Skip to main content
Science Progress logoLink to Science Progress
. 2019 Feb 27;90(2-3):73–102. doi: 10.3184/003685007X215913

Intracellular Cytoskeletal Elements and Cytoskeletons in Bacteria

Mohamed HF Madkour 1,, Frank Mayer 2,
PMCID: PMC10368322  PMID: 17725228

Abstract

Within a short period of time after the discovery of bacterial cytoskletons, major progress had been made in areas such as general spatial layout of cytoskeletons, their involvement in a variety of cell functions (shape control, cell division, chromosome segregation, cell motility). This progress was achieved by application of advanced investigation techniques. Homologs of eukaryotic actin, tubulin, and intermediate filaments were found in bacteria; cytoskeletal proteins not closely or not at all related to any of these major cytoskeletal proteins were discovered in a number of bacteria such as Mycoplasmas, Spiroplasmas, Spirochetes, Treponema, Caulobacter. A structural role for bacterial elongation factor Tu was indicated. On the basis of this new thinking, new approaches in biotechnology and new drugs are on the way.

Keywords: bacterial cytoskeletons, actin-homologs, tubulin homologs, intermediate filament homologs, EF-Tu, cell shape, motiliy, chromosome segregation, cell division, biotechnology

Full Text

The Full Text of this article is available as a PDF (3.0 MB).

References

  • 1.Mayer F. (2002) Cytoskeletons in Eukaryotes and Prokaryotes. In: Fahnestock A., and Steinbüchel A. (eds.), Biopolymers, vol. 7. Polyamides and complex proteinaceous materials I, pp. 339–375. Wiley-VCH Weinheim. [Google Scholar]
  • 2.Koch A. L. (2006) The exocytoskeleton. J. Mol. Microbiol. Biotechnol., 11, 115–125. [DOI] [PubMed] [Google Scholar]
  • 3.Davis R. E., Worley J. F., Whitcomb R. F., Ishijima T., and Steere R. L. (1972) Helical filaments produced by a mycoplasma-like organism associated with corn stunt disease. Science, 176, 521–523. [DOI] [PubMed] [Google Scholar]
  • 4.Trachtenberg S. (2006) The cytoskeleton of Spiroplasma: a complex linear motor. J. Mol. Microbiol. Biotechnol., 11, 265–283. [DOI] [PubMed] [Google Scholar]
  • 5.Neimark H. C. (1977) Extraction of an actin-like protein from the prokaryote Mycoplasma pneumoniae. Proc. Natl. Acad. Sci. USA, 74, 4041–4045. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 6.Domermuth C. H., Nielsen M. H., Freundt E. A., and Birch-Andersen A. (1964). Ultrastructure of Mycoplasma species. J. Bacteriol., 88, 727–744. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 7.Göbel U., Speth V., and Bredt W. (1981) Filamentous structures in adherent Mycoplasma pneumoniae cells treated with non-ionic detergents. J. Cell Biol., 91, 537–543. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 8.Löwe J., van den Ent F., and Amos L. A. (2004) Molecules of the bacterial cytoskeleton. Annu. Rev. Biophys. Biomol. Struct., 33, 177–198. [DOI] [PubMed] [Google Scholar]
  • 9.Antranikian G., Herzberg C., Mayer F., and Gottschalk G. (1987) Changes in the cell envelope structure of Clostridium sp. strain EM1 during massive production of α-amylase and pullulanase. FEMS Microbiol. Lett., 41, 193–197. [Google Scholar]
  • 10.Mayer F., Vogt B., and Poc C. (1998) Immunoelectron microscopic studies indicate the existence of a cell shape preserving cytoskeleton in prokaryotes. Naturwissensch., 85, 278–282. [DOI] [PubMed] [Google Scholar]
  • 11.Amos L. A., van den Ent F., and Löwe J. (2004) Structural/functional homology between the bacterial and eukaryotic cytoskeletons. Curr. Opin. Cell Biol., 16, 24–31. [DOI] [PubMed] [Google Scholar]
  • 12.Ronen H., and Sigal B.-Y. (2006) Resolving chromosome segretaion in bacteria. J. Mol. Microbiol. Biotechnol., 11, 126–139. [DOI] [PubMed] [Google Scholar]
  • 13.Margolin W. (2005) Bacterial mitosis: actin in a new role at the origin. Curr. Biol., 15, R259–R261. [DOI] [PubMed] [Google Scholar]
  • 14.Beck B. D., Arscott P. G., and Jacobson A. (1978) Novel properties of bacterial elongation factor Tu. Proc. Natl. Acad. Sci. USA, 75, 1250–1254. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 15.Cremers A. F., Bosch L., and Mellema J. E. (1981) Characterization of regular polymerization products of elongation factor EF-Tu from Escherichia coli by electron microscopy and image processing. J. Mol. Biol., 153, 477–486. [DOI] [PubMed] [Google Scholar]
  • 16.Schilstra M. J., Slot J. W., Van Der Meide P. H., Posthuma G., Cremers A. F., and Bosch L. (1996) Immunocytochemical localization of the elongation factor Tu in E. coli cells. Biochim. Biophys. Acta, 1291, 122–130. [DOI] [PubMed] [Google Scholar]
  • 17.Dai K., and Lutkenhaus J. (1991) ftsZ is an essential cell division gene in Escherichia coli. J. Bacterial., 173, 3500–3506. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 18.Bi E. F., and Lutkenhaus J. (1991) FtsZ ring structure associated with division in Escherichia coli. Nature, 354, 161–164. [DOI] [PubMed] [Google Scholar]
  • 19.Jones L. F. J., Carballido-Lopez R., and Errington J. (2001) Control of cell shape in bacteria: helical, actin-like filaments in Bacillus subtilis. Cell, 104, 913–922. [DOI] [PubMed] [Google Scholar]
  • 20.Doi M., Wachi M., Ishino F., Tomioka S., Ito M., Sakagami Y., Suzuki A., and Matsuhashi M. (1988) Determinations of the DNA sequence of the mreB gene and of the gene products of the mre region that function in formation of the rod shape of Escherichia coli cell. J. Bacteriol., 170, 4619–4624. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 21.Balish M. F., and Krause D. C. (2006) Mycoplasmas: A distinct cytoskeleton for wall-less bacteria. J. Mol. Microbiol. Biotechnol., 11, 244–255. [DOI] [PubMed] [Google Scholar]
  • 22.Dandekar T., Huynen M., Regula J. T., Ueberle B., Zimmermann C. U., Andrade M. A., Dierks T., Sanchez-Pulido L., Snel B., Suyama M., Yuan Y. P., Herrmann R., and Bork P. (2000) Re-annotating the Mycoplasma pneumoniae genome sequence: adding value, function and reding frames. Nucleic Acid Res., 28, 3278–3288. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 23.Hegermann J., Herrmann R., and Mayer F. (2002) Cytoskeletal elements in the bacterium Mycoplasma pneumoniae. Naturwissensch., 89, 453–458. [DOI] [PubMed] [Google Scholar]
  • 24.Mayer F. (2006) Cytoskeletal elements in bacteria Mycoplasma pneumoniae, Thermoanaerobacterium sp., and Escherichia coli as revealed by electron microscopy. J. Mol. Microbiol. Biotechnol., 11, 228–243. [DOI] [PubMed] [Google Scholar]
  • 25.Miyata M., and Ogaki H. (2006) Cytoskeleton of Mollicutes. J. Mol. Microbiol. Biotechnol., 11, 256–264. [DOI] [PubMed] [Google Scholar]
  • 26.Regula J. T., Boguth G., Görg G., Hegermann J., Mayer F., Frank R., and Herrmann R. (2001) Defining the Mycoplasma ‘cytoskeleton': The protein composition of the Triton X-100 insoluble fraction of the bacterium Mycoplasma pneumoniae determined by 2-D gel electrophoresis and mass spectroscopy. Microbiology, 147, 1045–1057. [DOI] [PubMed] [Google Scholar]
  • 27.Biberfeld G., and Biberfeld P. (1970) Ultrastructural features of Mycoplasma pneumoniae. J. Bacterial., 102, 855–861. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 28.Margolin W. (2003) Bacterial shape: Growing off this mortal coil. Curr. Biol., 13, R705–R707. [DOI] [PubMed] [Google Scholar]
  • 29.Izard J. (2006) Cytoskeletal cytoplasmic filament ribbon of Treponema: a member of an intermediate-like filament protein family. J. Mol. Microbiol. Biotechnol., 11, 159–166. [DOI] [PubMed] [Google Scholar]
  • 30.Ausmees N. (2006) Intermediate filament-like cytoskeleton of Caulobacter crescentus. J. Mol. Microbiol. Biotechnol., 11, 152–158. [DOI] [PubMed] [Google Scholar]
  • 31.Dajkovic A., and Lutkenhaus J. (2006) Z ring as executor of bacterial cell division. J. Mol. Microbiol. Biotechnol., 11, 140–151. [DOI] [PubMed] [Google Scholar]
  • 32.Shih Y. L., Le T., and Rothfield L. (2003) Division site selection in Escherichia coli involves dynamic redistribution of Min proteins within coiled structures that extend between the two cell poles. Proc. Natl. Acad. Sci. USA, 100, 7865–7870. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 33.Löwe J., and Amos L. A. (1998) Crystal structure of the bacterial cell division protein FtsZ. Nature, 391, 203–206. [DOI] [PubMed] [Google Scholar]
  • 34.Erickson H. P. (2001) The FtsZ protofilament and attachment of ZipA–structural constraints on the FtsZ power stroke. Curr. Opin. Cell Biol., 13, 55–60. [DOI] [PubMed] [Google Scholar]
  • 35.Van Den Ent F., and Amos L. A. (2001) Prokaryotic origin of the actin cytoskeleton. Nature, 413, 39–44. [DOI] [PubMed] [Google Scholar]
  • 36.Carballido-Lopez R., and Errington J. (2003) The bacterial cytoskeleton: In vivo dynamics of the actin-like protein Mbl of Bacillus subtilis. Dev. Cell, 4, 19–28. [DOI] [PubMed] [Google Scholar]
  • 37.Daniel R. A., and Errington J. (2003) Control of cell morphogenesis in bacteria: Two distinct ways to make a rod-shaped cell. Cell, 113, 767–776. [DOI] [PubMed] [Google Scholar]
  • 38.Van Den Ent F., Moller-Jensen J., Amos L. A., Gerdes K., and Lowe F. (2002) F-actin-like filaments formed by plasmid-segregation protein ParM. EMBO J., 21, 6935–6943. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 39.Gerdes K., Moller-Jensen J., Ebersbach G., Kruse T., and Nordstrom K. (2004) Bacterial mitotic machineries. Cell, 116, 359–366. [DOI] [PubMed] [Google Scholar]
  • 40.Mayer F. (2003) Cytoskeletons in prokaryotes–Status report and hypotheses. Cell Biol. Internat., 27, 429–438. [DOI] [PubMed] [Google Scholar]
  • 41.Furano A. V. (1975) Content of elongation factor Tu in Escherichia coli. Proc. Natl. Acad. Sci. USA, 72, 4780–4784. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 42.Song H., Parsons M. R., Rowsell S., Leonard G., and Phillips S. E. V. (1999) Crystal structure of intact elongation factor EF-Tu from Escherichia coli in GDP conformation at 2.05 A resolution. J. Mol. Biol., 285, 1245–1256. [DOI] [PubMed] [Google Scholar]
  • 43.Mayer F. (2003) Das bakterielle Cytoskelett–Ein aktuelles Problem der Zellbiologie der Prokaryoten. Naturwiss. Rundschau, 56, 595–605. [Google Scholar]
  • 44.Mayer F., and Gottschalk G. (2003) The bacterial cytoskeleton and its putative role in membrane vesicle formation observed in a Gram-positive bacterium producing starch-degrading enzymes. J. Mol. Microbiol. Biotechnol., 6, 127–132. [DOI] [PubMed] [Google Scholar]
  • 45.Erickson H. P. (2001) Evolution in bacteria. Nature, 413, 430. [DOI] [PubMed] [Google Scholar]
  • 46.Hartmann H., and Fedorov A. (2002) The origin of the eukaryotic cell: A genomic investigation. Proc. Natl. Acad. Sci. USA, 99, 1420–1425. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 47.Errington J., Daniel R. A., and Scheffers D. J. (2003) Cytokinesis in bacteria. Microbiol. Biol. Rev., 67, 52–65. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 48.Van Den Ent F., Amos L., and Löwe J. (2001) Bacterial ancestry of actin and tubulin. Curr. Opin. Microbiol., 4, 634–638. [DOI] [PubMed] [Google Scholar]
  • 49.Carballido-Lopez R., and Errington J. (2003) A dynamic bacterial cytoskeleton. Trends Cell. Biol., 13, 577–583. [DOI] [PubMed] [Google Scholar]
  • 50.Moller-Jensen J., and Löwe J. (2005) Increasing complexity of the bacterial cytoskeleton. Curr. Opin. Cell. Biol., 17, 75–81. [DOI] [PubMed] [Google Scholar]
  • 51.Margalit D. N., Romberg L., Mets R. B., Hebert A. M., Mitchison T. J., Kirschner M. W., and RayChaudhuri D. (2004) Targeting cell division: small-molecular inhibitors of FtsZ GTPase perturb cytokinetic ring assembly and induce bacterial lethality. Proc. Nat. Acad. Sci. USA, 101, 11821–11826. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 52.Stokes N. R., Sievers J., Barker S., Bennett J. M., Brown D. R., Collins L., Errington V. M., Foulger D., Hall M., Halsey R. et al. (2005) Novel inhibitors of bacterial cytokinesis identified by a cell-based antibiotic screening assay. J. Biol. Chem., 280, 39709–39715. [DOI] [PubMed] [Google Scholar]
  • 53.Alberts B., Bray D., Lewis L., Raff M., Roberts K., and Watson J. D. (1983) Molecular Biology of the Cell Garland Publishing, New York, London. [Google Scholar]
  • 54.Lodish H., Baltimore D., Berk A., Zipurski S. L., Masudaira P., and Darnell J. (1996) Molekulare Zellbiologie. Walter de Gruyter, Berlin, New York. [Google Scholar]
  • 55.Erickson H. P., Taylor D. W., Taylor K. A., and Bramhill D. (1996) Bacterial cell division protein FtsZ assembles into protofilament sheets and minirings, structural homologs of tubulin dimmers. Proc. Natl. Acad. Sci. USA, 93, 519–523. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 56.Trachtenberg S., and Gilad R. (2001) A bacterial linear motor: cellular and macromolecular organization of the contractile cytoskeleton of the helical bacterium Spiroplasma melliferum BC3. Molec. Microbiol., 41, 827–848. [DOI] [PubMed] [Google Scholar]
  • 57.Kleinig H., and Sitte P. (1986) Zellbiologie. Gustav-Fischer-Verlag, Stuttgart. [Google Scholar]

Articles from Science Progress are provided here courtesy of SAGE Publications

RESOURCES