Skip to main content
Science Progress logoLink to Science Progress
. 2019 May 7;82(1):69–88. doi: 10.1177/003685049908200104

Methylation of Inorganic Arsenic in Different Mammalian Species and Population Groups

Marie Vahter 1
PMCID: PMC10367518  PMID: 10445007

Abstract

Thousands of people in different parts of the world are exposed to arsenic via drinking water or contaminated soil or food. The high general toxic of arsenic has been known for centuries, and research during the last decades has shown that arsenic is a potent human carcinogen. However, most experimental cancer studies have failed to demonstrate carcinogenicity in experimental animals, indicating marked variation in sensitivity towards arsenic toxicity between species. It has also been suggested that there is a variation in susceptibility among human individuals. One reason for such variability in toxic response may be variation in metabolism. Inorganic arsenic is methylated in humans as well as animals and micro-organisms, but there are considerable differences between species and individuals. In many, but not all, mammalian species, inorganic arsenic is methylated to methylarsonic acid (MMA) and dimethylarsinic acid (DMA), which are more rapidly excreted in urine than is the inorganic arsenic, especially the trivalent form (AsIII, arsenite) which is highly reactive with tissue components. Absorbed arsenate (AsV) is reduced to trivalent arsenic (AsIII) before the methyl groups are attached. It has been estimated that as much as 50–70% of absorbed AsV is rapidly reduced to AsIII, a reaction which seems to be common for most species. In most experimental animal species, DMA is the main metabolite excreted in urine. Compared to human subjects, very little MMA is produced. However, the rate of methylation varies considerably between species, and several species, e.g. the marmoset monkey and the chimpanzee have been shown not to methylate inorganic arsenic at all. In addition, the marmoset monkey accumulates arsenic in the liver. The rat, on the other hand, has an efficient methylation of arsenic but the formed DMA is to a large extent accumulated in the red blood cells. As a result, the rat shows a low rate of excretion of arsenic. In both human subjects and rodents exposed to DMA, about 5% of the dose is excreted in the urine as trimethylarsine oxide. It is obvious from studies on human volunteers exposed to specified doses of inorganic arsenic that the rate of excretion increases with the methylation efficiency, and there are large inter-individual variations in the methylation of arsenic. Recent studies on people exposed to arsenic via drinking water in northern Argentina have shown unusually low urinary excretion of MMA. Furthermore, children had a lower degree of methylation of arsenic than adults. Some studies indicate a lower degree of arsenic methylation in men than in women, especially during pregnancy. Whether the observed differences in methylation of arsenic are associated with variations in the susceptibility of arsenic remains to be investigated.

Full Text

The Full Text of this article is available as a PDF (1.5 MB).

References

  • 1.IARC (1980) Arsenic and arsenic compounds. In: IARC Monographs on the Evaluation of Carcinogenic Risk of Chemicals to Humans. Some Metals and Metallic Compounds, Vol. 23, pp. 39–141. International Agency for Research on Cancer, Lyon. [PubMed] [Google Scholar]
  • 2.EPA. (1988) Special report on ingested inorganic arsenic, Skin cancer: nutritional essentiality, Risk Assessment Forum (U.S. Environmental Protection Agency, Washington DC: ). [Google Scholar]
  • 3.Chen C. J., Chen C.W., Wu M.M. & Kuo T.L. (1992) Cancer potential in liver, lung, bladder and kidney due to ingested inorganic arsenic in drinking water. Br. J. Cancer, 66, 888–892. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 4.WHO (1981) Arsenic. Environmental Health Criteria 18 (World Health Organization, Geneva: ). [Google Scholar]
  • 5.Pershagen G. & Björklund N.-E. (1985) On the pulmonary tumorigenicity of arsenic trisulphide and calcium arsenate in hamsters. Cancer Letters, 27, 99–104. [DOI] [PubMed] [Google Scholar]
  • 6.Ishinishi N., Yamamoto A., Hisanaga A. & Inamasu T. (1983) Tumorigenicity of arsenic trioxide to the lungs in Syrian golden hamsters by intermittent instillations. Cancer Lett., 21, 141–147. [DOI] [PubMed] [Google Scholar]
  • 7.Thornton I. & Farago M. (1997) The geochemistry of arsenic. In: Abernathy CO., Calderon R.L., and Chappell W.R (eds) Arsenic. Exposure and health effects, pp. 1–16. Chapman & Hall, London. [Google Scholar]
  • 8.Francesconi K.A. & Edmonds J.S. (1997) Arsenic and marine organisms. Adv. Inorg. Chem., Academic Press, N.Y., 44, 147–189. [Google Scholar]
  • 9.Edmonds J.S., Shibata Y., Francesconi K.A., Rippingale R.J. & Morita M. (1997) Arsenic transformations in short marine food chains studied by HPLCICP MS. Appl. Organomet. Chem., 11, 281–287. [Google Scholar]
  • 10.Vahter M, Marafante E. & Dencker L. (1983) Metabolism of arsenobetaine in mice, rats and rabbits. Sci. Total Environ., 30, 197–211. [DOI] [PubMed] [Google Scholar]
  • 11.Le X.C., Cullen W.R. & Reimer K.J. (1994) Human urinary arsenic excretion following one time ingestion of arsenosugars present in seaweed and arsenobetaine present in crab and shrimp. Clin. Chem., 40, 617–625. [PubMed] [Google Scholar]
  • 12.Buchet J.P., Lison D., Ruggeri M., Foa V. & Elia G. (1996) Assessment of exposure to inorganic arsenic, a human carcinogen, due to the consumption of seafood. Arch. Toxicol., 70, 773–778. [DOI] [PubMed] [Google Scholar]
  • 13.Edmonds J.S. & Francesconi K.A. (1993) Arsenic in seafoods: Human health aspects and regulations. Marine Pollut. Bull., 26, 665–674. [Google Scholar]
  • 14.Dabeka R.W., McKenzie A.D., Laeroix G.M.A., Cleroux C., Bowe S., Graham R.A., Conacher H.B.S. & Verdier P. (1993) Survey of arsenic in total diet food composites and estimation of the dietary intake of arsenic by Canadian adults and children. J. AOAC Internat., 76, 14–25. [PubMed] [Google Scholar]
  • 15.Yost L.J., Schoof R.A. & Aucoin R. (1998) Intake of inorganic arsenic in the North American diet. Hum. Ecol. Risk Assess., 4, 137–152. [Google Scholar]
  • 16.Schoof R.A., Yost L.J., Crecelius E., Irgolic K., Goessler W., Guo H.R. & Greene H. (1998) Dietary arsenic intake in Taiwanese districts with elevated arsenic in drinking water. Hum. Ecol. Risk Assess., 4, 117–135. [Google Scholar]
  • 17.Tam G.K.H., Charbonneau S.M., Bryce F., Pomroy C. & Sandi E. (1979) Metabolism of inorganic arsenic (74As) in humans following oral ingestion. Toxicol. Appl. Pharmacol., 50, 319–322. [DOI] [PubMed] [Google Scholar]
  • 18.Buchet J. P., Lauwerys R. & Roels H. (1981. a) Comparison of the urinary excretion of arsenic metabolites after a single dose of sodium arsenite, monomethylarsonate or dimethylarsinate in man, Int. Arch. Occup. Environ. Health, 48, 71–79. [DOI] [PubMed] [Google Scholar]
  • 19.Du Pont O., Ariel I., Warren S.L. (1941) The distribution of radioactive arsenic in the normal and tumor-bearing (Brown-Pearce) rabbit. Am. J. Syph. Gonorrhea Vener. Dis., 26, 96–118. [Google Scholar]
  • 20.Vahter M. & Marafante E. (1983) Intracellular interaction and metabolic fate of arsenite and arsenate in mice and rabbits. Chem. Biol. Interact, 47, 29–44. [DOI] [PubMed] [Google Scholar]
  • 21.Cullen W.R. & Reimer K.J. (1989) Environmental arsenic chemistry. Chem. Rev., 89, 713–764. [Google Scholar]
  • 22.Bogdan G.M., Sampayo-Reyes A. & Aposhian H.V. (1994) Arsenic binding proteins of mammalian systems: isolation of three arsenite-binding proteins of rabbit liver. Toxicology., 93, 175–193. [DOI] [PubMed] [Google Scholar]
  • 23.Hughes M.F. and Kenyon E.M. (1998) Dose-dependent effects on the disposition of monomethylarsonic acid and dimethylarsinic acid in the mouse after intravenous administration. J. Toxicol. Environ. Health, 53(2), 95–112. [DOI] [PubMed] [Google Scholar]
  • 24.Squibb K.S., Fowler B. A. (1983) The toxicity of arsenic and its compounds. In: Fowler B. A. (ed.), Biological and environmental effects of arsenic. Topics in environmental health, Vol. 6, pp. 233–269. Elsevier, Amsterdam. [Google Scholar]
  • 25.Dixon H.B. (1997) The biochemical action of arsonic acids especially as phosphate analogues. Adv. Inorg. Chem., 44, 191–227. [Google Scholar]
  • 26.Zhang X., Cornells R., De Kimpe J., Mees L. & Lameire N. (1997) Speciation of arsenic in serum, urine, and dialysate of patients on continuous ambulatory peritoneal dialysis. Clin. Chem., 43, 406–408. [PubMed] [Google Scholar]
  • 27.Zhang X., Cornells R., de Kimpe J., Mees L. & Lameire N. (1998. a) Study of arsenic-protein binding in serum of patients of continuous ambulatory peritoneal dialysis. Clin. Chem., 44(1), 141–147. [PubMed] [Google Scholar]
  • 28.Zhang X., Cornells R., Mees L., Vanholder R. & Lameire N. (1998) Chemical speciation of arsenic in serum of uraemic patients. Analyst, 123, 13–17. [DOI] [PubMed] [Google Scholar]
  • 29.Vahter M. & Mafarante E. (1988) In vivo methylation and detoxication of arsenic. In: Craig P. J. and Glockling F. (eds) The Biological Alkylation of Heavy Elements, p. 105. Royal Society of Chemistry, London. [Google Scholar]
  • 30.Vahter M. (1994) Species differences in the metabolism of arsenic compounds. Appl. Organomet. Chem. 8, 175–182. [Google Scholar]
  • 31.Challenger F. (1945) Biological methylation. Chem. Rev., 36, 315–361. [Google Scholar]
  • 32.Braman R.S. & Foreback C.C. (1973) Methylated forms of arsenic in the environment. Science, 182, 1247–1249. [DOI] [PubMed] [Google Scholar]
  • 33.Lakso J.U. & Peoples S.A. (1975) Methylation of inorganic arsenic by mammals. J. Agric. Food Chem., 23, 674–676. [DOI] [PubMed] [Google Scholar]
  • 34.Marafante E., Vahter M., Norin H., Envall J., Sandström M., Christakopoulos A. & Ryhage R. (1987) Biotransformation of dimethylarsinic acid in mouse, hamster and man. J. Appl. Toxicol., 7(2), 111–117. [DOI] [PubMed] [Google Scholar]
  • 35.McBride B.C., Merilees H., Cullen W.R. & Pickett W. (1978) Anaerobic and aerobic alkylation of arsenic. In: Brinckman F.E. and Bellama J.M. (eds), Organometals and organometalloids, pp. 94–115. American Chemistry Society, Washington D.C. (ACS Symp Ser 82). [Google Scholar]
  • 36.Cullen W.R., McBride B.C. & Reglinski J. (1984) The reaction of methyl arsenicals with thiols: some biological implications. J. Inorg. Biochem., 21, 179–193. [Google Scholar]
  • 37.Marafante E., Vahter M. & Envall J. (1985) The role of the methylation in the detoxication of arsenate in the rabbit. Chem. Biol. Interact., 56, 225–238. [DOI] [PubMed] [Google Scholar]
  • 38.Buchet J. P. & Lauwerys R. (1988) Role of thiols in the in-vitro methylation of inorganic arsenic by rat liver cytosol. Biochem. Pharmacol., 37, 3149–3153. [DOI] [PubMed] [Google Scholar]
  • 39.Hirata M., Tanaka A., Hisanaga A. & Ishinishi N. (1990) Effects of glutathione depletion on the acute nephrotoxic potential of arsenite and on the arsenic metabolism in the hamster. Toxicol. Appl. Pharmacol., 106, 469–481. [DOI] [PubMed] [Google Scholar]
  • 40.Thompson D.J. (1993) A chemical hypothesis for arsenic methylation in mammals. Chem.-Biol. Interact., 88, 89–114. [DOI] [PubMed] [Google Scholar]
  • 41.Cullen W.R., Li H., Hewitt G.M, Reimer K.J, and Zalunardo N. (1994) Identification of extracellular arsenical metabolites in the growth medium of the microorganisms Apiotrichum humicola and Scopulariopsis brevicaulis. Appl. Organomet. Chem., 8, 303–311. [Google Scholar]
  • 42.Zakharyan R.A., Wu Y., Bogdan G.M. & Aposhian H.V. (1995) Enzymatic methylation of arsenic compounds. I: Assay, partial purification, and properties of arsenite methyltransferase and monomethylarsonic acid methyltransferase of rabbit liver. Chem. Res. Toxicol., 8, 1029–1038. [DOI] [PubMed] [Google Scholar]
  • 43.Styblo M., Yamauchi H. & Thomas D.J. (1995) Comparative in vitro methylation of trivalent and pentavalent arsenicals. Toxicol. Appl. Pharmacol., 135, 172–178. [DOI] [PubMed] [Google Scholar]
  • 44.Vahter M. & Envall J. (1983) In vivo reduction of arsenate in mice and rabbits. Environ. Res., 32, 14–24. [DOI] [PubMed] [Google Scholar]
  • 45.Vahter M. & Marafante E. (1985) Reduction and binding of arsenate in marmoset monkeys. Arch. Toxicol., 57, 119–124. [DOI] [PubMed] [Google Scholar]
  • 46.Bertolero F., Pozzi G., Sabbioni E. & Saffiotti U. (1987) Cellular uptake and metabolic reduction of pentavalent to trivalent arsenic as determinant of cytotoxicity and morphological transformation. Carcinogenesis, 8, 803–808. [DOI] [PubMed] [Google Scholar]
  • 47.Winski S.L. & Carter D.E. (1995) Interactions of rat red blood cell sulphydryls with arsenate and arsenite. J. Toxicol. Environ. Health, 46, 379–397. [DOI] [PubMed] [Google Scholar]
  • 48.Marafante E. &. Vahter M. (1984) The effect of methyltransferase inhibition on the metabolism of (74As) arsenite in mice and rabbits. Chem. Biol. Interact., 50, 49–57. [DOI] [PubMed] [Google Scholar]
  • 49.Buchet J. P. & Lauwerys R. (1985) Study of inorganic arsenic methylation by rat liver in vitro: Relevance for the interpretation of observations in man. Arch. Toxicol., 57, 125–129. [DOI] [PubMed] [Google Scholar]
  • 50.Brouwer O.F., Onkenhout W., Edelbroek P.M., de Kom J.F.M., de Wolff F.A. & Peters A.C.B. (1992) Increased neurotoxicity of arsenic in methylenetetra-hydrofolate reductase deficiency. Clin. Neurol. Neurosurgery, 94, 307–310. [DOI] [PubMed] [Google Scholar]
  • 51.Charbonneau S.M., Tarn G.K.H., Bryce F., Zawidzka Z. & Sandi E. (1979) Metabolism of orally administered inorganic arsenic in the dog. Toxicol. Lett., 3, 107–113. [Google Scholar]
  • 52.Vahter M. (1981) Biotransformation of trivalent and pentavalent inorganic arsenic in mice and rats. Environ. Res., 25, 286–293. [DOI] [PubMed] [Google Scholar]
  • 53.Buchet J.P., Geubel A., Pauwels S., Mahieu P. & Lauwerys R. (1984) The influence of liver disease on the methylation of arsenite in humans. Arch. Toxicol., 55, 151–154. [DOI] [PubMed] [Google Scholar]
  • 54.Geubel A.P., Mairlot M.C., Buchet J.P. & Lauwerys R. (1988) Abnormal methylation capacity in human liver cirrhosis. Int. J. Clin. Pharmacol. Res., 8(2), 117–122. [PubMed] [Google Scholar]
  • 55.Healy S.M., Casarez E.A., Ayalafierro F. & Aposhian H.V. (1998) Enzymatic methylation of arsenic compounds: V - arsenite methyltransferase activity in tissues of mice. Toxicol. Appl. Pharmacol., 148(1) 65–70. [DOI] [PubMed] [Google Scholar]
  • 56.Aposhian H.V. (1997) Enzymatic methylation of arsenic species and other new approaches to arsenic toxicity. Ann. Rev. Pharmacol. Toxicol., 37, 397–419. [DOI] [PubMed] [Google Scholar]
  • 57.Marafante E., Rade J. & Sabbioni E. (1981) Intracellular interaction and metabolic fate of arsenite in the rabbit. Clin. Toxicol., 18, 1335–1341. [DOI] [PubMed] [Google Scholar]
  • 58.Mann S., Droz P.O. & Vahter M. (1996. a) A physiologically based pharmacokinetic model for arsenic exposure. I. Development in hamsters and rabbits. Toxicol. Appl. Pharmacol., 137, 8–22. [DOI] [PubMed] [Google Scholar]
  • 59.Mann S., Droz P.O. & Vahter M. (1996. b) A physiologically based pharmacokinetic model for arsenic exposure. II. Validation and applications in humans. Toxicol. Appl. Pharmacol., 140, 471–486. [DOI] [PubMed] [Google Scholar]
  • 60.Menzel D.B. (1997) Some results of a physiological based pharmacokinetic modeling approach to estimating arsenic body burdens. In: Abernathy CO., Calderon R.L. and Chappell W.R. (Eds.) Arsenic. Exposure and health effects, pp. 349–368. Chapman & Hall, London. [Google Scholar]
  • 61.Hall L.L., George S.E., Kohan M.J., Styblo M. & Thomas D.J. (1997) In vitro methylation of inorganic arsenic in mouse intestinal cecum. Toxicol. Appl. Pharmacol., 147(1), 101–109. [DOI] [PubMed] [Google Scholar]
  • 62.Vahter M. & Gustafsson B. (1980) Biotransformation of arsenic in germfree and conventional mice. In: Anke M., Schneider H.-J., Bruckner C. (eds.) Proceedings of 3rd Symposium on Trace Elements. Arsenic. July 7–11, 1980, Jena. Abteilung Wissenschaftliche Publikationen der Friedrich-Schiller-Universität Jena, pp 123–129. [Google Scholar]
  • 63.Zakharyan R.A., Wildfang E. & Aposhian H.V. (1996) Enzymatic methylation of arsenic compounds: III. The marmoset and tamarin, but not the rhesus, monkey are deficient in methyltransferases that methylate inorganic arsenic. Toxicol. Appl. Pharmacol., 140, 77–84. [DOI] [PubMed] [Google Scholar]
  • 64.Vahter M., Marafante E. & Dencker L. (1984) Tissue distribution and retention of 74As-dimethylarsinic acid in mice and rats. Arch. Environ. Contam. Toxicol., 13, 259–264. [DOI] [PubMed] [Google Scholar]
  • 65.Yamauchi H. & Yamamura Y. (1984) Metabolism and excretion of orally administered dimethylarsinic acid in the hamster. Toxicol. Appl. Pharmacol., 74, 134–140. [DOI] [PubMed] [Google Scholar]
  • 66.Yamauchi H., Takahashi K. & Yamamura Y. (1989) Metabolism and excretion of orally and intraperitoneally administered trimethylarsine oxide in the hamster. Toxicol. Environ. Chem., 22, 69–76. [Google Scholar]
  • 67.Yamauchi H, Kaise T, Takahashi K, Yamamura Y. (1990) Toxicity and metabolism of trimethylarsine in mice and hamsters. Fund. Appl. Toxicol, 14, 399–407. [DOI] [PubMed] [Google Scholar]
  • 68.Moore M.M., Harrington-Brock K. & Doerr C.L. (1997) Relative genotoxic potency of arsenic and its methylated metabolites. Mutat. Res., 386, 279–290. [DOI] [PubMed] [Google Scholar]
  • 69.Rasmussen R.E. & Menzel D.B. (1997) Variation in arsenic-induced sister chromatid exchange in human lymphocytes and lymphoblastoid cell lines. Mutat. Res., 386, 299–306. [DOI] [PubMed] [Google Scholar]
  • 70.Concha G., Vogler G., Nermell B. & Vahter M. (1998. a) Metabolism of inorganic arsenic in children with chronic high arsenic exposure in northern Argentina. Environ. Health Perspect., 106(6), 355–359. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 71.Sakurai T., Kaise T. & Matsubara C. (1998) Inorganic and methylated arsenic compounds induce cell death in murine macrophages via different mechanisms. Chem. Res. Toxicol., 11(4), 273–283. [DOI] [PubMed] [Google Scholar]
  • 72.Styblo M., Serves S.V., Cullen W.R. & Thomas D.J. (1997) Comparative inhibition of yeast glutathione reductase by arsenicals and arseothiols. Chem. Res. Toxicol., 10(1), 27–33. [DOI] [PubMed] [Google Scholar]
  • 73.Marafante E., Vahter M. & Dencker L. (1984) Metabolism of arsenocholine in mice, rats and rabbits. Sci. Total Environ., 34, 223–340. [DOI] [PubMed] [Google Scholar]
  • 74.Crecelius E.A. (1977) Changes in the chemical speciation of arsenic following ingestion by man. Environ. Health Perspect., 19, 147–150. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 75.Mappes R. (1977) Experiments on the excretion of arsenic in urine. Int. Arch. Occup. Environ. Health, 40, 267–272. [DOI] [PubMed] [Google Scholar]
  • 76.Buchet J. P., Lauwerys R. & Roels H. (1981. b) Urinary excretion of inorganic arsenic and its metabolites after repeated ingestion of sodium metaarsenite by volunteers. Int. Arch. Occup. Environ. Health, 48, 111–118. [DOI] [PubMed] [Google Scholar]
  • 77.Johnson L. R. and Farmer J.G. 1991. Use of human metabolic studies and urinary arsenic speciation in assessing arsenic exposure. Bull. Environ. Contam. Toxicol., 46, 53–61. [DOI] [PubMed] [Google Scholar]
  • 78.Charbonneau S.M., Tarn G.K.H. & Bryce F. (1978) Pharmacokinetics and metabolism of inorganic arsenic in the dog. In: Hemphill D.D. (ed.). Trace Substances in Environmental Health-XII. A symposium. 1978. University of Missouri, Columbia. [Google Scholar]
  • 79.Tarn G.K.H., Charbonneau S.M., Bryce F. & Lacroix G. (1978) Separation of arsenic metabolites in dog plasma and urine following intravenous injection of 74As. Anal. Biochem., 86, 505–511. [DOI] [PubMed] [Google Scholar]
  • 80.Lerman S. & Clarkson T.W. (1983) The metabolism of arsenite and arsenate by the rat. Fundam. Appl. Toxicol., 3, 309–314. [DOI] [PubMed] [Google Scholar]
  • 81.Hunter F.T., Kip A.F. & Irvine J.W. (1942) Radioactive tracer studies on arsenic injected as potassium arsenite. J. Pharmacol. Exp. Ther., 76, 207–220. [Google Scholar]
  • 82.Ducoff H.S., Neal W.B., Straube R.L., Jacobson L.O. & Brues A.M. (1948) Biological studies with arsenic76. II. Excretion and tissue localization. Proc. Soc. Exp. Biol. Med., 69, 548–554. [PubMed] [Google Scholar]
  • 83.Lanz H Jr, Wallace P.C. & Hamilton J.G. (1950) The metabolism of arsenic in laboratory animals using As74 as a tracer. Univ. California Publ. Pharmacol., 2, 263–282. [PubMed] [Google Scholar]
  • 84.Maiorino R.M. & Aposhian H.V. (1985) Dimercaptan metal-binding agents influence the biotransformation of arsenite in the rabbit. Toxicol. Appl. Pharmacol., 77, 240–250. [DOI] [PubMed] [Google Scholar]
  • 85.Charbonneau S.M., Hollins J.G., Tarn G.K.H., Bryce E, Ridgeway J.M. & Willes R.F. (1980) Whole-body retention, excretion and metabolism of [74As]arsenic in the hamster. Toxicol. Lett., 5, 175–182. [DOI] [PubMed] [Google Scholar]
  • 86.Yamauchi H. & Yamamura Y. (1985) Metabolism and excretion of orally administrated arsenic triocide in the hamster. Toxicology, 34, 11–121. [DOI] [PubMed] [Google Scholar]
  • 87.Marafante E. & Vahter M. (1987) Solubility, retention, and metabolism of intratracheally and orally administered inorganic arsenic compounds in the hamster. Environ. Res., 42, 72–82. [DOI] [PubMed] [Google Scholar]
  • 88.De Kimpe J, Cornells R., Mees L. & Vanholder R. (1996) Basal metabolism of intraperitoneally injected carrier-free 74As-labeled arsenate in rabbits. Fund. Appl. Toxicol., 34, 240–248. [DOI] [PubMed] [Google Scholar]
  • 89.Vahter M., Marafante E., Lindgren A. & Dencker L. (1982) Tissue distribution and subcellular binding of arsenic in marmoset monkeys after injection of 74As-arsenite. Arch. Toxicol., 51, 65–77. [Google Scholar]
  • 90.Vahter M., Couch R., Nermell B. & Nilsson R. (1995) Lack of methylation of inorganic arsenic in the chimpanzee. Toxicol. Appl. Pharmacol., 133(2), 262–268. [DOI] [PubMed] [Google Scholar]
  • 91.Charbonneau S.M., Bryce F., Tarn G.K.H. & Sandi E. (1983) personal communication. Cited from: Vahter M., 1983. Metabolism of inorganic arsenic in relation to chemical form and animal species. Doctoral thesis. Departments of Toxicology and Environmental Hygiene, Karolinska Institute and National Institute of Environmental Medicine, Stockholm, 62 pp. [Google Scholar]
  • 92.Marafante E. & Vahter M. (1986) The effect of dietary and chemically induced methylation deficiency on the metabolism of arsenate in the rabbit. Acta Pharmacol. Toxicol., 59(7), 35–38. [DOI] [PubMed] [Google Scholar]
  • 93.Vahter M. & Marafante E. (1987) Effects of low dietary intake of methionine, choline or proteins on the biotransformation of arsenite in the rabbit. Toxicology Letters, 37, 41–46. [DOI] [PubMed] [Google Scholar]
  • 94.Pomroy C., Charbonneau S.M., McCullough R.S. & Tam G.K.H. (1980) Human retention studies with 74As. Toxicol. Appl. Pharmacol., 53, 550–556. [DOI] [PubMed] [Google Scholar]
  • 95.Healy S.M., Zakharyan R.A. & Aposhian H.V. (1997) Enzymatic methylation of arsenic compounds: IV. In vitro and in vivo deficiency of the methylation of arsenite and monomethylarsonic acid in the guinea pig. Mutat. Res., 386, 229–239. [DOI] [PubMed] [Google Scholar]
  • 96.Aposhian H.V., Zakharyan R., Wu Y., Healy S. & Aposhian M.M. (1997) Enzymatic methylation of arsenic compounds: II - an overview. In: Abernathy CO., Calderon R.L., and Chappell W.R. (Eds.) Arsenic. Exposure and Health Effects, pp. 296–321. Chapman & Hall, London. [Google Scholar]
  • 97.Vahter M. (1988) Arsenic. In: Clarkson T.W., Friberg L., Nordberg G.F. and Sager P.R. (eds.), Biological monitoring of toxic metals, pp. 303–321. Plenum Press, New York. [Google Scholar]
  • 98.Hopenhayn-Rich C., Smith A.H. & Goeden H.M. (1993) Human studies do not support the methylation threshold hypothesis for the toxicity of inorganic arsenic. Environ. Res., 60, 161–177. [DOI] [PubMed] [Google Scholar]
  • 99.Concha G., Vogler G., Nermell B. & Vahter M. (1998. c) Low arsenic excretion in breast milk of native Andean women exposed to high levels of arsenic in the drinking water. Int. Arch. Occup. Environ. Health, 71, 42–46. [DOI] [PubMed] [Google Scholar]
  • 100.Chiou H.-Y., Hsueh Y.-M., Hsieh L.-L., Hsu L.-I., Hsu Y.-H., Hsieh F.-L, Wei M.-L., Chen H.-C., Yang H.-T., Leu L.-C., Chu T.-H., Chen-Wu C., Yang M.-H. & Chen C.-J. (1997) Arsenic methylation capacity, body retention, and null genotypes of glutathione S-transferase Ml and T1 among current arsenic-exposed residents in Taiwan. Mutat, Res., 386, 197–207. [DOI] [PubMed] [Google Scholar]
  • 101.Hopenhayn-Rich C., Biggs M.L., Smith A.H., Kalman D.A. & Moore L.E. (1996) Methylation study of a population environmentally exposed to arsenic in drinking water. Environ. Health Perspect., 104, 620–628. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 102.Scott M.C., Van Loon J.A. & Weinshilboum R.M. (1988) Pharmacogenetics of N-methylation: Heritability of human erythrocyte histamine N-methyltransferase activity. Clin. Pharmacol. Ther., 43, 256. [DOI] [PubMed] [Google Scholar]
  • 103.Aksoy S., Raftogianis R. & Weinshilboum R. (1996) Human histamine N-methyltransferase gene: structural characterization and chromosomal location. Biochem. Biophys. Res. Commun., 219(2), 548–554. [DOI] [PubMed] [Google Scholar]
  • 104.Krynetski E.Y., Tai H.L., Yates C.R., Fessing M.Y., Loennechen T., Schuetz J.D., Relling M.V. & Evans W.E. (1996) Genetic polymorphism of thiopurine S-methyltransferase: clinical importance and molecular mechanisms. Pharmacogenetics, 6(4), 279–290. [DOI] [PubMed] [Google Scholar]
  • 105.Scheller T., Orgacka H., Szumlaski C.L. & Weinshilboum R.M. (1996) Mouse liver nicotinamide N-methyltransferase pharmacogenetics: biochemical properties and variation in activity inbred strains. Pharmacogenetics, 6(1), 43–53. [DOI] [PubMed] [Google Scholar]
  • 106.Stockier S., Isbrandt D., Hanefeld F., Schmidt B. & Figura K. (1996) Guanidinoacetate methyl-transferase deficiency: the first inborn error of creatine metabolism in man. Am. J. Hum. Genet., 58(5), 914–922. [PMC free article] [PubMed] [Google Scholar]
  • 107.Li G-C., Fei W.-C. & Yen Y.-P. (1997) Survey of arsenical residue levels in the rice paddy soil and water samples from different literature in Taiwan. National Science Council, monthly VII. [Google Scholar]
  • 108.Ganesan V., Connelly A., Eckhardt S. & Surtees R.A. (1997) Guanidinoacetate methyltransferase deficiency: new clinical features. Pediatric Neurology, 17(2), 155–157. [DOI] [PubMed] [Google Scholar]
  • 109.Yates C.R., Krynetski E.Y., Loennechen T., Fessing M.Y., Tai H.L., Pui C.H., Relling M.V. & Evans W.E. (1997) Molecular diagnosis of thiopurine S-methyltransferase deficiency: genetic basis for azathioprine and mercaptopurine intolerance. Ann. Intern. Med., 126(8), 608–614. [DOI] [PubMed] [Google Scholar]
  • 110.Buchet J.P., Lauwerys R. & Roels H. (1980) Comparison of several methods for the determination of arsenic compounds in water and in urine. Int. Arch. Occup. Environ. Health, 46, 11–29. [DOI] [PubMed] [Google Scholar]
  • 111.Kalman D.A., Hughes J., van Belle G., Burbacher T., Bolgiano D., Coble K., Mottet N.K. & Polissar L. (1990) The effect of variable environmental arsenic contamination on urinary concentrations of arsenic species. Environ. Health Perspect., 89, 145–151. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 112.Kurttio P., Komulainen H., Hakala E., Kahelin H. & Pekkanen J. (1998) Urinary excretion of arsenic species after exposure to arsenic present in drinking water. Arch. Environ. Contam. Toxicol., 34(3), 297–305. [DOI] [PubMed] [Google Scholar]
  • 113.Hsu K.-H., Froines J.R. & Chen C.-J. (1997) Studies of arsenic ingestion from drinking-water in northeastern Taiwan: Chemical speciation and urinary metabolites. In: Abernathy, CO., Calderon R.L. and Chappell W.R. (eds) Arsenic Exposure and Health Effects II. pp. 190–209. Chapman & Hall, New York. [Google Scholar]
  • 114.Concha G., Vogler G., Lezcano D., Nermell B. & Vahter M. (1998. b) Exposure to inorganic arsenic metabolites during early human development. Toxicol. Sci., 44(2), 185–190. [DOI] [PubMed] [Google Scholar]
  • 115.Carlson-Lynch H., Beck B.D. & Boardman P.D. (1994) Arsenic risk assessment. Environ. Health Perspect., 102(4), 354–355. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 116.Foa V. A., Colombi A., Maroni M., Buratti M. & Calzaferri G. (1984) The speciation of the chemical forms of arsenic in the biological monitoring of exposure to inorganic arsenic. Sci. Total. Environ., 34, 241–259. [DOI] [PubMed] [Google Scholar]
  • 117.Mahieu P., Buchet J.P., Roels H.A. & Lauwerys R. (1981) The metabolism of arsenic in humans acutely intoxicated by As2O3. Its significance for the duration of BAL therapy. Clin. Toxicol., 18, 1067–1075. [DOI] [PubMed] [Google Scholar]
  • 118.Vahter M. (1986) Environmental and occupational exposure to inorganic arsenic. Acta Pharm. Toxicol., 59, 31–34. [DOI] [PubMed] [Google Scholar]
  • 119.Del Razo L.M., Garcia-Vargas G.G., Vargas H., Albores A., Gonsebatt M.E., Montero R., Ostrosky-Wegman P., Kelsh M. & Cebrián M.E. (1997) Altered profile of urinary arsenic metabolites in adults with chronic arsenicism: A pilot study. Arch. Toxicol., 71(4), 211–217. [DOI] [PubMed] [Google Scholar]
  • 120.Hopenhayn-Rich C., Biggs M.L., Kalman D.A., Moore L.E. & Smith A.H. (1996. b) Arsenic methylation patterns before and after changing from high to lower concentrations of arsenic in drinking water. Environ. Health Perspect., 104, 1200–1207. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 121.Kosnett M.J. & Becker C.E. (1988) Dimercaptosuccinic acid: Utility in acute and chronic arsenic poisoning. Vet. Hum. Toxicol., 30(4), 369 (Abstract). [Google Scholar]
  • 122.Cullen W.R., McBride B.C., Manji H., Pickett A.W. & Reglinski J. (1989) The metabolism of methylarsine oxide and sulfide. Appl. Organomet. Chem., 3, 71–78. [Google Scholar]
  • 123.Borgono J.M., Vincent P., Venturino H. & Infante A. (1977) Arsenic in the drinking water of the city of Antofagasta: epidemiological and clinical study before and after the installation of the treatment plant. Environ. Health Perspect., 19, 103–105. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 124.Tseng W. P. (1977) Effects and dose-response relationships of skin cancer and Blackfoot disease with arsenic. Environ. Health Perspect., 19, 109–119. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 125.Zaldivar R. & Guillier A. (1977) Environmental and clinical investigations on the endemic chronic arsenic poisoning in infants and children. Zbl. Bakt. Hyg., I. Abt. Orig. B, 165, 226–234. [PubMed] [Google Scholar]
  • 126.Hsueh Y.M., Cheng G.S., Wu M.M., Kuo T.L. & Chen C.J. (1995) Multiple risk factors associated with arsenic-induced skin cancer: effects of chronic liver disease and malnutrional status. Br. J. Cancer, 71, 109–114. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 127.Warner M.L., Moore L.E., Smith M.T., Kalman D.A., Fanning E. & Smith A.H. (1994) Increased micronuclei in exfoliated bladder cells of persons who chronically ingested arsenic-contaminated water in Nevada. Cancer Epidemiol. Biomarkers Prev., 3, 583–590. [PubMed] [Google Scholar]

Articles from Science Progress are provided here courtesy of SAGE Publications

RESOURCES