Abstract
Carbon occurs in many different polymeric forms, but nitrogen and oxygen do not. Beginning with the hydrogen polyoxides of general formula H2On, we look into the reasons for this observation. Calculations show that the geometry of an oxygen chain is in the form of a helix, and that there is a minimum bond dissociation energy for an oxygen chain which contains six oxygen atoms. Most surprisingly, longer chains are harder to break. A similar analysis applies to nitrogen chains, except that they are predicted to be more stable than their oxygen counterparts. In solution, however, proton transfer mechanisms provide low-energy paths to decomposition which explains why the polyoxide and polynitride chains have not been observed experimentally. We also look at another polymeric form of nitrogen in the form of a perfect icosahedron (‘dodecahedrazane’). We predict that long-chain polymers could be formed by linking together these nitrogen clusters with carbon connectors. The synthetic difficulties to create new compounds such as these will be formidable, but one possible outcome is a totally pollution-free fuel based on polymeric nitrogen.
Full Text
The Full Text of this article is available as a PDF (1.5 MB).
References
- 1.Plesnicar B., Cerkovnik J., Koller J. & Kovac J. (1991) Chemistry of hydrotrioxides. preparation, characterization and reactivity of dimethylphenylsilyl hydrotrioxides. hydrogen trioxide (hoooh), a reactive intermediate in their thermal decomposition. J. Am. Chem. Soc., 113, 4946–4953. [Google Scholar]
- 2.Deglise X. & Giguere P. A. (1971) Studies on Hydrogen-Oxygen Systems in the Electrical Discharge. V. Raman Spectra of the Trapped Products. Can. J. Chem., 19, 2242–2247. [Google Scholar]
- 3.Lide D. R. (ed.) 1995) CRC Handbook of Chemistry and Physics (76th edn. CRC Press, Boca Raton. [Google Scholar]
- 4.Anderson L. R. & Fox W. B. (1967) An unusual reaction of oxygen difluoride. the addition to carbonyl fluoride to produce bis(trifluoromethyl) trioxide. J. Am. Chem. Soc., 89, 4313–4315. [Google Scholar]
- 5.Krumm B., Vij A., Kirchmeier R. J., Shreeve J. M. & Oberhammer H. (1995) Hexakis(trinuoromethyl)tetrazane. Angew. Chem. Int. Ed. Engl., 34, 586–588. [Google Scholar]
- 6.Curtiss L. A., Raghavachari K., Trucks G. W. & Pople J. A. (1993) Gaussian-2 theory using reduced Moller-Plesset orders. J. Chem. Phys., 98, 1293–1298. [Google Scholar]
- 7.Frisch M. J. et al. (1994) Gaussian-94 Revision B.3. Gaussian, Inc.: Pittsburgh, PA. [Google Scholar]
- 8.Hehre W. J., Radom L., Schleyer P.V.R. & Pople J.A. (1986) Ab Initio Molecular Orbital Theory. Wiley, New York. [Google Scholar]
- 9.Berkowitz J.; Ellison G.B. & Gutman D. (1994) Three Methods to Measure R-H Bond Energies. J. Phys. Chem., 98, 2744–2765. [Google Scholar]
- 10.McKay D. D. J. & Wright J. S. (1998) How Long Can You Make an Oxygen Chain? J. Am. Chem. Soc. 120, 1003–1013. [Google Scholar]
- 11.Plesnicar B. (1992) In: Ando W., (ed.) Organic Peroxides. Wiley, New York. [Google Scholar]
- 12.Cremer D. (1978) Theoretical determination of molecular structure and conformation. I. the role of basis set and correlation effects in calculations on hydrogen peroxide. J. Chem. Phys., 69, 4440–4455. [Google Scholar]
- 13.Zhao M. & Gimarc B.M. (1993) Strain energies in Cyclic On, n = 3–8 J. Phys. Chem., 97, 4023–4030. [Google Scholar]
- 14.Kovac F. & Plesnicar B. (1979) The substituent effect on the thermal decomposition of acetal hydrotrioxides. Polar and radical decomposition paths. J. Am. Chem. Soc., 101, 2677–2681. [Google Scholar]
- 15.Plesnicar B., Kovac F. & Schara M. (1988) Chemistry of Hydrotrioxides. preparation, characterization and thermal decomposition of hydrotrioxides of alkyl α-methylbenzyl alcohol, attempted spin trapping of trioxyl radicals. J. Am. Chem. Soc., 110, 214–218. [Google Scholar]
- 16.Roller J. & Plesnicar B. (1996) Mechanism of the Participation of Water in the decompositioin of hydrogen trioxide (HOOOH). A theoretical study. J. Am. Chem., Soc. 118, 2470–2472. [Google Scholar]
- 17.Nangia J. P. & Benson S. (1979) Thermochemistry of organic polyoxides and their free radicals. J. Phys. Chem., 83, 1138–1142. [Google Scholar]
- 18.McKay D. D. J. (1997) Thermochemical trends and decomposition pathways in polymeric oxygen and nitrogen. M.Sc. Thesis, Carleton University, Ottawa, Canada. [Google Scholar]
- 19.Paquette L. A. (1989) Dodecahedranes and allied spherical molecules. Chem. Rev., 89, 1051–1065. [Google Scholar]
- 20.Chen C., Lu L.-H. & Yang Y.-W. (1992) Theoretical study of N20 using semi-empirical molecular orbital methods. J. Mol. Struct. (Theochem), 253, 1–8. [Google Scholar]
- 21.Bliznyuk A. A., Shen M. & Schaefer H. F. III (1992) The dodecahedral N20 molecule. Some theoretical predictions. Chem. Phys. Lett., 198, 249–253. [Google Scholar]
- 22.Wright J. S., McKay D. J. & DiLabio G. A. (1998) Dodecahedral molecular nitrogen (N20) and related structures. J. Mol. Struct. (Theochem), 242, 47–55. [Google Scholar]
- 23.Schulman J. M. & Disch R. L. (1978) Theoretical studies of dodecahedrane. 2. Dodecahedrane, inclusion compounds, and fluorine derivatives. J. Am. Chem. Soc., 100, 5677–5680. [Google Scholar]
- 24.Kirchmeier R. L., Shreeve J. M. & Verma R. D. (1992). Fluorinated compounds that contain catenated oxygen, sulfur or nitrogen atoms. Coord. Chem. Rev., 112, 169–213. [Google Scholar]
- 25.McMahan A. K. & LeSar R. (1985) Pressure dissociation of solid nitrogen ynder 1 Mbar. Phys. Rev., Lett. 54, 1929–1931. [DOI] [PubMed] [Google Scholar]
- 26.McMillen D. & Golden D.M. (1982) Ann. Rev. Phys. Chem., 33, 493. [Google Scholar]
