Abstract
Every year there are 270 million clinical attacks of malaria and 2 million deaths, caused by the protozoan Plasmodium falciparum. Most of these cases occur in Africa. Chloroquine-resistance has led to reliance on antimalarial antifolates, in particular the synergistic combination sulfadoxine/ pyrimethamine (S/P) which targets enzymatic synthesis of folate co-factors through dihydropteroate synthase (DHPS) and dihydrofolate reductase (DHFR). Resistance to S/P is now increasing and replacement antimalarials are needed. Crystal structures are not yet available for these key enzymes in the folate pathway. This review focuses on the activity of drugs on DHFR in malaria parasites, attempts to interpret differences in activity of pyrimethamine and its related drugs, and to clarify how residue changes due to point mutations determine the development of resistance.
In homology-modelled P. falciparum DHFR (PfDHFR), the typical structure of four α-helices, 8-stranded β-sheet, four Loops and eight Turns is clearly seen. Long polar sequences specific for Plasmodium are inserted in Turns 1 and 2. Structures immediately concerned in drug binding are β-A, L1, α-B, α-C, T-3, β-E, α-F, and β-F. The roles of several mutations associated with resistance are discussed. In view of sequence differences in turn 3 in PfDHFR and in the human enzyme, and the marked interaction with residues of T3 of the experimental flexible antifolate WR99210 effective in pyrimethamine and cycloguanil resistance, further drug development in this area is indicated.
Full Text
The Full Text of this article is available as a PDF (516.7 KB).
References
- 1.Gilles H.M., & Warrell D.A. (eds) (1993) Bruce-Chwatt's Essential Malariology, Arnold, London. [Google Scholar]
- 2.Eggleson K.K., Duffin K.L., & Goldberg D.E. (1999) Identification and characterization of Falcilysin, a metallopeptidase involved in hemoglobin catabolism within the malaria parasite Plasmodium falciparum. Journal of Biological Chemistry, 274, 32411–32417 [DOI] [PubMed] [Google Scholar]
- 3.Pagola S., Stephens P.W., Bohle D.S., Kosar A.D., & Madsen S.E. (2000) The structure of malaria pigment β-haematin. Nature, 404, 307–310 [DOI] [PubMed] [Google Scholar]
- 4.Carucci DJ. (2001) Functional genomic technologies applied to the control of the human malaria parasite, Plasmodium falciparum. Pharmacogenomics, 2, 137–142. [DOI] [PubMed] [Google Scholar]
- 5.Creasey A.M., Ranford-Cartwright L.C., Moore D.J., Williamson D.H., Wilson R.J., Walliker D., & Carter R. (1993) Uniparental inheritance of the mitochondrial gene cytochrome b in Plasmodium falciparum. Curr. Genet., 23, 360–364. [DOI] [PubMed] [Google Scholar]
- 6.Waller R.F. et al. , (1998) Nuclear encoded proteins target to the plastid in Toxoplasma gondii and Plasmodium falciparum. Proc. Natl. Acad. Sci. USA, 95, 12352–12357 [DOI] [PMC free article] [PubMed] [Google Scholar]
- 7.Surolia N., & Surolia A. (2001) Triclosan offers protection against blood stages of malaria by inhibiting enoyl-ACP reductase of Plasmodium falciparum. Nature Med., 7, 167–173 [DOI] [PubMed] [Google Scholar]
- 8.Midgley J.M., Keter D.W., Phillipson J.D., Grant S., & Warhurst D.C. (1988) Quinolones and multiresistant Plasmodium falciparum. Lancet, 2, 281. [DOI] [PubMed] [Google Scholar]
- 9.Clough B., & Wilson R.J.M. (2001) Antibiotics and the plasmodial plastid organelle. In: Rosenthal P. (ed.) Antimalarial Chemotherapy, pp 265–286, Humana Press Totawa, New Jersey. [Google Scholar]
- 10.Peters W. (1987) Chemotherapy and Drug Resistance in Malaria. Academic Press, London. [Google Scholar]
- 11.Trape J.F. (2001) The public health impact of chloroquine resistance in Africa. Am. J. Trop. Med. Hyg., 64(Suppl), 12–17 [DOI] [PubMed] [Google Scholar]
- 12.Warhurst D.C. (2001) A molecular marker for chloroquine-resistant falciparum malaria. N. Engl. J. Med., 344, 299–302. [DOI] [PubMed] [Google Scholar]
- 13.Richey D.P., & Brown G.M. (1969) The biosynthesis of folic acid. IX. Purification and properties of the enzymes required for the formation of dihydropteroic acid. J. Biol. Chem., 244, 1582–1592. [PubMed] [Google Scholar]
- 14.Shiota T., Baugh C.M., Jackson R., & Dillard R. (1969) The enzymatic synthesis of hydroxymethyldihydropteridine pyrophosphate and dihydrofolate. Biochemistry, 8, 5022–5028. [DOI] [PubMed] [Google Scholar]
- 15.Lee C.S., Salcedo E., Wang Q., Wang P., Sims P.F., & Hyde J.E. (2001) Characterization of three genes encoding enzymes of the folate biosynthetic pathway in Plasmodium falciparum. Parasitology, 122, 1–13 [DOI] [PubMed] [Google Scholar]
- 16.Roland S., Ferone R., Harvey R.J., Styles V.L., & Morrison R.W. (1979) The characteristics and significance of sulfonamides as substrates for Escherichia coli dihydropteroate synthase. J. Biol. Chem., 254, 10337–10345. [PubMed] [Google Scholar]
- 17.Hurly M.G.D. (1959) Potentiation of pyrimethamine by sulphadiazine in human malaria. Trans. R. Soc. Trop. Med. Hyg., 53, 412–413 [DOI] [PubMed] [Google Scholar]
- 18.Triglia T., Menting J.G., Wilson C., & Cowman A.F. (1997) Mutations in dihydropteroate synthase are responsible for sulfone and sulfonamide resistance in Plasmodium falciparum. Proc. Natl. Acad. Sci. USA, 94, 13944–13949. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 19.Triglia T., Wang P., Sims P.F., Hyde J.E., & Cowman A.F. (1998) Allelic exchange at the endogenous genomic locus in Plasmodium falciparum proves the role of dihydropteroate synthase in sulfadoxine-resistant malaria. EMBO J., 17, 3807–3815. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 20.Wu Y., Kirkman L.A., & Wellems T.E. (1996) Transformation of Plasmodium falciparum malaria parasites by homologous integration of plasmids that confer resistance to pyrimethamine. Proc. Natl. Acad. Sci. USA, 93, 1130–1134. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 21.Guex N., Diemand A., & Peitsch M.C. (1999) Protein modelling for all. Trends Biochem. Sci., 24, 364–367. [DOI] [PubMed] [Google Scholar]
- 22.Warhurst D.C. (1998) Antimalarial drug discovery: development of inhibitors of dihydrofolate reductase active in drug-resistance. Drug Discovery Today, 3, 538–546. [Google Scholar]
- 23.Rastelli G., Sirawaraporn W., Sompornpisut P., Vilaivan T., Kamchonwongpaisan S., Quarrell R., Lowe G., Thebtaranonth Y., & Yuthavong Y. (2000) Interaction of pyrimethamine, cycloguanil, WR99210 and their analogues with Plasmodium falciparum dihydrofolate reductase: structural basis of antifolate resistance. Bioorg. Med. Chem., 8, 1117–11128 [DOI] [PubMed] [Google Scholar]
- 24.Yuthavong Y., Vilaivan T., Chareonsethakul N., Kamchonwongpaisan S., Sirawaraporn W., Quarrell R., & Lowe G. (2000) Development of a lead inhibitor for the A16V+S108T mutant of dihydrofolate reductase from the cycloguanil-resistant strain (T9/94) of Plasmodium falciparum. J. Med. Chem., 43, 2738–2744. [DOI] [PubMed] [Google Scholar]
- 25.Matthews D.A., Bolin J.T., Burridge J.M., Filman D.J., Volz K.W., Kaufman B.T., Beddell C.R., Champness J.N., Stammers D.K., & Kraut J. (1985) Refined crystal structures of Escherichia coli and chicken liver dihydrofolate reductase containing bound trimethoprim. J. Biol. Chem., 260, 381–391 [PubMed] [Google Scholar]
- 26.Dale G.E., Broger C., D'Arcy A., Hartman P., DeHooght R., Synese J., Kompis I., Labhardt A.M., Langen H., Locher H., Page M.G.P., Stuber D., Then R.L., Wipf B., & Oefner C. (1997) A single amino acid substitution in Staphylococcus aureus dihydrofolate reductase determines trimethoprim resistance. J. Mol. Biol., 266, 23–30 [DOI] [PubMed] [Google Scholar]
- 27.Li R, Sirawaraporn R, Chitnumsub P., Sirawaraporn W, Wooden J., Athappilly F., Turley S., & Hol W.G.J. (2000) Three dimensional structure of M. tuberculosis Dihydrofolate Reductase reveals opportunities for the design of novel tuberculosis drugs. J. Mol. Biol., 295, 307–323 [DOI] [PubMed] [Google Scholar]
- 28.Bzik D.J., Li W-B., Horii T., & Inselberg J. (1987) Molecular cloning and sequence analysis of the Plasmodium falciparum dihydrofolate reductase-thymidylate synthase gene. Proc. Natl. Acad. Sci. USA, 84, 8360–8364 [DOI] [PMC free article] [PubMed] [Google Scholar]
- 29. http://www.expasy.ch/spdv/mainpage.html
- 30.Hekmat-Nejad M., & Rathod P.K. (1997) Plasmodium falciparum: kinetic interactions of WR99210 with pyrimethamine-sensitive and pyrimethamine-resistant dihydrofolate reductase. Exp. Parasitol., 87, 222–228 [DOI] [PubMed] [Google Scholar]
- 31.Hankins E.G., Warhurst D.C., & Sibley C.H. (2001) Novel alleles of the Plasmodium falciparum dhfr highly resistant to pyrimethamine and chlorcycloguanil, but not WR99210. Mol Biochem Parasitol., 117, 91–102. [DOI] [PubMed] [Google Scholar]
- 32.Wu Y., Kirkman L.A., & Wellems T.E. (1996) Transformation of Plasmodium falciparum malaria parasites by homologous integration of plasmids that confer resistance to pyrimethamine Proc Natl Acad Sci U SA, 93, 1130–1134 [DOI] [PMC free article] [PubMed] [Google Scholar]
- 33.Davies D., Delcamp T.J., Prendergast N.J., Ashford V.A., Freisheim J.H., Kraut J. (1990) Crystal structures of recombinant human dihydrofolate reductase complexed with folate and 5-deazafolate. Biochemistry, 291, 9467. [DOI] [PubMed] [Google Scholar]
- 34.Bystroff C., Oatley S.T., & Kraut J. (1990) Crystal structures of Escherichia coli dihydrofolate reductase. The NADP+ holoenzyme and the folate. NADP+ ternary complex. Substrate binding and a model for the transition state. Biochemistry, 29, 3263–3277. [DOI] [PubMed] [Google Scholar]
- 35.Paget-McNicol S., & Saul A. (2001) Mutation rates in the dihydrofolate reductase gene of Plasmodium falciparum. Parasitology, 122, 497–505. [DOI] [PubMed] [Google Scholar]
- 36.Birdsall B., Feeney J., Tendler J.B., Hammond S.J., Roberts G.C.K. (1989) Dihydrofolate reductase: Multiple conformations and alternative modes of substrate binding. Biochemistry, 28, 2297–2305 [DOI] [PubMed] [Google Scholar]
- 37.Sirawaraporn W., Sathitkul T., Sirawaraporn R., Yuthavong Y., & Santi D.V. (1997) Antifolate-resistant mutants of Plasmodium falciparum dihydrofolate reductase. Proc. Natl. Acad. Sci. USA, 94(4), 1124–1129 [DOI] [PMC free article] [PubMed] [Google Scholar]
- 38.Iyer J., Milhous W.K., Cortese J.F., Kublin J.G., Plowe C.V. (2001) Plasmodium falciparum cross-resistance between trimethoprim and pyrimethamine. Lancet, 358, 1066–1067 [DOI] [PubMed] [Google Scholar]
- 39.Curtis J., Duraisingh M.T., & Warhurst D.C. (1998) In vivo selection for a specific genotype of dihydropteroate synthetase of Plasmodium falciparum by pyrimethamine-sulfadoxine but not chlorproguanil-dapsone treatment. J. Infect. Dis., 177, 1429–1433. [DOI] [PubMed] [Google Scholar]
- 40.Foote S.J., Galatis D., & Cowman A.F. (1990) Amino acids in the dihydrofolate reductase-thymidylate synthase gene of Plasmodium falciparum involved in cycloguanil resistance differ from those involved in pyrimethamine resistance. Proc. Natl. Acad. Sci. USA, 87, 3014–3017. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 41.Sirawaraporn W., Suganya Y., Sirawaraporn R., Yuthavong Y., & Santi D.V. (1997) Plasmodium falciparum: Asparagine mutant at residue 108 of dihydrofolate reductase is an optimal antifolate resistant single mutant. Exp. Parasitol., 87, 245–252 [DOI] [PubMed] [Google Scholar]
- 42.Bloland P.B., Redd S.C., Kazembe P., Tembenu R., Wirima J.J., Campbell C.C. (1991) Co-trimoxazole for childhood febrile illness in malaria-endemic regions. Lancet, 337(8740), 518–520. [DOI] [PubMed] [Google Scholar]
- 43.Daramola O.O., Alonso P.L., O'Dempsey T., Twumasi P., McArdle T., & Greenwood B. (1991) Sensitivity of Plasmodium falciparum in The Gambia to co-trimoxazole. Trans. R. Soc. Trop. Med. Hyg., 85(3), 345–348. [DOI] [PubMed] [Google Scholar]
- 44.Martin D., & Arnold J. (1968) Treatment of acute falciparum malaria with sulfalene and trimethoprim. J. Am. Med. Assoc., 203, 476–477. [PubMed] [Google Scholar]
- 45.Petersen E. (1987) In vitro susceptibility of Plasmodium falciparum malaria to pyrimethamine, sulfadoxine, trimethoprim, and sulphamethoxazole, singly and in combination. Trans. R. Soc. Trop. Med. Hyg., 81, 238–241. [DOI] [PubMed] [Google Scholar]
- 46.Yeo A.E.T., & Christopherson R.I. (1998) Comparative effects of cycloguanil and WR99210 in human leukemia cells and intra-erythrocytic Plasmodium. Ann. Trop. Med. Parasitol., 92, 331–333. [DOI] [PubMed] [Google Scholar]
- 47.Kinyanjui S.M., Mberu E.K., Winstanley P.A., Jacobus D.P., & Watkins W.M. (1999) The antimalarial triazine WR99210 and the prodrug PS-15: folate reversal of in vitro activity against Plasmodium falciparum and a non-antifolate mode of action of the prodrug. Am J Trop Med Hyg., 60, 943–947. [DOI] [PubMed] [Google Scholar]
