Skip to main content
Science Progress logoLink to Science Progress
. 2008 Jul 1;91(2):117–150. doi: 10.3184/003685008X324010

Climate Change Impacts on Seals and Whales in the North Atlantic Arctic and Adjacent Shelf Seas

Kit M Kovacs 1,, Christian Lydersen 2,
PMCID: PMC10367525  PMID: 18717366

Abstract

In a warmer Arctic, endemic marine mammal species will face extreme levels of habitat change, most notably a dramatic reduction in sea ice. Additionally, the physical environmental changes, including less ice and increased water (and air) temperatures will result in alterations to the forage base of arctic marine mammals, including density and distributional shifts in their prey, as well as potential losses of some of their traditionally favoured fat-rich prey species. In addition they are likely to face increased competition from invasive temperate species, increased predation from species formerly unable to access them in areas of extensive sea ice or simply because the water temperature was restrictive, increased disease risk and perhaps also increased risks from contaminants. Over the coming decades it is also likely that arctic marine mammals will face increased impacts from human traffic and development in previously inaccessible, ice-covered areas. Impacts on ice-associated cetaceans are difficult to predict because the reasons for their affiliation with sea ice are not clearly understood. But, it is certain that ice-breeding seals will have marked, or total, breeding-habitat loss in their traditional breeding areas and will certainly undergo distributional changes and in all probability abundance reductions. If species are fixed in traditional spatial and temporal cycles, and are unable to shift them within decadal time scales, some populations will go extinct. In somewhat longer time frames, species extinctions can also be envisaged.

Keywords: Arctic, cetaceans, climate change, ice, pinnipeds, seals, walrus, whales

Full Text

The Full Text of this article is available as a PDF (2.7 MB).

References

  • 1.IPCC. (2007) (Alley, F. et al.). IPCC WGI Assessment Report. IPCC Secretariat, Geneva, Switzerland. [Google Scholar]
  • 2.Gerland S., Aars J., Bracegirdle T., Carmack E., Hop H., Hovelsrud G. K., Kovacs K. M., Lydersen C., Perovich D. K., Richter-Menge J., Rybråten S., Strom H., and Turner J. (2007) Ice in the sea. In: Global outlook for ice & snow, pp. 63–96. United Nations Environmental Programme, UNEP No: DEW/0924/NA. Birkeland Trykkeri A/S, Birkeland, Norway. [Google Scholar]
  • 3.Holland M. M., Cecilia M. B., and Tremblay B. (2006) Future abrupt reductions in the summer Arctic sea ice. Geophys. Res. Lett., 33, L23503. [Google Scholar]
  • 4.MacGarvin M., and Simmonds M. P. (1996) Whales and climate change. In: Simmonds M. P., and Hutchinson J. D. (eds.). The conservation of whales and dolphins–Science and Practice, pp. 321–332. John Wiley and Sons, Chichester, UK. [Google Scholar]
  • 5.Tynan C. T., and DeMaster D. P. (1997) Observations and predictions of arctic climate change: potential effects on marine mammals. Arctic, 50, 308–322. [Google Scholar]
  • 6.Laidre K. L., Stirling I., Lowry L., Wiig Ø., Heide-Jørgensen M. P., and Ferguson S. H. (2008) Quantifying the sensitivity of arctic marine mammals to climate-induced habitat change. Ecol. Appl., 18(2), Suppl. S97–S125. [DOI] [PubMed] [Google Scholar]
  • 7.Parkinson C. L., and Cavaliere S. J. (2002) A 21-year record of Arctic sea-ice extents and their regional, seasonal and monthly variability and trends. Ann. Glaciol., 34, 441–446. [Google Scholar]
  • 8.Hanna E., and Cappelen J. (2003) Recent cooling in coastal southern Greenland and relation with the North Atlantic Oscillation. Geophy. Res. Lett., 30, 32.1–32.3. [Google Scholar]
  • 9.Stern H. L., and Heide-Jørgensen M. P. (2003) Trends and variability of sea ice in Baffin Bay and Davis Strait, 1953–2001. Polar Res., 22, 11–18. [Google Scholar]
  • 10.Stirling I., and Parkinson C. L. (2006) Possible effects of climate warming on selected populations of polar bears (Ursus maritimus) in the Canadian Arctic. Arctic, 59, 261–275. [Google Scholar]
  • 11.Würsig B., Reeves R. R., and Ortega-Ortiz J. G. (2002) Global climate change and marine mammals. In: Evans P. G. H., and Raga J. A. (eds.). Marine mammals–biology and conservation, pp. 589–608. Kluwer Academic/Plenum, New York. [Google Scholar]
  • 12.Derocher A. E., Lunn N. J., and Stirling I. (2004) Polar bears in a warming climate. Lntegr. Comp. Biol., 44, 163–176. [DOI] [PubMed] [Google Scholar]
  • 13.Lusseau D., Williams R., Wilson B., Grellier K., Barton T. R., Hammond P. S., and Thompson P. M. (2004) Parallel influences of climate on the behaviour of Pacific killer whales and Atlantic bottlenose dolphins. Ecol. Lett., 7, 1068–1076. [Google Scholar]
  • 14.Ferguson S. H., Stirling I., and McLoughlin P. (2005) Climate change and ringed seal (Phoca hisida) recruitment in Western Hudson Bay. Mar. Mamm. Sci., 21, 121–135. [Google Scholar]
  • 15.MacLeod C. D., Bannon S. M., Pierce G. J., Schweder C., Learmonth J. A., Herman J. S., and Reid R. J. (2005) Climate change and the cetacean community of north-west Scotland. Biol. Conserv., 124, 477–483. [Google Scholar]
  • 16.Leaper R., Cooke J., Trathan P., Reid K., Rowntree V., and Payne R. (2006) Global climate drives southern right whale (Eubalaena australis) population dynamics. Biol. Lett., 2, 289–292. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 17.Stirling I., and Derocher A. E. (1993) Possible impacts of climate warming on polar bears. Arctic, 46, 240–245. [Google Scholar]
  • 18.Kelly B. P. (2001) Climate change and ice breeding pinnipeds. In: Walther et al. , (eds.). “Fingerprints” of Climate Change, pp. 43–55. Kluwer Academic/Plenum Publishers, New York. [Google Scholar]
  • 19.Heide-Jørgensen M. P., and Laidre K. L. (2004) Declining open water refugia for top predators in Baffin Bay and adjacent waters. Ambio, 33, 488–495. [DOI] [PubMed] [Google Scholar]
  • 20.ACIA. (2005) Impacts of a warming Arctic. Arctic Climate Impact Assessment. Cambridge University Press, Cambridge UK. [Google Scholar]
  • 21.Johnston D. W., Friedlaendeer A. W., Torres L. G., and Lavigne D. M. (2005) Variation in sea ice cover on the east coast of Canada from 1969–2002: climate variability and implications for harp and hooded seals. Climate Res., 29, 209–222. [Google Scholar]
  • 22.Laidre K. L., and Heide-Jørgensen M. P. (2005) Arctic sea ice trends and narwhal vulnerability. Biol. Conserv., 121, 509–517. [Google Scholar]
  • 23.Learmonth J. A., MacLeod C. D., Santos M. B., Pierce G. J., Crick H. Q. P., and Robinson R. A. (2006) Potential effects of climate change on marine mammals. Oceanogr. Mar. Biol., 44, 431–464. [Google Scholar]
  • 24.Moore S. E. (2005) Long-term environmental change and marine mammals. In: Reynolds J. E. III, Petrin W. F., Reeves R. R., Mongomery S., and Ragen T. J. (eds.). Marine mammal research, conservation beyond crisis, pp. 137–147. The Johns Hopkins University Press, Baltimore, MD. [Google Scholar]
  • 25.Moore S. E., and Laidre K. L. (2006) Analysis of sea ice trends scaled to habitats used by bowhead whales in the western Arctic. Ecol. Appl., 16, 932–944. [DOI] [PubMed] [Google Scholar]
  • 26.ICES. (2007) Report of the Working Group on Marine Mammal Ecology (WGMME), 27–30 March 2007, Vilm, Germany. ICES, CM 2007/ACEØ03. 61 pp.
  • 27.Simmonds M. P., and Isaac S. J. (2007) The impacts of climate change on marine mammals: early signs of significant problems. Oryx, 41, 19–26. [Google Scholar]
  • 28.Burns W. C. G. (2002) Climate change and the International Whaling Commission in the 21st century. In: Burns W. G. C., and Gillespie A. (eds.). The future of cetaceans in a changing world, pp. 339–379. Transnational Publ., New York. [Google Scholar]
  • 29.Vibe C. (1967) Arctic animals in relation to climatic fluctuations. Meddel. Grønl., 170, 1–226. [Google Scholar]
  • 30.Moore S. E., DeMaster D., and Dayton P. K. (2000). Cetacean habitat selection in the Alaskan Arctic during summer and autumn. Arctic, 53, 432–447. [Google Scholar]
  • 31.Barber D. G., and Iacozza J. (2004) Historical analysis of sea ice conditions in M'Clintock Channel and the Gulf of Boothia, Nunavut: Implications for ringed seal and polar bear habitat. Arctic, 57, 1–14. [Google Scholar]
  • 32.Simpkins M. A., Hiruki-Raring L. M., Sheffield G., Brebmeier J. M., and Bengtson J. L. (2003) Habitat selection by ice-associated pinnipeds near St. Lawrence Island, Alaska in March 2001. Polar Biol., 26, 577–586. [Google Scholar]
  • 33.Freitas C., Kovacs K. M., Ims R. A., Fedak M. A., and Lydersen C. (2008). Ringed seal post-moulting movement tactics and habitat selection. Oecologia, 155, 193–204. [DOI] [PubMed] [Google Scholar]
  • 34.Lydersen C., Nøst O. A., Lovell P., McConnell B. J., Gammelsrød T., Hunter C., Fedak M. A., and Kovacs K. M. (2002) Salinity and temperature structure of a freezing Arctic fjord–monitored by white whales (Delphinapterus leucas). Geophy Res. Letters, 29, No. 23, 2119. [Google Scholar]
  • 35.Lydersen C., Nøst O., Kovacs K. M., and Fedak M. A. (2004). Temperature data from Norwegian and Russian waters of the northern Barents Sea collected by free-living ringed seals. J. Mar. Syst., 46, 99–108. [Google Scholar]
  • 36.Biuw M., Boehme L., Guinet C., Hindell M., Costa D., Charrassin J.-B., Roquet F., Bailleul F., Meredith M., Thorpe S., Tremblay Y., McDonald B., Park Y.-H., Rintoul S., Bindoff N., Goebel M., Crocker D., Lovell P., Nicholson J., Monks F., and Fedak M. A. (2007) Variations in behaviour and condition of a Southern Ocean top predator in relation to in-situ oceanographic conditions. Proc. Nat. Acad. Sci., 104, 13705–13710. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 37.Suydam R. S., Lowry L. F., Frost K. J., O'Corry-Crowe G. M., and Pikok D. (2001) Satellite tracking of eastern Chukchi Sea beluga whales into the Arctic Ocean. Arctic, 54, 237–243. [Google Scholar]
  • 38.George J. C., Nicholson C., Drobot S., and Maslanik J. (2005) Sea ice density in the Beaufort Sea and bowhead whale body condition. Paper SC/57/E13. IWC Sci. Comm, June 2005.
  • 39.George J. C., Zeh J., Suydam R., and Clark C. (2004) Abundance and population trend (1978–2001) of western Arctic bowhead whales surveyed near Barrow, Alaska. Mar. Mamm. Sci., 20, 755–773. [Google Scholar]
  • 40.Heide-Jorgensen M. P., Laidre K., Borchers D., Samarra F., and Stern H. (2007) Increasing abundance of bowhead whales in West Greenland. Biol. Letters, 3, 577–580. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 41.Wassmann P., Reigstad M., Haug T., Rudels B., Carroll M. L., Hop H., Gabrielsen G. W., Falk-Petersen S., Denisenko S. G., Arashkevich E., Slagstad D., and Pavlova O. (2006) Food webs and carbon flux in the Barents Sea. Prog. Oceanogr., 71, 232–287. [Google Scholar]
  • 42.Wiig Ø., Bachmann L., Janik V. M., Kovacs K. M., and Lydersen C. (2007) Spitsbergen's bowhead whales revisited. Mar. Mamm. Sci., 23, 688–693. [Google Scholar]
  • 43.O'Corry-Crowe G. M., Suydam R. S., Rosenberg A., Frost K. J., and Dizon A. E. (1997) Phylogeny, population structure, and dispersal of the beluga whale Delphinapterus leucas in the western Nearctic revealed by mitochondrial DNA. Mol. Ecol., 6, 955–970. [Google Scholar]
  • 44.IUCN. (2006) IUCN Red list of threatened species. IUCN, Gland, Switzerland: http://www.redlist.org. [Google Scholar]
  • 45.Lydersen C., Martin T., Gjertz I., and Kovacs K. M. (2007) Satellite tracking of juvenile narwhals (Monodon monoceros) in Svalbard, Norway. Polar Biol., 30, 437–442. [Google Scholar]
  • 46.Heide-Jorgensen M. P., Dietz R., Laidre K. L., Richard P., Orr J., and Schmidt H.C. (2003) The migratory behaviour of narwhals (Monodon monoceros). Can. J. Zool., 81, 1298–1305. [Google Scholar]
  • 47.Wolkers H., Lydersen C., Kovacs K. M., Burkow I., and van Bavel B. (2006) Accumulation, metabolism, and food chain transfer of chlorinated and brominated contaminants in subadult white whales (Delphinapterus leucas) and narwhals (Monodon monoceros) from Svalbard, Norway. Arch. Environ. Contam. Toxicol., 50, 69–78. [DOI] [PubMed] [Google Scholar]
  • 48.Wilson B., Reid R. J., Grellier K., Thompson P. M., and Hammond P. S. (2004) Considering the temporal when managing the spatial: a population range expansion impacts protected areas-based management for bottlenose dolphins. Anim. Conserv., 7, 331–338. [Google Scholar]
  • 49.MacLeod C. D., Begona Santos M., Reid R. J., Scott B. E., and Pierce G. J. (2007) Linking sand eel consumption and the likelihood of starvation in habour porpoises in the Scottish North Sea: could climate change mean more starving porpoises? Biol. Lett., 3, 185–188. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 50.Williams T. M., Estes J. A., Doak D. F., and Springer A. M. (2004) Killer appetites: Assessing the role of predators in ecological communities. Ecology., 85, 2272–2284. [Google Scholar]
  • 51.Born E. W., Teilmann J., Acquarone M., and Riget F. F. (2004) Habitat use of ringed seals (Phoca hispida) in the North Water Area (North Baffin Bay). Arctic, 57, 129–142. [Google Scholar]
  • 52.Reeves R. R. (1998) Distribution, abundance and biology of ringed seals (Phoca hispida): an overview. NAMMCO Sci. Publ., 1, 9–45. [Google Scholar]
  • 53.Wathne J. A., Haug T., and Lydersen C. (2000) Prey preference and niche overlap of ringed seals Phoca hispida and harp seals P. groenlandica in the Barents Sea. Mar. Ecol. Prog. Ser., 194, 233–239. [Google Scholar]
  • 54.Lydersen C., and Kovacs K. M. (1999) Behaviour and energetics of ice-breeding, North Atlantic phocid seals during the lactation period. Mar. Ecol. Prog. Ser., 187, 265–281. [Google Scholar]
  • 55.Stirling I. (2005) Reproductive rates of ringed seals and survival of pups in Northwestern Hudson Bay, Canada, 1991–2000. Polar Biol., 28, 381–387. [Google Scholar]
  • 56.Rosing-Asvid A. (2006) The influence of climate variability on polar bear (Ursus maritimus) and ringed seal (Pusa hispida) population dynamics. Can. J. Zool., 84, 357–364. [Google Scholar]
  • 57.Folkow L. P., Nordøy E. A., and Blix A. S. (2004) Distribution and diving behaviour of harp seals (Pagophilus groenlandicus) from the Greenland Sea stock. Polar Biol., 27, 281–298. [Google Scholar]
  • 58.Coltman D. W., Stenson G., Hammill M. O., Haug T., Davis S., and Fulton T. L. (2007) Panmictic population structure in the hooded seal (Cystophora cristata). Mol. Ecol., 16, 1639–1648. [DOI] [PubMed] [Google Scholar]
  • 59.Gjertz I., and Wiig Ø. (1992) Feeding of walrus Odobenus rosmarus at Svalbard. Polar Rec., 28, 57–59. [Google Scholar]
  • 60.Born E. W., Rysgaard S., Ehlme G., Sejr M., Acquarone M., and Levermann N. (2003) Underwater observations of foraging free-living Atlantic walruses (Odobenus rosmarus rosmarus) and estimates of their food consumption. Polar Biol., 26, 348–357. [Google Scholar]
  • 61.Lydersen C., Aars J., and Kovacs K. M. (2008). Estimating the number of walruses in Svalbard based on aerial surveys and satellite telemetry. Arctic. 61(2), 119–128. [Google Scholar]
  • 62.Cooper L. W., Ashjian C. J., Smith S. L., Codispoti L. A., Grebmeier J. M., Campbell R. G., and Sherr E. B. (2006) Rapid seasonal sea-ice retreat in the Arctic could be affecting Pacific walrus (Odobenus rosmarus divergens) recruitment. Aquat. Mamm., 32, 98–102. [Google Scholar]
  • 63.Born E. W. (2005) An assessment of the effects of hunting and climate on walruses in Greenland. Dr. Philos. Thesis, Natural History Museum, Univ. Oslo, Norway. [Google Scholar]
  • 64.Bosscha Erdbrink D. P., and van Bree P. H. J. (1999) Fossil cranial walrus material from the North Sea and the estuary of the Scheide (Mammalia, Carnivora). Beaufortia, 49, 1–9. [Google Scholar]
  • 65.Andersen S. M., Lydersen C., Grahl-Nielsen O., and Kovacs K. M. (2004) Diet of harbour seals (Phoca vitulina) at Prins Karls Forland, Svalbard. Can. J. Zool., 82, 1230–1245. [Google Scholar]
  • 66.Frost K. J., Lowry L. F., and VerHoef J. M. (1999) Monitoring the trend of harbor seals in Prince William Sound, Alaska, after the Exxon Valdez oil spill. Mar. Mamm. Sci., 15, 494–506. [Google Scholar]
  • 67.Boveng P. L., Benstson J. L., Withrow D. E., Cesarone J. C., Simplins M. A., Frost K. M., and Burns J. J. (2003) The abundance of harbor seals in the Gulf of Alaska. Mar. Mamm. Sci., 19, 111–127. [Google Scholar]
  • 68.Mathews E. A., and Pendleton G. W. (2006) Declines in harbor seal (Phoca vitulina) numbers in Glacier Bay National Park, Alaska, 1992–2002. Mar. Mamm. Sci., 22, 167–189. [Google Scholar]
  • 69.Jemison L. A., Pendleton G. W., Wilson C. A., and Small R. J. (2006) Long-term trends in harbour seal numbers at Tugidak Island and Nanvak Bay, Alaska. Mar. Mamm. Sci., 22, 339–360. [Google Scholar]
  • 70.Lucas Z., and Stobo W. T. (2000) Shark-inflicted mortality on a population of harbour seals (Phoca vitulina) at Sable Island, Nova Scotia. J. Zool. Lond., 252, 405–414. [Google Scholar]
  • 71.Bowen W. D., Ellis S. L., Iverson S. J., and Boness D. J. (2003) Maternal and newborn life-history traits during periods of contrasting population trends: implications for explaining the decline of harbour seals (Phoca vitulina), on Sable Island. J. Zool. Lond., 261, 155–163. [Google Scholar]
  • 72.Thompson P. M., Van Parijs S. M., and Kovacs K. M. (2001) Local declines in the abundance of harbour seals: implications for the designation and monitoring of protected areas. J. Appl. Ecol., 38, 117–125. [Google Scholar]
  • 73.Lonergan M., Duck C. D., Thompson D., MacKey B. L., Cunningham L., and Boyd I. L. (2007) Using sparse survey data to investigate the declining abundance of British harbour seals. J. Zool. Lond., 271, 261–269. [Google Scholar]
  • 74.Harkönen T. J., Deitz R., Reijnders P., Teilmann J., Harding K., Hall A., Brasseur S., Siebert U., Goodman S. J., Jepson P. D., Rasmussen T. D., and Thompson P. (2006) The 1988 and 2002 phocine distemper virus epidemics in European harbour seals. Dis. Aquat. Organisms, 68, 115–130. [DOI] [PubMed] [Google Scholar]
  • 75.DeMaster D. P., Trites A. W., Clapham P., Mizroch S., Wade P., Small R. J., and Hoef J. V. (2006) The sequential megafaunal collapse hypothesis: testing with existing data. Prog. Oceanogr., 68, 329–342. [Google Scholar]
  • 76.Trites A. W., Miller A. J., Maschner H. D. G., Alexander M. A., Bograd S. J., Calder J. A., Capotondi A., Coyle K. O., Di Lorenzo E., Finney B. P., Gregr E. J., Grosch C. E., Hare S. R., Hunt G. L., Jahncke J., Kachel N. B., Kim H. J., Ladd C., Mantua N. J., Marzban C., Maslowski W., Mendelssohn R., Neilson D. J., Okkonen S. R., Overland J. E., Reedy-Maschner K. L., Royer T. C., Schwing F. B., Wang J. X. L., and Winship A. J. (2007) Bottom-up forcing and the decline of Steller sea lions (Eumetopias jubatas) in Alaska: assessing the ocean climate hypothesis. Fish. Oceanogr., 16, 46–67. [Google Scholar]
  • 77.Woolett J. M., Henshaw A. S., and Wake C. P. (2000) Paleoecological implications of archaeological seal bone assemblages: Case studies from Labrador and Baffin Island. Arctic, 53, 395–413. [Google Scholar]
  • 78.Bowen W. D., McMillan J. I., and Blanchard W. (2007) Reduced population growth of gray seals at Sable Island: evidence from pup production and age of primiparity. Mar. Mamm. Sci., 23, 48–64. [Google Scholar]
  • 79.Gilbert J. R., Waring G. T., Wynne K. M., and Guldageer N. (2005) Changes in abundance of harbor seals in Maine, 1981–2001. Mar. Mamm. Sci., 21, 519–535. [Google Scholar]
  • 80.Gerondeau M., Barbraud C., Ridoux V., and Vincent C. (2007) Abundance estimate and seasonal patterns of grey seal (Halicherus grypus) occurrence in Brittany, France, as assessed by photo-identification and capture-mark-recapture. J. Mar. Biol. Assoc. UK, 87, 365–372. [Google Scholar]
  • 81.Haug T., Henriksen G., Kondakov A., Mishin V., Nilssen K. T., and Rov N. (1994) The status of grey seals Halichoerus grypus in North Norway and on the Murman Coast, Russia. Biol. Conserv., 70, 59–67. [Google Scholar]
  • 82.Stebbing A. R. D., Turk S. M. T., Wheeler A., and Clarke K. R. (2002) Immigration of southern fish species to south-west England linked to warming of the North Atlantic (1960–2001). J. Mar. Biol. Assoc. UK, 82, 177–180. [Google Scholar]
  • 83.Beare D. J., Burns F., Jones E., Pech K., Portilla E., Greig T., McKenzie E., and Reid D. G. (2004) An increase in the abundance of anchovies and sardines in the north-western North Sea since 1995. Global Change Biol., 10, 1209–1213. [Google Scholar]
  • 84.Perry A. L., Low P. J., Ellis J. R., and Reynolds J. D. (2005) Climate change and distribution shifts in marine fishes. Science, 308, 1912–1915. [DOI] [PubMed] [Google Scholar]
  • 85.Beaugrand G., and Ibanez F. (2004) Monitoring marine plankton ecosystems. II. Long-term changes in North Sea calanoid copepods in relation to hydro-climatic variability. Mar. Ecol. Prog. Ser., 184, 35–47. [Google Scholar]
  • 86.Falk-Petersen S., Pavlov V., Timofeev S., and Sargent J. R. (2005) Climate variability and possible effects on arctic food chains: The role of Calanus. In: Ørbæk J. B., Kallenborn R., Tombre L., Hegseth E. N., Falk-Petersen S., and Hoel A. H. (eds.). Arctic Alpine Ecosystems and People in a Changing Environment, pp. 147–165. Springer, Berlin. [Google Scholar]

Articles from Science Progress are provided here courtesy of SAGE Publications

RESOURCES