Skip to main content
Science Progress logoLink to Science Progress
. 2019 Feb 27;85(4):347–358. doi: 10.3184/003685002783238762

Comparative Biology of γδ T Cells

Zheng W Chen 1,
PMCID: PMC10367533  PMID: 12661423

Abstract

Accumulative evidence suggests that resident γδ T cells in epithelia are biologically distinct from systemic γδ T cells in the circulation. Murine resident γδ T cells have innate immune characteristics and play an important role in tissue homeostasis after damages. In contrast, a unique subset of circulating γδ T cells in primates, like αβ T cells, can mount adaptive immune responses in infections. This article compares biological features between resident and circulating γδ T cells.

Full Text

The Full Text of this article is available as a PDF (89.7 KB).

References

  • 1.Brenner M.B. et al. (1986) Identification of a putative second T-cell receptor. Nature, 322(6075), 145–149. [DOI] [PubMed] [Google Scholar]
  • 2.Carding S.R., & Egan P.J. (2002) γδ T cells: functional plasticity and heterogeneity. Nat. Rev. Immunol., 2(5), 336–345. [DOI] [PubMed] [Google Scholar]
  • 3.Koning F. et al. (1987) Identification of a T3-associated γδ T cell receptor on Thy-1+ dendritic epidermal Cell lines. Science, 236(4803), 834–837. [DOI] [PubMed] [Google Scholar]
  • 4.Kuziel W.A. et al. (1987) Regulation of T-cell receptor gamma-chain RNA expression in murine Thy-1+ dendritic epidermal cells. Nature, 328(6127), 263–266. [DOI] [PubMed] [Google Scholar]
  • 5.Augustin A. et al. (1989) Resident pulmonary lymphocytes expressing the gamma/delta T-cell receptor. Nature, 340(6230), 239–241. [DOI] [PubMed] [Google Scholar]
  • 6.Goodman T., & Lefrancois L. (1988) Expression of the gammadelta T-cell receptor on intestinal CD8+ intraepithelial lymphocytes. Nature, 333(6176), 855–858. [DOI] [PubMed] [Google Scholar]
  • 7.Bonneville M. et al. (1988) Intestinal intraepithelial lymphocytes are a distinct set of γδ T cells. Nature, 336(6198), 479–481. [DOI] [PubMed] [Google Scholar]
  • 8.Itohara S. et al. (1990) Homing of a gamma delta thymocyte subset with homogeneous T-cell receptors to mucosal epithelia. Nature, 343(6260), 754–757. [DOI] [PubMed] [Google Scholar]
  • 9.Havran W.L., & Allison J.P. (1990) Origin of Thy-1+ dendritic epidermal cells of adult mice from fetal thymic precursors. Nature, 344(6261), 68–70. [DOI] [PubMed] [Google Scholar]
  • 10.Jameson J. et al. (2002) A role for skin gammadelta T cells in wound repair. Science, 296(5568), 747–749. [DOI] [PubMed] [Google Scholar]
  • 11.Rocha B. et al. (1994) Thymic and extrathymic origins of gut intraepithelial lymphocyte populations in mice. J. Exp. Med., 180(2), 681–686. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 12.Mayrhofer G. (1980) Thymus-dependent and thymus-independent subpopulations of intestinal intraepithelial lymphocytes: a granular subpopulation of probable bone marrow origin and relationship to mucosal mast cells. Blood, 55(3), 532–535. [PubMed] [Google Scholar]
  • 13.Poussier P. et al. (1992) Thymus-independent development and negative selection of T cells expressing T cell receptor alpha/beta in the intestinal epithelium: evidence for distinct circulation patterns of gut- and thymus-derived T lymphocytes. J. Exp. Med., 176(1), 187–199. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 14.Lefrancois L, & Olson S. (1997) Reconstitution of the extrathymic intestinal T cell compartment in the absence of irradiation. J. Immunol., 159(2), 538–541. [PubMed] [Google Scholar]
  • 15.Gougeon M.L. et al. (2000) Human gamma delta T lymphocytes in HIV disease: effector functions and control by natural killer cell receptors. Springer Semin Immunopathol 22(3), 251–263. [DOI] [PubMed] [Google Scholar]
  • 16.Spencer J. et al. (1989) Heterogeneity in intraepithelial lymphocyte subpopulations in fetal and postnatal human small intestine. J. Pediatr. Gastroenterol. Nutr., 9(2), 173–177. [DOI] [PubMed] [Google Scholar]
  • 17.Ullrich R. et al. (1990) gamma delta T cells in the human intestine express surface markers of activation and are preferentially located in the epithelium. Cell Immunol., 128(2), 619–627. [DOI] [PubMed] [Google Scholar]
  • 18.Halstensen T.S. et al. (1989) Intraepithelial T cells of the TcR γ/δ+ CD8- and Vδ1/Jδ1+ phenotypes are increased in coeliac disease. Scand. J. Immunol., 30(6), 665–672. [DOI] [PubMed] [Google Scholar]
  • 19.Deusch K. et al. (1991) A major fraction of human intraepithelial lymphocytes simultaneously expresses the γ/δ T cell receptor, the CD8 accessory molecule and preferentially uses the Vδ1 gene segment. Eur. J. Immunol., 21(4), 1053–1059. [DOI] [PubMed] [Google Scholar]
  • 20.De Rosa S.C. et al. (2001) Vδ1 and Vδ2 gammadelta T cells express distinct surface markers and might be developmentally distinct lineages. J. Leukoc. Biol., 70(4), 518–526. [PubMed] [Google Scholar]
  • 21.Morita C.T. et al. (2000) Antigen recognition by human γδ T cells: pattern recognition by the adaptive immune system. Springer Semin. Immunopathol., 22(3), 191–217. [DOI] [PubMed] [Google Scholar]
  • 22.Spada F.M. et al. (2000) Self-recognition of CD1 by γ/δ T cells: implications for innate immunity. J. Exp. Med., 191(6), 937–948. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 23.Porcelli S.A. et al. (1998) The CD1 family of lipid antigen-presenting molecules. Immunol. Today, 19(8), 362–368. [DOI] [PubMed] [Google Scholar]
  • 24.Groh V. et al. (1998) Recognition of stress-induced MHC molecules by intestinal epithelial gammadelta T cells. Science, 279(5357), 1737–1740. [DOI] [PubMed] [Google Scholar]
  • 25.Spies T. (2002) Induction of T cell alertness by bacterial colonization of intestinal epithelium. Proc. Natl. Acad. Sci. USA, 99(5), 2584–2586. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 26.Crowley M.P. et al. (2000) A population of murine γδ T cells that recognize an inducible MHC class Ib molecule. Science, 287(5451), 314–316. [DOI] [PubMed] [Google Scholar]
  • 27.Triebel F., & Hercend T. (1989) Subpopulations of human peripheral T γδ lymphocytes. Immunol. Today, 10(6), 186–188. [DOI] [PubMed] [Google Scholar]
  • 28.Hayday A. et al. (2001) Intraepithelial lymphocytes: exploring the Third Way in immunology. Nat. Immunol., 2(11), 997–1003. [DOI] [PubMed] [Google Scholar]
  • 29.Kunzmann V. et al. (1999) γ/δ T-cell stimulation by pamidronate. N. Engl. J. Med., 340(9), 737–738. [DOI] [PubMed] [Google Scholar]
  • 30.Bukowski J.F. et al. (1999) Human γδ T cells recognize alkylamines derived from microbes, edible plants, and tea: implications for innate immunity. Immunity, 11(1), 57–65. [DOI] [PubMed] [Google Scholar]
  • 31.Bukowski J.F. et al. (1995) Vγ2 δ2 TCR-dependent recognition of non-peptide antigens and Daudi cells analyzed by TCR gene transfer. J. Immunol., 154(3), 998–1006. [PubMed] [Google Scholar]
  • 32.Rakasz E. et al. (2000) γδ T cell receptor repertoire in blood and colonic mucosa of rhesus macaques. J. Med. Primatol., 29(6), 387–396. [DOI] [PubMed] [Google Scholar]
  • 33.MacDougall A. et al. (2001) Vγ2 TCR repertoire overlap in different anatomical compartments of healthy, unrelated rhesus macaques. J. Immunol., 166(4), 2296–2302. [DOI] [PubMed] [Google Scholar]
  • 34.Shen Y. et al. (2002) Adaptive immune response of Vδ2Vδ2+ T cells during mycobacterial infections. Science, 295(5563), 2255–2258. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 35.Lepage A.C. et al. (1998) Gut-derived intraepithelial lymphocytes induce long term immunity against Toxoplasma gondii. J. Immunol., 161(9), 4902–4908. [PubMed] [Google Scholar]
  • 36.Havran W.L. et al. (1991) Recognition of self antigens by skin-derived T cells with invariant γδ antigen receptors. Science, 252(5011), 1430–1432. [DOI] [PubMed] [Google Scholar]
  • 37.Boismenu R., & Havran W.L. (1994) Modulation of epithelial cell growth by intraepithelial γδ T cells. Science, 266(5188), 1253–1255. [DOI] [PubMed] [Google Scholar]
  • 38.Smith A.L., & Hayday A.C. (2000) An αβ T-cell-independent immunoprotective response towards gut coccidia is supported by gammadelta cells. Immunology, 101(3), 325–332. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 39.Shires J. et al. (2001) Biological insights into TCRγδ+ and TCRαβ+ intraepithelial lymphocytes provided by serial analysis of gene expression (SAGE). Immunity, 15(3), 419–434. [DOI] [PubMed] [Google Scholar]
  • 40.Fahrer A.M. et al. (2001) Attributes of γδ intraepithelial lymphocytes as suggested by their transcriptional profile. Proc. Natl. Acad. Sci. USA, 98(18), 10261–10266. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 41.Wang L. et al. (2001) Antibacterial effect of human Vγ2Vδ2 T cells in vivo. J. Clin. Invest., 108(9), 1349–1357. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 42.Glatzel A. et al. (2002) Patterns of chemokine receptor expression on peripheral blood γδ T lymphocytes: strong expression of CCR5 is a selective feature of Vδ2/Vγ9 γδ T cells. J. Immunol., 168(10), 4920–4929. [DOI] [PubMed] [Google Scholar]
  • 43.Cipriani B. et al. (2000) Activation of C-C β-chemokines in human peripheral blood γδ T cells by isopentenyl pyrophosphate and regulation by cytokines. Blood, 95(1), 39–47. [PubMed] [Google Scholar]
  • 44.Roth S.J. et al. (1998) Transendothelial chemotaxis of human α/β and γ/δ T lymphocytes to chemokines. Eur. J. Immunol., 28(1), 104–113. [DOI] [PubMed] [Google Scholar]
  • 45.Poggi A. et al. (1999) IL-12-mediated NKRP1A up-regulation and consequent enhancement of endothelial transmigration of Vδ2+ TCR γδ+ T lymphocytes from healthy donors and multiple sclerosis patients. J. Immunol., 162(7), 4349–4354. [PubMed] [Google Scholar]
  • 46.Poggi A. et al. (2002) Transendothelial migratory pathways of Vδ1+TCR γδ+and Vδ2+TCR γδ+ T lymphocytes from healthy donors and multiple sclerosis patients: involvement of phosphatidylinositol 3 kinase and calcium calmodulin-dependent kinase II. J. Immunol., 168(12), 6071–6077. [DOI] [PubMed] [Google Scholar]
  • 47.Hayes S.M., & Love P.E. (2002) Distinct structure and signaling potential of the γδ TCR complex. Immunity, 16(6), 827–838. [DOI] [PubMed] [Google Scholar]
  • 48.Ferrick D.A. et al. (2000) Intraepithelial γδ T lymphocytes: sentinel cells at mucosal barriers. Springer Semin. Immunopathol., 22(3), 283–296. [DOI] [PubMed] [Google Scholar]
  • 49.De Libero G. (2000) Tissue distribution, antigen specificity and effector functions of gamma δ T cells in human diseases. Springer Semin. Immunopathol., 22(3), 219–238. [DOI] [PubMed] [Google Scholar]
  • 50.Groh V. et al. (1999) Broad tumor-associated expression and recognition by tumor-derived γδ T cells of MICA and MICB. Proc. Natl. Acad. Sci. USA, 96(12), 6879–6884. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 51.Ferrero E. et al. (1998) Tumor-driven matrix invasion by infiltrating lymphocytes: involvement of the α1 integrin I-domain. Eur. J. Immunol., 28(8), 2530–2536. [DOI] [PubMed] [Google Scholar]
  • 52.Ferrarini M. et al. (2002) Human γδ T cells: a nonredundant system in the immune-surveillance against cancer. Trends Immunol., 23(1), 14–18. [DOI] [PubMed] [Google Scholar]
  • 53.Penninger J.M. et al. (1995) Spontaneous resistance to acute T-cell leukaemias in TCRVγ1.1Jγ4Cγ4 transgenic mice. Nature, 375(6528), 241–244. [DOI] [PubMed] [Google Scholar]
  • 54.Ramanathan S. et al. (2002) Evidence for the extrathymic origin of intestinal TCRγδ(+) T cells in normal rats and for an impairment of this differentiation pathway in BB rats. J. Immunol., 168(5), 2182–2187. [DOI] [PubMed] [Google Scholar]
  • 55.Das H., Groh C., Kuijl C., Sugita M., Morita C.T., Spies T., and Bukowski J.F. (2001) MICA engagement by human Vγ2Vδ2 T cells enhances their antigen-dependent effector function. Immunity, 15, 83. [DOI] [PubMed] [Google Scholar]

Articles from Science Progress are provided here courtesy of SAGE Publications

RESOURCES