 1889–1892. [Google Scholar]
  • 26.Pezet R., Pont V., and Tabacchii R. (1999) Simple analysis of 6-pentyl-α-pyrone, a major antifungal metabolite of Trichoderma spp. useful for testing the antagonistic activity of these fungi. Phytochem. Anal., 10, 285–288. [Google Scholar]
  • 27.Yong F. M., Wong H. A., and Lim G. (1985) Effect of nitrogen source on aroma production by Trichoderma viride. Appl. Microbiol. Technol., 22, 146–147. [Google Scholar]
  • 28.Cooney J. M., Lauren D. R., Jensen D. J., and Perry-Meyer L. J. (1997) Effect of solid substrate, liquid supplement and harvest time on 6–n-pentyl-2H-pyran-2-one production by Trichoderma spp. J. Agric. Food Chem., 45, 531–534. [Google Scholar]
  • 29.Cooney J. M., Lauren D. R., Jensen D. J., and Perry-Meyer L. J. (1997) Effect of harvest time, temperature, light and spore inoculation concentration on 6–n-pentyl-2H-pyran-2-one production by Trichoderma spp. J. Agric. Food Chem., 45, 2802–2806. [Google Scholar]
  • 30.Rito-Palomares M., Negrete A., Miranda L., Flores C., Galindo E., and Serrano-Carreo L. (2001) The potential application of aqueous two-phase systems for in situ recovery of 6-pentyl-α-pyrone produced by Trichoderma harzianum. Enzyme Microbiol. Technol., 28, 625–631. [DOI] [PubMed] [Google Scholar]
  • 31.Whitaker G., Poole P. R., Cooney J. M., and Lauren D. R. (1998) Production of (14C)-6-pentyl-2-pyrone in liquid cultures of Trichoderma harzianum. J. Agric. Food Chem., 46, 3747–3749. [Google Scholar]
  • 32.Elad V., Chet J., and Katan J. (1980) Trichoderma harzianum, a bio-control agent effective against Sclerotium rofsii and Rhizoctonia solani. Phytopathology, 70, 119–121. [Google Scholar]
  • 33.Lumsden R. D., Carter J. P., Whipps J. M., and Lynch J. M. (1990) Comparison of biomass and viable propagule measurements in the antagonism of Trichoderma harzianum against Pythium ultimum. Soil Biol. Biochem., 22, 187–194. [Google Scholar]
  • 34.Maplestone P. A., Whipps J. M., and Lynch J. M. (1991) Effect of peat-bran inoculum of Trichoderma species on biological control of Rhizoctonia solani in lettuce. Plant Soil, 136, 257–263. [Google Scholar]
  • 35.Jackson A. M., Whipps J. M., and Lynch J. M. (1991) Production, delivery systems and survival of four fungi with disease bio-control potential. Microbial. Technol., 13, 636–642. [Google Scholar]
  • 36.Windham M. T., Elad Y., and Baker R. (1986) A mechanism for increased plant growth by Trichoderma spp. Phytopathology, 76, 518–521. [Google Scholar]
  • 37.Lynch J. M., Wilson K. L., Ousley M. A., and Whipps J. M. (1991) Response of lettuce to Trichoderma treatment. Lett. Appl. Microbiol., 12, 59–61. [Google Scholar]
  • 38.Budge S. P., and Whipps J. M. (1991) Glasshouse trials of Coniothyrium minitans and Trichoderma species for the biological control of Sclerotinia sclerotiorum in celery and lettuce. Plant Pathol., 40, 59–66. [Google Scholar]
  • 39.Worasatit N., Sivasithamparam K., Ghisalberti E. L., and Rowland C. (1994) Variation in pyrone production, lytic enzymes and control of Rhizoctonia root rot of wheat among single spore isolates of Trichoderma koningii. Mycol. Res., 98, 1357–1363. [Google Scholar]
  • 40.Parker S. R., Cutler H. G., Jacyno J. M., and Hill R. A. (1997) Biological activity of 6–n-pentyl-2H-pyran-2-one and its analogs. J. Agric. Food Chem., 45, 2774–2776. [Google Scholar]
  • 41.Cooney J. M., Lauren D. R., and di Menna M. E. (2001) Impact of competitive fungi on trichothecene production by Fusarium graminearum. J. Agric. Food Chem., 49, 522–526. [DOI] [PubMed] [Google Scholar]
  • 42.Poole P. R., and Whitaker G. (1997) Biotransformation of 6-pentyl-2-pyrone by Botrytis cinerea in liquid cultures. J. Agric. Food Chem., 45, 249–252. [Google Scholar]
  • 43.Cooney J. M., Lauren D. R., Poole P. R., and Whitaker G. (1997) Microbial transformation of the Trichoderma metabolite 6–n-pentyl-2H-pyran-2-one. J. Nat. Prod., 60, 1242–1244. [Google Scholar]
  • 44.Cooney J. M., and Lauren D. R. (1999) Biotransformation of the Trichoderma metabolite, 6–n-pentyl-2H-pyran-2-one (6PAP) by selected fungal isolates. J. Nat. Prod., 62, 681–683. [DOI] [PubMed] [Google Scholar]
  • 45.Evidente A., Cabras A., Maddau L., Serra S., Andolfi A., and Motta A. (2003) Viridepyronone, a new antifungal 6-substituted 2H-pyran-2-one produced by Trichoderma viride. J. Agric. Food Chem., 51, 6957–6960. [DOI] [PubMed] [Google Scholar]
  • 46.Bruce A., Austin W. J., and King B. (1984) Control of growth of Lentinus lepideus by volatiles from Trichoderma. Trans. Br. mycol. Soc., 81, 423–428. [Google Scholar]
  • 47.Cooney J. M., Hotter G. S., and Lauren D. R. (2000) Biotransformation of the Trichoderma metabolite 6–n-pentyl-2H-pyran-2-one by cell suspension cultures of Pinus radiata. Phytochemistry, 53, 447–450. [DOI] [PubMed] [Google Scholar]
  • 48.Almassi F., Ghisalberti E. L., Narbey M. J., and Sivasithamparam K. (1991) New antibiotics from strains of Trichoderma harzianum. J. Nat. Prod., 54, 396–402. [Google Scholar]
  • 49.Ghisalberti E. L., and Rowland C. Y. (1993) Antifungal metabolites from Trichoderma harzianum. J. Nat. Prod., 56, 1799–1804. [DOI] [PubMed] [Google Scholar]
  • 50.Claydon N., Hanson J. R., Truneh A., and Avent A. G. (1991), Harzianolide, a butenolide metabolite from cultures of Trichoderma harzianum. Phytochemistry, 30, 3801–3803. [Google Scholar]
  • 51.Avent A. G., Hanson J. R., and Truneh A. (1992) The biosynthesis of harzianolide by Trichoderma harzianum. Phytochemistry, 31, 791–793. [Google Scholar]
  • 52.Usami Y., Ikura T., Amagata T., and Numata A. (2000) The first total synthesis and configurational assignments of cytotoxic trichodenones A-C. Tetrahedron Asymmetry, 11, 3711–3725. [Google Scholar]
  • 53.Jian Y-J., Wu Y., Li L., and Lu J. (2005) An expeditious route to the antipode of harzialactone A. Tetrahedron Asymmetry, 16, 2649–2651. [Google Scholar]
  • 54.Brewer D., Gabe E. J., Hanson A. W., Taylor A., Keeping J. W., Thaller V., and Das B. C. (1979) Isonitrile acids from cultures of the fungus Trichoderma hamatum. J.C.S. Chem. Commun., 1061. [Google Scholar]
  • 55.Godtfredsen W. O., and Vangedal S. (1965) Trichodermin, a new sesquiterpene antibiotic. Acta Chem. Scand., 19, 1088–1102. [DOI] [PubMed] [Google Scholar]
  • 56.Bamburg J. R., and Strong F. M. (1969) Mycotoxins of the trichothecene family produced by Fusarium tricinctum and Trichoderma lignorum. Phytochemistry, 8, 2405–2410. [Google Scholar]
  • 57.Adams P. M., and Hanson J. R. (1972) Sesquiterpenoid metabolites of Trichoderma polysporum and T. sporulosum. Phytochemistry, 11, 423. [Google Scholar]
  • 58.Corley D. G., Miller-Wideman M., and Durley R. C. (1994) Isolation and structure of harzianum A, a new trichothecene from Trichoderma harzianum. J. Nat. Prod., 57, 422. [DOI] [PubMed] [Google Scholar]
  • 59.Nielsen K. F., Grafenhan T., Zafari D., and Thrane U. (2005) Trichothecene production by Trichoderma brevicompactum. J. Agric. Food Chem., 53, 8190–8196. [DOI] [PubMed] [Google Scholar]
  • 60.Ghisalberti E. L., Hockless D. C. R., Rowland C., and White A. H. (1992) Harziandione, a new class of diterpene from Trichoderma harzianum. J. Nat. Prod., 55, 1690–1694. [Google Scholar]
  • 61.Dickinson J. M., Hanson J. R., Hitchcock P. B., and Claydon N. (1989) Structure and biosynthesis of harzianopyridone, an antifungal metabolite of Trichoderma harzianum. J. Chem. Soc, Perkin Trans. 1, 1885–1887. [Google Scholar]
  • 62.Sawa R., Mori Y., Iinuma H., Naganawa H., Hamada M., Yoshida S., Furutani H., Kajimura Y., Fuwa T., and Takeuchi T. (1994) Harzianic acid, a new antimicrobial antibiotic from a fungus. J. Antibiotics, 47, 731–732. [DOI] [PubMed] [Google Scholar]
  • 63.Marfori E. C., Kajiyama S., Fukusaki E., and Kobayashi A. (2003) Phytotoxicity of the tetramic acid metabolite, trichosetin. Phytochemistry, 62, 715–721. [DOI] [PubMed] [Google Scholar]
  • 64.Lee C., Chung M., Lee H., and Kho Y. (1995) MR-93A, A new oxazole from Trichoderma harzianum. J. Nat. Prod., 58, 1605–1607. [Google Scholar]
  • 65.Bodo B., Rebuffat S., El Hajji M., and Davoust D. (1985) Structure of trichorzianine A, an antifungal peptide from Trichoderma harzianum. J. Am. Chem. Soc., 107, 6011–6017. [Google Scholar]

Articles from Science Progress are provided here courtesy of SAGE Publications

RESOURCES