Skip to main content
Science Progress logoLink to Science Progress
. 2019 Feb 27;88(1):17–48. doi: 10.3184/003685005783238462

Molecular engineering of Surfaces Using Self-Assembled Monolayers

George M Whitesides 1,, Jennah K Kriebel 1,, J Christopher Love 2,
PMCID: PMC10367539  PMID: 16372593

Abstract

The self-assembly of molecules into structurally organized monolayers (SAMs) uses the flexibility of organic chemistry and coordination chemistry to generate well-defined, synthetic surfaces with known molecular and macroscopic properties. The process of designing monolayers with a specified structure gives a high level of control over the molecular-level composition in the direction perpendicular to a surface; soft lithographic technique gives useful (if lower) resolution in the plane of the surface. Alkanethiolates adsorbed on gold, silver, mercury, palladium and platinum are currently the best-defined systems of SAMs. They provide substrates for a number of applications-from studies of wetting and electron transport to patterns for growing mammalian cells. SAMs have made organic surfaces a central part of surface science. Understanding the principles by which they form, and connecting molecular-level structure with macroscopic properties, opens a wide range of areas to study and exploitation.

Keywords: self-assembled monolayers, SAMs, organic films, alkanethiolates, molecular electronics, surface science, nanotechnology

Full Text

The Full Text of this article is available as a PDF (976.9 KB).

References

  • 1.Langmuir I. (1916) J. Am. Chem. Soc., 38, 221. [Google Scholar]
  • 2.Gaines G. L. (1966) Insoluble Monolayers at Liquid-Gas Interfaces, Interscience Publishers, New York. [Google Scholar]
  • 3.Adamson A. W., and Gast A. P. (1997) Physical Chemistry of Surfaces, Wiley-Interscience, New York. [Google Scholar]
  • 4.Kolasinski K. (2002) Surface science: foundations of catalysis and nanoscience, Wiley, Chichester, New York. [Google Scholar]
  • 5.Ertl G., Knoezinger H., and Weitkamp J. (1997) Handbook of heterogeneous catalysis, Wiley-VCH, Weinheim. [Google Scholar]
  • 6.Somorjai G. A. (2000) The development of molecular surface science and the surface science of catalysis: The Berkeley contribution. J. Phys. Chem., B 104, 2969–2979. [Google Scholar]
  • 7.Clark R. J. H., and Hester R. E. (1998) Spectroscopy for surface science, Wiley, Chichester, New York. [Google Scholar]
  • 8.Stanners C. D., Gardin D., and Somorjai G. A. (1994) Correlations of atomic structure and reactivity of solid-gas and solid-liquid interfaces. J. Electrochem. Soc., 141, 3278–3290. [Google Scholar]
  • 9.Park S.-J. (1999) Long-range force contributions to surface dynamics. Surfactant Sci. Ser., 85, 385–442. [Google Scholar]
  • 10.Bonzel H. P. (1977) The role of surface science experiments in understanding heterogeneous catalysis. Surf. Sci., 68, 236–258. [Google Scholar]
  • 11.Gates B. C., and Knoezinger H. (2000) Impact of surface science on catalysis, Academic Press, San Diego. [Google Scholar]
  • 12.Timmons C. O., and Zisman W. A. (1965) Investigation of fatty acid monolayers on metals by contact potential measurements. J. Phys. Chem., 69, 984–990. [Google Scholar]
  • 13.Levine O., and Zisman W. A. (1957) Physical properties of monolayers adsorbed at the solid-air interface. I. Friction and wettability of aliphatic polar compounds and effect of halogenation. J. Phys. Chem., 61, 1068–1077. [Google Scholar]
  • 14.Zasadzinski J. A., Viswanathan R., Madsen L., Garnaes J., and Schwartz D. K. (1994) Langmuir-Blodgett films. Science (Washington, D.C.), 263, 1726–1733. [DOI] [PubMed] [Google Scholar]
  • 15.Kuhn H., and Moebius D. (1971) Systems of monomolecular layers. Assembling and physicochemical behavior. Angew. Chem. Intern. Ed. Engl., 10, 620–637. [Google Scholar]
  • 16.Maboudian R., and Howe R. T. (1997) Critical review: adhesion in surface micromechanical structures. J. Vac. Sci. Technol., B 15, 1–20. [Google Scholar]
  • 17.Binnig G., and Rohrer H. (1983) Scanning tunneling microscopy. Surf. Sci., 126, 236–244. [Google Scholar]
  • 18.Nuzzo R. G., and Allara D. L. (1983) Adsorption of bifunctional organic disulfides on gold surfaces. J. Am. Chem. Soc., 105, 4481–4483. [Google Scholar]
  • 19.Porter M. D., Bright T. B., Allara D. L., and Chidsey C. E. (1987) Spontaneously organized molecular assemblies. 4. Structural characterization of n-alkyl thiol monolayers on gold by optical ellipsometry, infrared spectroscopy, and electrochemistry. J. Am. Chem. Soc., 109, 3559–3568. [Google Scholar]
  • 20.Binnig G., Gerber C., Stoll E., Albrecht T. R., and Quate C. F. (1987) Atomic resolution with atomic force microscope. Surf. Sci., 189–190, 1–6. [Google Scholar]
  • 21.Tang Q., Shi S. Q., and Zhou L. M. (2004) Nanofabrication with atomic force microscopy. J. Nanosci. Nanotech., 4, 948–963. [DOI] [PubMed] [Google Scholar]
  • 22.Lenher S. (1935) (E. I. du Pont de Nemours and Co.). U.S.A.
  • 23.Biener M. M., Biener J., and Friend C. M. (2005) Revisiting the S-Au(111) interaction: Static or dynamic? Langmuir, 21, 1668–1671. [DOI] [PubMed] [Google Scholar]
  • 24.Schreiber F. (2000) Structure and growth of self-assembling monolayers. Prog. Surf. Sci., 65, 151–256. [Google Scholar]
  • 25.Dubois L. H., and Nuzzo R. G. (1992) Synthesis, structure, and properties of model organic surfaces. Annu. Rev. Phys. Chem., 43, 437–463. [Google Scholar]
  • 26.Liu G.-Y., Xu S., and Qian Y. (2000) Nanofabrication of self-assembled monolayers using scanning probe lithography. Acc. Chem. Rev., 33, 457–466. [DOI] [PubMed] [Google Scholar]
  • 27.Allara D. L., and Nuzzo R. G. (1985) Spontaneously organized molecular assemblies. 2. Quantitative infrared spectroscopic determination of equilibrium structures of solution-adsorbed n-alkanoic acids on an oxidized aluminum surface. Langmuir, 1, 52–66. [Google Scholar]
  • 28.Strong L., and Whitesides G. M. (1988) Structures of self-assembled monolayer films of organosulfur compounds adsorbed on gold single crystals: electron diffraction studies. Langmuir, 4, 546–558. [Google Scholar]
  • 29.Thomas R. C., Houston J. E., Michalske T. A., and Crooks R. M. (1993) The mechanical response of gold substrates passivated by self-assembling monolayer films. Science (Washington, B.C.), 259, 1883–1885. [DOI] [PubMed] [Google Scholar]
  • 30.Stranick S. J., Weiss P. S., Parikh A. N., and Allara D. L. (1993) Alternating current scanning tunneling spectroscopy of self-assembled monolayers on gold. J. Vac. Sci. Technol., A 11, 739–741. [Google Scholar]
  • 31.Bain C. D., and Whitesides G. M. (1988) Correlation between wettability and structure in monolayers in alkanethiols adsorbed on gold. J. Am. Chem. Soc., 110, 3665–3666. [Google Scholar]
  • 32.Holmes-Farley S. R., Bain C. D., and Whitesides G. M. (1988) Wetting of functionalized polyethylene film having ionizable organic acids and bases at the polymer-water interface: relations between functional group polarity, extent of ionization, and contact angle with water. Langmuir, 4, 921–937. [Google Scholar]
  • 33.Holmes-Farley S. R., Reamey R. H., McCarthy T. J., Deutch J., and Whitesides G. M. (1985) Acid-base behavior of carboxylic acid groups covalently attached at the surface of polyethylene: The usefulness of contact angle in following the ionization of surface functionality. Langmuir, 1, 725–740. [Google Scholar]
  • 34.Bain C. D., Evall J., and Whitesides G. M. (1989) Formation of monolayers by the coadsorption of thiols on gold: variation in the head group, tail group, and solvent. J. Am. Chem. Soc., 111, 7155–7164. [Google Scholar]
  • 35.Finklea H. O., Avery S., Lynch M., and Furtsch T. (1987) Blocking oriented monolayers of alkyl mercaptans on gold electrodes. Langmuir, 3, 409–413. [Google Scholar]
  • 36.Curtin L. S., Peck S. R., Tender L. M., Murray R. W., Rowe G. K., and Creager S. E. (1993) Voltammetry at 115–180K for self-assembled ferrocene-tagged alkanethiol monolayers on gold and silver electrodes in butyronitrile/ethyl chloride solvent. Anal. Chem., 65, 386–392. [Google Scholar]
  • 37.Collard D. M., and Fox M. A. (1991) Use of electroactive thiols to study the formation and exchange of alkanethiol monolayers on gold. Langmuir, 7, 1192–1197. [Google Scholar]
  • 38.Tran E., Rampi M. A., and Whitesides G. M. (2004) Electron transfer in a Hg-SAM//SAM-Hg junction mediated by redox centers. Angew. Chem. Intern. Ed., 43, 3835–3839. [DOI] [PubMed] [Google Scholar]
  • 39.Willey T. M., Vance A. L., van Buuren T., Bostedt C., Terminello L. J., and Fadley C. S. (2005) Rapid degradation of alkanethiol-based self-assembled monolayers on gold in ambient laboratory conditions. Surf. Sci., 576, 188–196. [Google Scholar]
  • 40.Ocko B. M., Kraack H., Pershan P. S., Sloutskin E., Tamam L., and Deutsch M. (2005) Crystalline phases of alkyl-thiol monolayers on liquid mercury. Phys. Rev. Lett., 94, 017802/1–017802/4. [DOI] [PubMed] [Google Scholar]
  • 41.Poirier G. E., and Pylant E. D. (1996) The self-assembly mechanism of alkanethiols on Au(111). Science (Washington, B.C.), 272, 1145–1148. [DOI] [PubMed] [Google Scholar]
  • 42.Bourg M.-C., Badia A., and Lennox R. B. (2000) Gold-Sulfur bonding in 2D and 3D self-assembled monolayers: XPS characterization. J. Phys. Chem., B 104, 6565–6567. [Google Scholar]
  • 43.Yamada R., and Uosaki K. (2000) Two-dimensional crystals of alkanes formed on Au(111) surface in neat liquid. Structural investigation by scanning tunneling microscopy. J. Phys. Chem., B 104, 6021–6027. [Google Scholar]
  • 44.Walczak M. M., Chung C., Stole S. M., Widrig C. A., and Porter M. D. (1991) Structure and interfacial properties of spontaneously adsorbed n-alkanethiolate monolayers on evaporated silver surfaces. J. Am. Chem. Soc., 113, 2370–2378. [Google Scholar]
  • 45.Laibinis P. E., Whitesides G. M., Allara D. L., Tao Y. T., Parikh A. N., and Nuzzo R. G. (1991) Comparison of the structures and wetting properties of self-assembled monolayers of n-alkanethiols on the coinage metal surfaces, copper, silver, and gold. J. Am. Chem. Soc., 113, 7152–7167. [Google Scholar]
  • 46.Love J. C., Wolfe D. B., Haasch R., Chabinyc M. L., Paul K. E., Whitesides G. M., and Nuzzo R. G. (2003) Formation and structure of self-assembled monolayers of alkanethiolates on palladium. J. Am. Chem. Soc., 125, 2597–2609. [DOI] [PubMed] [Google Scholar]
  • 47.Li Z., Chang S.-C., and Williams R. S. (2003) Self-assembly of alkanethiol molecules onto platinum and platinum oxide surfaces. Langmuir, 19, 6744–6749. [Google Scholar]
  • 48.Chon S., and Paik W.-K. (2001) Adsorption of self-assembling sulfur compounds through electrochemical reactions: Effects of potential, acid and oxidizing agents. Phys. Chem. Chem. Phys., 3, 3405–3410. [Google Scholar]
  • 49.Biebuyck H. A., Bain C. D., and Whitesides G. M. (1994) Comparison of organic monolayers on polycrystalline gold spontaneously assembled from solutions containing dialkyl disulfides or alkanethiols. Langmuir, 10, 1825–1831. [Google Scholar]
  • 50.Laibinis P. E., and Whitesides G. M. (1992) Ω-Terminated alkanethiolate monolayers on surfaces of copper, silver, and gold have similar wettabilities. J. Am. Chem. Soc., 114, 1990–1995. [Google Scholar]
  • 51.Chidsey C. E. D., and Loiacono D. N. (1990) Chemical functionality in self-assembled monolayers–structural and electrochemical properties. Langmuir, 6, 682–691. [Google Scholar]
  • 52.Lahann J., Mitragotri S., Tran T.-N., Kaido H., Sundaram J., Choi I. S., Hoffer S., Somorjai G. A., and Langer R. (2003) A reversibly switching surface. Science (Washington, B.C.), 299, 371–374. [DOI] [PubMed] [Google Scholar]
  • 53.Israelachvili J. (1991) Intermolecular and surface forces: With applications to colloidal and biological systems, Academic Press, San Diego, London. [Google Scholar]
  • 54.Zemb T. N. (1997) The DOC model of microemulsions: microstructure, scattering, conductivity and phase limits imposed by sterical constraints. Colloids Surf, A., 130, 435–454. [Google Scholar]
  • 55.Yang G., and Liu G.-Y. (2003) New insights for self-assembled monolayers of organothiols on Au(111) revealed by scanning tunneling microscopy. J. Phys. Chem., B 107, 8746–8759. [Google Scholar]
  • 56.Aizenberg J., Black A. J., and Whitesides G. M. (1998) Controlling local disorder in self-assembled monolayers by patterning the topography of their metallic supports. Nature (London), 394, 868–871. [Google Scholar]
  • 57.Yang J., Han J., Isaacson K., and Kwok D. Y. (2003) Effects of surface defects, polycrystallinity, and nanostructure of self-assembled monolayers for octadecanethiol adsorbed onto Au on wetting and its surface energetic interpretation. Langmuir, 19, 9231–9238. [Google Scholar]
  • 58.Smith R. K., Reed S. M., Lewis P. A., Monnell J. D., Clegg R. S., Kelly K. F., Bumm L. A., Hutchison J. E., and Weiss P. S. (2001) Phase separation within a binary self-assembled monolayer on Au{111} driven by an amide-containing alkanethiol. J. Phys. Chem., B 105, 1119–1122. [Google Scholar]
  • 59.Atre S. V., Liedberg B., and Allara D. L. (1995) Chain length dependence of the structure and wetting properties in binary composition monolayers of OH- and CH3-terminated alkanethiolates on gold. Langmuir, 11, 3882–3893. [Google Scholar]
  • 60.Li L., Chen S., and Jiang S. (2003) Molecular-scale mixed alkanethiol monolayers of different terminal groups on Au(111) by low-current scanning tunneling microscopy. Langmuir, 19, 3266–3271. [Google Scholar]
  • 61.Lee W., Kim E. R., and Lee H. (2002) Chemical approach to high-resolution patterning on self-assembled monolayers using atomic force microscope lithography. Langmuir, 18, 8375–8380. [Google Scholar]
  • 62.Balss K. M., Kuo T.-C., and Bohn P. W. (2003) Direct chemical mapping of electrochemically generated spatial composition gradients on thin gold films with surface-enhanced raman spectroscopy. J. Phys. Chem., B 107, 994–1000. [Google Scholar]
  • 63.Morgenthaler S., Lee S., Zuercher S., and Spencer N. D. (2003) A simple, reproducible approach to the preparation of surface-chemical gradients. Langmuir, 19, 10459–10462. [DOI] [PubMed] [Google Scholar]
  • 64.Ryan D., Parviz B. A., Linder V., Semetey V., Sia S. K., Su J., Mrksich M., and Whitesides G. M. (2004) Patterning Multiple Aligned Self-Assembled Monolayers Using Light. Langmuir, 20, 9080–9088. [DOI] [PubMed] [Google Scholar]
  • 65.Gooding J. J., Mearns F., Yang W., and Liu J. (2003) Self-assembled monolayers into the 21st century: Recent advances and applications. Electroanalysis, 15, 81–96. [Google Scholar]
  • 66.Balmer T. E., Schmid H., Stutz R., Delamarche E., Michel B., Spencer N. D., and Wolf H. (2005) Diffusion of alkanethiols in PDMS and its implications on microcontact printing (μCP). Langmuir, 21, 622–632. [DOI] [PubMed] [Google Scholar]
  • 67.Geissler M., Wolf H., Stutz R., Delamarche E., Grummt U.-W., Michel B., and Bietsch A. (2003) Fabrication of metal nanowires using microcontact printing. Langmuir, 19, 6301–6311. [Google Scholar]
  • 68.Li H.-W., Muir B. V. O., Fichet G., and Huck W. T. S. (2003) Nanocontact printing: A route to sub-50-nm-scale chemical and biological patterning. Langmuir, 19, 1963–1965. [Google Scholar]
  • 69.Geissler M., McLellan J. M., and Xia Y. N. (2005) Edge-spreading lithography: Use of patterned photoresist structures to direct the spreading of alkanethiols on gold. Nano Lett., 5, 31–36. [DOI] [PubMed] [Google Scholar]
  • 70.Schmid H., and Michel B. (2000) Siloxane polymers for high-resolution, high-accuracy soft lithography. Macromolecules, 33, 3042–3049. [Google Scholar]
  • 71.Odom T. W., Love J. C., Wolfe D. B., Paul K. E., and Whitesides G. M. (2002) Improved pattern transfer in soft lithography using composite stamps. Langmuir, 18, 5314–5320. [Google Scholar]
  • 72.Love J. C., Wolfe D. B., Chabinyc M. L., Paul K. E., and Whitesides G. M. (2002) Self-assembled monolayers of alkanethiolates on palladium are good etch resists. J. Am. Chem. Soc., 124, 1576–1577. [DOI] [PubMed] [Google Scholar]
  • 73.Wolfe D. B., Love J. C., Paul K. E., Chabinyc M. L., and Whitesides G. M. (2002) Fabrication of palladium-based microelectronic devices by microcontact printing. Appl. Phys. Lett., 80, 2222–2224. [Google Scholar]
  • 74.Linder V., Wu H., Jiang X., and Whitesides G. M. (2003) Rapid prototyping of 2D structures with feature sizes larger than 8 urn. Anal. Chem., 75, 2522–2527. [DOI] [PubMed] [Google Scholar]
  • 75.Wu H., Odom T. W., and Whitesides G. M. (2002) Generation of chrome masks with micrometer-scale features using microlens lithography. Adv. Mater., 14, 1213–1216. [Google Scholar]
  • 76.Love J. C., Wolfe D. B., Jacobs H. O., and Whitesides G. M. (2001) Microscope projection photolithography for rapid prototyping of masters with micron-scale features for use in soft lithography. Langmuir, 17, 6005–6012. [Google Scholar]
  • 77.Rozhok S., Piner R., and Mirkin C. A. (2003) Dip-pen nanolithography: What controls ink transport? J. Phys. Chem., B 107, 751–757. [Google Scholar]
  • 78.Ginger D. S., Zhang H., and Mirkin C. A. (2004) The evolution of dip-pen nanolithography. Angew. Chem. Intern. Ed., 43, 30–35. [DOI] [PubMed] [Google Scholar]
  • 79.Bullen D. A., Wang X., Zou J., Chung S.-W., Liu C., and Mirkin C. A. (2003) Development of parallel Dip Pen Nanolithography probe arrays for high throughput nanolithography. Mater. Res. Soc. Symp. Proc., 758, 141–150. [Google Scholar]
  • 80.Vettiger P., Despont M., Drechsler U., Durig U., Haberle W., Lutwyche M. I., Rothuizen H. E., Stutz R., Widmer R., and Binnig G. K. (2000) The “Millipede”–more than one thousand tips for future AFM data storage. IBM J. Res. Dev., 44, 323–340. [Google Scholar]
  • 81.Holmlin R. E., Ismagilov R. F., Haag R., Mujica V., Ratner M. A., Rampi M. A., and Whitesides G. M. (2001) Correlating electron transport and molecular structure in organic thin films. Angew. Chem. Intern. Ed., 40, 2316–2320. [DOI] [PubMed] [Google Scholar]
  • 82.Salomon A., Cahen D., Lindsay S., Tomfohr J., Engelkes V. B., and Frisbie C. D. (2003) Comparison of electronic transport measurements on organic molecules. Adv. Mater., 15, 1881–1890. [Google Scholar]
  • 83.Adams D. M., Brus L., Chidsey C. E. D., Creager S., Creutz C., Kagan C. R., Kamat P. V., Lieberman M., Lindsay S., Marcus R. A., Metzger R. M., Michel-Beyerle M. E., Miller J. R., Newton M. D., Rolison D. R., Sankey O., Schanze K. S., Yardley J., and Zhu X. Y. (2003) Charge transfer on the nanoscale: Current status. J. Phys. Chem., B 107, 6668–6697. [Google Scholar]
  • 84.Aviram A., and Ratner M. A. (1998) Molecular Electronics: Science and Technology, New York Academy of Sciences, New York. [Google Scholar]
  • 85.Alivisatos A. P., Barbara P. F., Castleman A. W., Chang J., Dixon D. A., Klein M. L., McLendon G. L., Miller J. S., Ratner M. A., Rossky P. J., Stupp S. I., and Thompson M. E. (1998) From molecules to materials: Current trends and future directions. Adv. Mater., 10, 1297–1336. [Google Scholar]
  • 86.Xia Y., and Whitesides G. M. (1998) Soft lithography. Ann. Rev. Mater. Sci., 28, 153–184. [Google Scholar]
  • 87.Michel B., Bernard A., Bietsch A., Delamarche E., Geissler M., Juncker D., Kind H., Renault J. P., Rothuizen H., Schmid H., Schmidt-Winkel P., Stutz R., and Wolf H. (2001) Printing meets lithography: Soft approaches to high-resolution printing. IBM J. Res. Dev., 45, 697–719. [Google Scholar]
  • 88.Wang W. Y., Lee T., and Reed M. A. (2004) Elastic and inelastic electron tunneling in alkane self-assembled monolayers. J. Phys. Chem., B 108, 18398–18407. [Google Scholar]
  • 89.Finklea H. O., Yoon K., Chamberlain E., Allen J., and Haddox R. (2001) Effect of the metal on electron transfer across self-assembled monolayers. J. Phys. Chem., B 105, 3088–3092. [Google Scholar]
  • 90.Galperin M., Nitzan A., Sek S., and Majda M. (2003) Asymmetric electron transmission across asymmetric alkanethiol bilayer junctions. J. Electroanal. Chem., 550–551, 337–350. [Google Scholar]
  • 91.Vilan A., and Cahen D. (2002) How organic molecules can control electronic devices. Trends Biotechnol., 20, 22–29. [DOI] [PubMed] [Google Scholar]
  • 92.Vilan A., and Cahen D. (2002) Soft contact deposition onto molecularly modified GaAs. Thin metal film flotation: principles and electrical effects. Adv. Fund. Mater., 12, 795–807. [Google Scholar]
  • 93.Slowinski K., Chamberlain R. V. II, Bilewicz R., and Majda M. (1996) Evidence for inefficient chain-to-chain coupling in electron tunneling through liquid alkanethiol monolayer films on mercury. J. Am. Chem. Soc., 118, 4709–4710. [Google Scholar]
  • 94.Blum A. S., Kushmerick J. G., Pollack S. K., Yang J. C., Moore M., Naciri J., Shashidhar R., and Ratna B. R. (2004) Charge transport and scaling in molecular wires. J. Phys. Chem., B 108, 18124–18128. [Google Scholar]
  • 95.Skulason H., and Frisbie C. D. (2002) Direct detection by atomic force microscopy of single bond forces associated with the rupture of discrete charge-transfer complexes. J. Am. Chem. Soc., 124, 15125–15133. [DOI] [PubMed] [Google Scholar]
  • 96.Beebe J. M., Engelkes V. B., Miller L. L., and Frisbie C. D. (2002) Contact resistance in metal-molecule-metal junctions based on aliphatic SAMs: Effects of surface linker and metal work function. J. Am. Chem. Soc., 124, 11268–11269. [DOI] [PubMed] [Google Scholar]
  • 97.Engelkes V. B., Beebe J. M., and Frisbie C. D. (2004) Length-dependent transport in molecular junctions based on SAMs of alkanethiols and alkanedithiols: Effect of metal work function and applied bias on tunneling efficiency and contact resistance. J. Am. Chem. Soc., 126, 14287–14296. [DOI] [PubMed] [Google Scholar]
  • 98.Kushmerick J. G., Naciri J., Yang J. C., and Shashidhar R. (2003) Conductance scaling of molecular wires in parallel. Nano Lett., 3, 897–900. [Google Scholar]
  • 99.Reed M. A., Zhou C., Deshpande M. R., Muller C. J., Burgin T. P., Jones L. II, and Tour J. M. (1998) The electrical measurement of molecular junctions. Ann. NY Acad. Sci., 852, 133–144. [Google Scholar]
  • 100.Reichert J., Weber H. B., Mayor M., and von Lohneysen H. (2003) Low-temperature conductance measurements on single molecules. Appl. Phys. Lett., 82, 4137–4139. [Google Scholar]
  • 101.Kergueris C., Bourgoin J. P., Palacin S., Esteve D., Urbina C., Magoga M., and Joachim C. (1999) Electron transport through a gold-bisthiolterthiophene-gold junction. AIP Conf. Proc., 486, 421–426. [Google Scholar]
  • 102.Donhauser Z. J., Mantooth B. A., Pearl T. P., Kelly K. F., Nanayakkara S. U., and Weiss P. S. (2002) Matrix-mediated control of stochastic single molecule conductance switching. Japan. J. Appl. Phys., 41, 4871–4877. [Google Scholar]
  • 103.Lewis P. A., Donhauser Z. J., Mantooth B. A., Smith R. K., Bumm L. A., Kelly K. F., and Weiss P. S. (2001) Control and placement of molecules via self-assembly. Nanotechnology, 12, 231–237. [Google Scholar]
  • 104.Smalley J. F., Finklea H. O., Chidsey C. E. D., Linford M. R., Creager S. E., Ferraris J. P., Chalfant K., Zawodzinsk T., Feldberg S. W., and Newton M. D. (2003) Heterogeneous electron-transfer kinetics for ruthenium and ferrocene redox moieties through alkanethiol monolayers on gold. J. Am. Chem. Soc., 125, 2004–2013. [DOI] [PubMed] [Google Scholar]
  • 105.Oh S.-K., Baker L. A., and Crooks R. M. (2002) Electrochemical rectification using mixed monolayers of redox-active ferrocenyl dendrimers and n-alkanethiols. Langmuir, 18, 6981–6987. [Google Scholar]
  • 106.Rampi M. A., and Whitesides G. M. (2002) A versatile experimental approach for understanding electron transport through organic materials. Chem. Phys., 281, 373–391. [Google Scholar]
  • 107.Chen J., and Reed M. A. (2002) Electronic transport of molecular systems. Chem. Phys., 281, 127–145. [Google Scholar]
  • 108.Pease A. R., Jeppesen J. O., Stoddart J. F., Luo Y., Collier C. P., and Heath J. R. (2001) Switching devices based on interlocked molecules. Acc. Chem. Rev., 34, 433–444. [DOI] [PubMed] [Google Scholar]
  • 109.Le J. D., He Y., Hoye T. R., Mead C. C., and Kiehl R. A. (2003) Negative differential resistance in a bilayer molecular junction. Appl. Phys. Lett., 83, 5518–5520. [Google Scholar]
  • 110.Galperin M., Ratner M. A., and Nitzan A. (2005) Hysteresis, switching, and negative differential resistance in molecular junctions: A polaron model. Nano Lett., 5, 125–130. [DOI] [PubMed] [Google Scholar]
  • 111.Shi X. Q., Zheng X. H., Dai Z. X., Wang Y., and Zeng Z. (2005) Changes of coupling between the electrodes and the molecule under external bias bring negative differential resistance. J. Phys. Chem., B 109, 3334–3339. [DOI] [PubMed] [Google Scholar]
  • 112.Jang S. S., Jang Y. H., Kim Y. H., Goddard W. A., Flood A. H., Laursen B. W., Tseng H. R., Stoddart J. F., Jeppesen J. O., Choi J. W., Steuerman D. W., Delonno E., and Heath J. R. (2005) Structures and properties of self-assembled monolayers of bistable [2]rotaxanes on Au(111) surfaces from molecular dynamics simulations validated with experiment. J. Am. Chem. Soc., 127, 1563–1575. [DOI] [PubMed] [Google Scholar]
  • 113.Service R. F. (2003) Next-generation technology hits an early midlife crisis. Science (Washington, B.C.), 302, 556–559. [DOI] [PubMed] [Google Scholar]
  • 114.Selzer Y., Cai L. T., Cabassi M. A., Yao Y. X., Tour J. M., Mayer T. S., and Allara D. L. (2005) Effect of local environment on molecular conduction: Isolated molecule versus self-assembled monolayer. Nano Lett., 5, 61–65. [DOI] [PubMed] [Google Scholar]
  • 115.Fisher G. L., Walker A. V., Hooper A. E., Tighe T. B., Bahnck K. B., Skriba H. T., Reinard M. D., Haynie B. C., Opila R. L., Winograd N., and Allara D. L. (2002) Bond insertion, complexation, and penetration pathways of vapor-deposited aluminum atoms with HO- and CH3O-terminated organic monolayers. J. Am. Chem. Soc., 124, 5528–5541. [DOI] [PubMed] [Google Scholar]
  • 116.Walker A. V., Tighe T. B., Reinard M. D., Haynie B. C., Allara D. L., and Winograd N. (2003) Solvation of zero-valent metals in organic thin films. Chem. Phys. Lett., 369, 615–620. [Google Scholar]
  • 117.Tai Y., Shaporenko A., Eck W., Grunze M., and Zharnikov M. (2004) Abrupt change in the structure of self-assembled monolayers upon metal evaporation. Appl. Phys. Lett., 85, 6257–6259. [Google Scholar]
  • 118.Woodward J. T., Gwin H., and Schwartz D. K. (2000) Contact angles on surfaces with mesoscopic chemical heterogeneity. Langmuir, 16, 2957–2961. [Google Scholar]
  • 119.Gershevitz O., Sukenik C. N., Ghabboun J., and Cahen D. (2003) Molecular monolayer-mediated control over semiconductor surfaces: Evidence for molecular depolarization of silane Monolayers on Si/SiOx. J. Am. Chem. Soc., 125, 4730–4731. [DOI] [PubMed] [Google Scholar]
  • 120.Selzer Y., Salomon A., and Cahen D. (2002) Effect of molecule-metal electronic coupling on through-bond hole tunneling across metal-organic monolayer-semiconductor junctions. J. Am. Chem. Soc., 124, 2886–2887. [DOI] [PubMed] [Google Scholar]
  • 121.Hatzor A., and Weiss P. S. (2001) Molecular rulers for scaling down nanostructures. Science (Washington, B.C.), 291, 1019–1020. [DOI] [PubMed] [Google Scholar]
  • 122.Collier C. P., Saykally R. J., Shiang J. J., Henrichs S. E., and Heath J. R. (1997) Reversible tuning of silver quantum dot monolayers through the metal-insulator transition. Science (Washington, B.C.), 277, 1978–1981. [Google Scholar]
  • 123.Kim S. H., Medeiros-Ribeiro G., Ohlberg D. A. A., Williams R. S., and Heath J. R. (1999) Individual and collective electronic properties of Ag nanocrystals. J. Phys. Chem., B 103, 10341–10347. [Google Scholar]
  • 124.Held G. A., Grinstein G., Doyle H., Sun S., and Murray C. B. (2001) Competing interactions in dispersions of superparamagnetic nanoparticles. Phys. Rev. B: Solid State, 64, 012408/1–012408/4. [Google Scholar]
  • 125.Haes A. J., and Van Duyne R. P. (2002) A nanoscale optical biosensor: Sensitivity and selectivity of an approach based on the localized surface plasmon resonance spectroscopy of triangular silver nanoparticles. J. Am. Chem. Soc., 124, 10596–10604. [DOI] [PubMed] [Google Scholar]
  • 126.Templeton A. C., Wuelfmg W. P., and Murray R. W. (2000) Mono-layer-protected cluster molecules. Acc. Chem. Rev., 33, 27–36. [DOI] [PubMed] [Google Scholar]
  • 127.Warner M. G., and Hutchison J. E. (2003) In: Baraton M.-I. (ed.) Synthesis, Functionalization and Surface Treatment of Nanoparticles, pp. 67–89. American Scientific Publishers, San Francisco. [Google Scholar]
  • 128.Murray C. B., Kagan C. R., and Bawendi M. G. (2000) Synthesis and characterization of monodisperse nanocrystals and close-packed nanocrystal assemblies. Ann. Rev. Mater. Sci., 30, 545–610. [Google Scholar]
  • 129.Murray C. B., Sun S., Gaschler W., Doyle H., Betley T. A., and Kagan C. R. (2001) Colloidal synthesis of nanocrystals and nanocrystal superlattices. IBM J. Res. Dev., 45, 47–56. [Google Scholar]
  • 130.O'Brien S., Brus L., and Murray C. B. (2001) Synthesis of monodisperse nanoparticles of barium titanate: toward a generalized strategy of oxide nanoparticle synthesis. J. Am. Chem. Soc., 123, 12085–12086. [DOI] [PubMed] [Google Scholar]
  • 131.Manna L., Milliron D. J., Meisel A., Scher E. C., and Alivisatos A. P. (2003) Controlled growth of tetrapod-branched inorganic nanocrystals. Nature Mater., 2, 382–385. [DOI] [PubMed] [Google Scholar]
  • 132.Tkachenko A. G., Xie H., Coleman D., Glomm W., Ryan J., Anderson M. F., Franzen S., and Feldheim D. L. (2003) Multifunctional gold nanoparticle-peptide complexes for nuclear targeting. J. Am. Chem. Soc., 125, 4700–4701. [DOI] [PubMed] [Google Scholar]
  • 133.Boal A. K., and Rotello V. M. (2002) Radial control of recognition and redox processes with multivalent nanoparticle hosts. J. Am. Chem. Soc., 124, 5019–5024. [DOI] [PubMed] [Google Scholar]
  • 134.Cao Y. C., Jin R., Nam J.-M., Thaxton C. S., and Mirkin C. A. (2003) Raman dye-labeled nanoparticle probes for proteins. J. Am. Chem. Soc., 125, 14676–14677. [DOI] [PubMed] [Google Scholar]
  • 135.Yan L., Marzolin C., Terfort A., and Whitesides G. M. (1997) Formation and reaction of interchain carboxylic anhydride groups on self-assembled monolayers on gold. Langmuir, 13, 6704–6712. [Google Scholar]
  • 136.Sullivan T. P., and Huck W. T. S. (2003) Reactions on monolayers: organic synthesis in two dimensions. Eur. J. Org. Chem., 17–29. [Google Scholar]
  • 137.Su J., and Mrksich M. (2002) Using mass spectrometry to characterize self-assembled monolayers presenting peptides, proteins, and carbohydrates. Angew. Chem. Int. Ed., 41, 4715–4718. [DOI] [PubMed] [Google Scholar]
  • 138.Su J., and Mrksich M. (2003) Using MALDI-TOF mass spectrometry to characterize interfacial reactions on self-assembled monolayers. Langmuir, 19, 4867–4870. [Google Scholar]
  • 139.Ostuni E., Chapman R. G., Holmlin R. E., Takayama S., and Whitesides G. M. (2001) A survey of structure-property relationships of surfaces that resist the adsorption of protein. Langmuir, 17, 5605–5620. [DOI] [PubMed] [Google Scholar]
  • 140.Ostuni E., Chapman R. G., Liang M. N., Meluleni G., Pier G., Ingber D. E., and Whitesides G. M. (2001) Self-assembled monolayers that resist the adsorption of proteins and the adhesion of bacterial and mammalian cells. Langmuir, 17, 6336–6343. [Google Scholar]
  • 141.Chaki N. K., and Vijayamohanan K. (2002) Self-assembled monolayers as a tunable platform for biosensor applications. Biosens. Bioelectron., 17, 1–12. [DOI] [PubMed] [Google Scholar]
  • 142.Brock A., Chang E., Ho C.-C., LeDuc P., Jiang X., Whitesides G. M., and Ingber D. E. (2003) Geometric determinants of directional cell motility revealed using microcontact printing. Langmuir, 19, 1611–1617. [DOI] [PubMed] [Google Scholar]
  • 143.Jiang X., Ferrigno R., Mrksich M., and Whitesides G. M. (2003) Electrochemical desorption of self-assembled monolayers noninvasively releases patterned cells from geometrical confinements. J. Am. Chem. Soc., 125, 2366–2367. [DOI] [PubMed] [Google Scholar]
  • 144.Abad J. M., Velez M., Santamaria C., Guisan J. M., Matheus P. R., Vazquez L., Gazaryan I., Gorton L., Gibson T., and Fernandez V. M. (2002) Immobilization of peroxidase glycoprotein on gold electrodes modified with mixed epoxy-boronic acid monolayers. J. Am. Chem. Soc., 124, 12845–12853. [DOI] [PubMed] [Google Scholar]
  • 145.Roberts C., Chen C. S., Mrksich M., Martichonok V., Ingber D. E., and Whitesides G. M. (1998) Using mixed self-assembled monolayers presenting RGD and (EG)3OH groups to characterize long-term attachment of bovine capillary endothelial cells to surfaces. J. Am. Chem. Soc., 120, 6548–6555. [Google Scholar]
  • 146.Chen C. S., Mrksich M., Huang S., Whitesides G. M., and Ingber D. E. (1997) Geometric control of cell life and death. Science (Washington, B.C.), 276, 1425–1428. [DOI] [PubMed] [Google Scholar]
  • 147.Jiang X., Bruzewicz D. A., Wong A. P., Piel M., and Whitesides G. M. (2005) Directing cell migration with asymmetric micropatterns. Proc Nat. Acad. Sci. USA, 102, 975–978. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 148.Whitesides G. M., Ostuni E., Takayama S., Jiang X., and Ingber D. E. (2001) Soft lithography in biology and biochemistry. Annu. Rev. Biomed. Eng., 3, 335–373. [DOI] [PubMed] [Google Scholar]
  • 149.Parker K. K., Brock A. L., Brangwynne C., Mannix R. J., Wang N., Ostuni E., Geisse N. A., Adams J. C., Whitesides G. M., and Ingber D. E. (2002) Directional control of lamellipodia extension by constraining cell shape and orienting cell tractional forces. FASEB J., 16, 1195–1204. [DOI] [PubMed] [Google Scholar]
  • 150.Yeo W.-S., and Mrksich M. (2003) Self-assembled monolayers that transduce enzymatic activities to electrical signals. Angew. Chem. Intern. Ed., 42, 3121–3124. [DOI] [PubMed] [Google Scholar]
  • 151.Yeo W.-S., Yousaf M. N., and Mrksich M. (2003) Dynamic interfaces between cells and surfaces: Electroactive substrates that sequentially release and attach cells. J. Am. Chem. Soc., 125, 14994–14995. [DOI] [PubMed] [Google Scholar]
  • 152.Hofer R., Textor M., and Spencer N. D. (2001) Alkyl phosphate monolayers, self-assembled from aqueous solution onto metal oxide surfaces. Langmuir, 17, 4014–4020. [Google Scholar]
  • 153.Hurley P. T., Ribbe A. E., and Buriak J. M. (2003) Nanopatterning of alkynes on hydrogen-terminated silicon surfaces by scanning probe-induced cathodic electrografting. J. Am. Chem. Soc., 125, 11334–11339. [DOI] [PubMed] [Google Scholar]
  • 154.Shaporenko A., Ulman A., Terfort A., and Zharnikov A. (2005) Self-assembled monolayers of alkaneselenolates on (111) gold and silver. J. Phys. Chem., B 109, 3898–3906. [DOI] [PubMed] [Google Scholar]
  • 155.Trimbach D., Feldman K., Spencer N. D., Broer D. J., and Bastiaansen C. W. M. (2003) Block copolymer thermoplastic elastomers for microcontact printing. Langmuir, 19, 10957–10961. [Google Scholar]
  • 156.Geissler M., Schmid H., Bietsch A., Michel B., and Delamarche E. (2002) Defect-tolerant and directional wet-etch systems for using monolayers as resists. Langmuir, 18, 2374–2377. [Google Scholar]
  • 157.Carvalho A., Geissler M., Schmid H., Micel B., and Delamarche E. (2002) Self-assembled monolayers of eicosanethiol of palladium and their use in microcontact printing. Langmuir, 18, 2406–2412. [Google Scholar]
  • 158.Some of the companies that use SAMs as part of their core technologies include: Biocore, G., Minerva, Molecular Imprints, Nanoink, Nanoplex, Quantum Dot, Surface Logix and ZettaCore, Inc.

Articles from Science Progress are provided here courtesy of SAGE Publications

RESOURCES