Skip to main content
Science Progress logoLink to Science Progress
. 2019 May 7;82(1):9–48. doi: 10.1177/003685049908200102

Symmetry-Breaking Cascades and the Dynamics of Morphogenesis and Behaviour

Ian Stewart 1
PMCID: PMC10367520

Full Text

The Full Text of this article is available as a PDF (3.2 MB).

References

  • 1.Haste H. (1991) Gift horses, The Psychologist 192. [Google Scholar]
  • 2.Haste H. (1993) Maverick maxims, The Psychologist 48. [Google Scholar]
  • 3.Gould S.J. Ontogeny and Phytogeny. Harvard University Press, Cambridge MA. [Google Scholar]
  • 4.Thompson D'A.W. (1961) On Growth and Form 2 vols. Cambridge University Press. [Google Scholar]
  • 5.Waddington C.H. (1975) The Evolution of an Evolutionist. Edinburgh University Press. [Google Scholar]
  • 6.Turing A.M. The chemical basis of morphogenesis, Phil. Trans. R. Soc. London B 237 (1952) 37–72; reprinted in: Saunders P.T. (editor) Collected Works of Alan Turing: Morphogenesis. North-Holland, Amsterdam. [Google Scholar]
  • 7.Thorn R. (1975) Structural Stability and Morphogenesis. Benjamin, Reading. [Google Scholar]
  • 8.Zeeman E.C. (1977) Catastrophe Theory: Selected Papers 1972–77. Addison-Wesley, Reading MA. [Google Scholar]
  • 9.Kaufmann S.A. (1993) The Origins of Order: Self-Organization and Selection in Evolution. Oxford University Press. [Google Scholar]
  • 10.Watson J. (1968) The Double Helix. Signet, New York. [Google Scholar]
  • 11.Cohen J. & Stewart I.N. (1994) The Collapse of Chaos. Viking, New York. [Google Scholar]
  • 12.Stewart I.N. (1998) Life's Other Secret. Wiley, New York. [Google Scholar]
  • 13.Stewart I.N. Does God Play Dice? - the Mathematics of Chaos Blackwell, Oxford: (1989); Penguin, Harmondsworth (1990). [Google Scholar]
  • 14.Stewart I.N. & Golubitsky M. (1992) Fearful Symmetry - is God a Geometer? Blackwell, Oxford. [Google Scholar]
  • 15.Langton C.G. (1986) Studying artificial life with cellular automata. Physica D 22120–149. [Google Scholar]
  • 16.Weyl H. (1969) Symmetry. Princeton University Press. [Google Scholar]
  • 17.Budden F.J. (1972) The Fascination of Groups. Cambridge University Press [Google Scholar]
  • 18.DiPrima R.C. & Swinney H.L. (1981) Instabilities and transition in flow between concentric rotating cylinders. In: Swinney H.L. & Gollub J.P. (eds) Hydrodynamic Instabilities and the Transition to Turbulence, pp. 139–180. Topics in Applied Physics 45, Springer, New York. [Google Scholar]
  • 19.Chossat P. & Iooss G. Primary and secondary bifurcations in the Couette-Taylor problem. Jap. J. Appl. Math. 2 (1985) 37–68. [Google Scholar]
  • 20.Golubitsky M. & Stewart I.N. (1986) Symmetry and stability in Taylor-Couette flow. SIAM J. Math. Anal. 17, 249–288. [Google Scholar]
  • 21.Gleick J. (1987) Chaos: Making a New Science. Viking, New York. [Google Scholar]
  • 22.Sprott C. (1993) Strange Attractors: Creating Patterns in Chaos. M&T Books, New York. [Google Scholar]
  • 23.Andereck C.D., Liu S.S. & Swinney H.L. (1986) Flow regimes in a circular Couette system with independently rotating cylinders J. Fluid Mech. 164, 155–183. [Google Scholar]
  • 24.Golubitsky M. & Langford W.F. (1988) Pattern formation and bistability in flow between counterrotating cylinders. Physica 32D, 362–392. [Google Scholar]
  • 25.Field M.J. & Golubitsky M. (1992) Symmetry in Chaos. Oxford University Press. [Google Scholar]
  • 26.Chossat P. & Golubitsky M. (1988) Symmetry increasing bifurcations of chaotic attractors. Physica D 32, 423–436. [Google Scholar]
  • 27.Goodwin B.C. (1994) How the Leopard Changed Its Spots. Weidenfeld & Nicolson, London. [Google Scholar]
  • 28.Goodwin B.C. & Brière C. (1992) A mathematical model of cytoskeletal dynamics and morphogenesis in Acetabularia. In: Menzel D (ed.) The Cytoskeleton of the Algae, pp. 219–238. CRC Press, Boca Raton. [Google Scholar]
  • 29.Cohen J. & Stewart I.N. (6 November 1993) Let T = tiger… New Scientist 1898, 40–44. [Google Scholar]
  • 30.Murray J.D. (1989) Mathematical Biology. Springer-Verlag, Berlin. [Google Scholar]
  • 31.Maynard Smith J. & Sondhi K.C. (1960) The genetics of a pattern. Genetics 1039–1050. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 32.Wolpert L. (1969) Positional information and the spatial pattern of cellular differentiation, J. Theoret. Biol. 25, 1–47. [DOI] [PubMed] [Google Scholar]
  • 33.Maini P.K. & Solursh M. (1991) Cellular mechanisms of pattern formation in the developing limb. Internat. Rev. Cytol. 129, 91–133. [DOI] [PubMed] [Google Scholar]
  • 34.Maini P.K., Benson D.L. & Sherratt J.A. (1992) Pattern formation in reaction-diffusion models with spatially inhomogeneous diffusion coefficients. IMA J. Math. Appl. Med. Biol. 9, 197–213. [Google Scholar]
  • 35.Dillon R. & Othmer H.G. (1993) Control of gap junction permeability can control pattern formation in limb development. In: Othmer H.G., Mani P.K. & Murray J.D. (eds) Experimental and Theoretical Approaches to Biological Pattern Formation. Plenum Press, New York. [Google Scholar]
  • 36.Kondo S. & Asai R. (1995) A reaction-diffusion wave on the skin of the marine angelfish Pomacanthus. Nature 376, 765–768. [DOI] [PubMed] [Google Scholar]
  • 37.Höfer T. (1996) Modelling Dictyostelium Aggregation. PhD thesis, Balliol College, Oxford. [Google Scholar]
  • 38.Meinhardt H. (1995) The Algorithmic Beauty of Sea Shells. Springer-Verlag, Berlin. [Google Scholar]
  • 39.Collins J.J. & Stewart I.N. (1993) Coupled nonlinear oscillators and the symmetries of animal gaits. J. Nonlin. Sci. 3349–392. [Google Scholar]
  • 40.Collins J.J. & Stewart I.N. (1993) Hexapodal gaits and coupled nonlinear oscillator models. Biol. Cybern. 68, 287–298. [Google Scholar]
  • 41.Collins J.J. & Stewart I.N. (1992) Symmetry-breaking bifurcation: a possible mechanism for 2:1 frequency-locking in animal locomotion. J. Math. Biol. 30, 827–838. [DOI] [PubMed] [Google Scholar]
  • 42.Golubitsky M., Stewart I.N., Buono L. & Collins J.J. (1998) A modular network for legged locomotion. Physica D 115, 56–72. [Google Scholar]
  • 43.Schöner G., Yiang W.Y. & Kelso J.A.S. (1990) A synergetic theory of quadrupedal gaits and gait transitions. J. Theoret. Biol. 142, 359–391. [DOI] [PubMed] [Google Scholar]
  • 44.Hildebrand H. (1966) Analysis of the symmetrical gaits of tetrapods. Folia Biotheoretica 4, 9–22. [Google Scholar]
  • 45.Gambaryan P. (1974) How Mammals Run: Anatomical Adaptations. Wiley, New York. [Google Scholar]
  • 46.von Hoist E. (1935) Erregungsbildung und Erregungsleitung im Fischrückenmark, Pflügers Arch. 235, 345–359. [Google Scholar]
  • 47.Golubitsky M., Stewart I.N. & Schaeffer D.G. (1988) Singularities and Groups in Bifurcation Theory Vol. 2, Applied Mathematical Sciences 69, Springer-Verlag, New York. [Google Scholar]
  • 48.Kortmulder K. (1998) Play and Evolution. International Books, Utrecht. [Google Scholar]
  • 49.Barany E., Dellnitz M. & Golubitsky M. Detecting the symmetry of attractors, preprint, Research Report UH/MD-143, Univ. of Houston 1993. [Google Scholar]
  • 50.King G.P. & Stewart I.N. (1992) Phase space reconstruction for symmetric dynamical systems, Physica 58D, Reprinted in: Drazin P.G. & King G.P. (eds) (1992) Interpretation of Time Series from Nonlinear Systems, pp. 216–228. North-Holland, Amsterdam. [Google Scholar]

Articles from Science Progress are provided here courtesy of SAGE Publications

RESOURCES