Skip to main content
Science Progress logoLink to Science Progress
. 2019 Feb 27;89(3-4):141–149. doi: 10.3184/003685006783238326

Recent Insights into Microbial Physiology

Walid M El-Sharoud, Robin J Rowbury
PMCID: PMC10368332  PMID: 17338436

Full Text

The Full Text of this article is available as a PDF (91.2 KB).

References

  • 1.Gould S. J. (1996) Full House: The Spread of Excellence from Plato to Darwin. New York: Harmony Books. [Google Scholar]
  • 2.Gest H. (2003) Microbes: an invisible universe. ASM Press: Washington, DC, USA. [Google Scholar]
  • 3.Neidhardt F. C. (1999) Bacterial growth: constant obsession with dN/dt. J. Bacterio., 181, 7405–7408. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 4.Lewis P. J., Thaker S. D., and Errington J. (2000) Compartmentalization of transcription and translation in Bacillus subtilis. EMBO J., 15, 710–718. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 5.Azam T. A., Hiraga S., and Ishihama A. (2000) Two types of localization of the DNA-binding proteins within the Escherichia coli nucleoid. Genes Cells, 5, 613–626. [DOI] [PubMed] [Google Scholar]
  • 6.Miller O. L. Jr., Hamkalo B. A., and Thomas C. A. Jr. (1970) Visualization of bacterial genes in action. Science, 169, 392–395. [DOI] [PubMed] [Google Scholar]
  • 7.El-Sharoud W. M., and Graumann P. L. (2007) Coupling of transcription and translation in bacteria. Sci. Prog., 90, in press. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 8.Dorman C. J. (2006) DNA supereoiling and bacterial gene expression. Sci. Prog., 89, 151–166. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 9.Bekker M., Teixeira de Mattos M. J., and Hellingwerf K. J. (206) Role of two-component regulation systems in the physiology of the bacterial cell. Sci. Prog., 89, 213–242. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 10.Smith D., Wang J.-H., Swatton J. E., Davenport P., Price B., Mikkelsen H., Stickland H., Nishikawa K., Gardiol N., Spring D. R., and Welch M. (2006) Diversity in quorum sensing mechanisms used by gram-negative bacteria. Sci. Prog., 89, 167–211. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 11.Helmann J. D. (2006) Deciphering a complex genetic regulatory network: the Bacillus subtilis σW protein and intrinsic resistance to antimicrobial compounds. Sci. Prog., 89, 243–266. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 12.Neidhardt F. C., Ingraham J. L., and Schaechter M. (1990) In: The Physiology of the Bacterial Cell. Sunderland, Mass: Sinauer Associates Inc. [Google Scholar]
  • 13.Igo M. M., and Silhavy T. J. (1988) EnvZ, a transmembrane sensor of Escherichia coli is phosphorylated in vitro. J. Bacteriol., 170, 5971–5973. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 14.Aiba H., Mizuno T., and Mizushima S. (1990) Transfer of phosphoryl group between two regulatory proteins involved in osmoregulatory expression of the ompF and ompC genes in Escherichia coli. J. Biol. Chem., 264, 8563–8567. [PubMed] [Google Scholar]
  • 15.Chen Q., and Amster-Choder O. (1999) BglF, the Escherichia coli β-glucosidase permease and sensor of the bgl system: domain requirements of the different catalytic activities. J. Bacteriol., 181, 462–468. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 16.Wood J. M. (1999) Signals and membrane-based sensors. Microbiol. Molec. Biol. Revs., 63, 230–262. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 17.Rowbury R. J. (2001) Cross-talk involving extracellular sensors and extracellular alarmones gives early warning to unstressed Escherichia coli of impending lethal chemical stress and leads to induction of tolerance responses. J. Appl. Microbiol., 90, 677–695. [DOI] [PubMed] [Google Scholar]
  • 18.Rowbury R. J., and Goodson M. (2001) Extracellular sensing and signalling pheromones switch-on thermotolerance and other stress responses in Escherichia coli. Sci. Prog., 84, 205–233. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 19.Rowbury R. J. (2005) Intracellular and extracellular components as bacterial thermometers and early warning against thermal stress. Sci. Prog., 88, 71–99. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 20.Rowbury R. J. (2004) Enterobacterial responses to external protons, including responses that involve early warning against stress and the functioning of extracellular pheromones, alarmones and varisensors. Sci. Prog., 87, 193–225. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 21.Rowbury R. J. (2005) Stress responses of foodborne pathogens, with particular reference to the switching-on of such responses. In: Fratamico P. M., Bhunia A. K., and Smith J. L. (eds.), Foodborne Pathogens: Microbiology and Molecular Biology, pp. 77–97. Caister Academic Press: Wymondham, Norfolk, UK. [Google Scholar]
  • 22.Rowbury R. J. (2003) Physiology and molecular basis of stress adaptation, with particular reference to subversion of stress adaptation and to the involvement of extracellular components in adaptation. In: Yousef A. E., and Juneja V. K. (eds.), Microbial Stress Adaptation and Food Safety, pp. 247–302. CRC Press, Boca Raton, USA. [Google Scholar]
  • 23.Rowbury R. J. (2003) UV radiation-induced enterobacterial responses, other processes that influence UV tolerance and likely environmental significance. Sci. Prog., 86, 313–332. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 24.Rowbury R. J. (2001) Extracellular sensing components and extracellular induction component alarmones give early warning against stress in Escherichia coli. Adv. Microbial Physiol., 44, 215–257. [DOI] [PubMed] [Google Scholar]

Articles from Science Progress are provided here courtesy of SAGE Publications

RESOURCES