Skip to main content
Science Progress logoLink to Science Progress
. 2009 Sep 1;92(3-4):447–468. doi: 10.3184/003685009X12547510332277

Adaptive Mutations: A Challenge to Neo-Darwinism?

Dragutin J Savic 1,2
PMCID: PMC10368342  PMID: 19960882

Full Text

The Full Text of this article is available as a PDF (603.8 KB).

References

  • 1.Cairns J., Overbaugh J., and Miller S. (1988) The origin of mutants. Nature, 335, 142–145. [DOI] [PubMed] [Google Scholar]
  • 2.Lenski E., and Mittler J.E. (1993) The directed mutation controversy and Neo-Darwinism. Science, 259, 188–194. [DOI] [PubMed] [Google Scholar]
  • 3.Foster P.L. (1993) Adaptive mutation: The uses of adversary. Ann. Rev. Microbiol., 47, 467–504. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 4.Luria S., and Dulbruck M. (1943) Mutations of bacteria from virus sensitivity to virus resistance. Genetics, 28, 491–511. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 5.Lederberg J., and Lederberg E.M. (1952) Replica plating and indirect selection of bacterial mutants. J. Bacteriol., 63, 399–406. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 6.Hall B.G. (1991) Spectrum of mutations that occur under selective and non-selective conditions in E. coli. Genetica, 84, 73–76. [DOI] [PubMed] [Google Scholar]
  • 7.Lampson B.C., Sun J., Hsu M.-Y., Valleoy-Ramirez J., Inouye S., and Inouye M. (1989) Reverse transcriptase in a clinical strain of Escherichia coli: production of branched RNA-linked msDNA. Science, 243, 1033–1038. [DOI] [PubMed] [Google Scholar]
  • 8.Lim D., and Maas W.K. (1989) Reverse transcriptase–dependent synthesis of a covalently linked, branched RNA-DNA compound in E. coli B. Cell, 56, 891–904. [DOI] [PubMed] [Google Scholar]
  • 9.Stahl F.W. (1988) A unicorn in the garden. Nature, 335, 112–113. [DOI] [PubMed] [Google Scholar]
  • 10.Boe L. (1990) Mechanism for induction of adaptive mutations in Escherichia coli. Mol. Microbiol., 4, 597–601. [DOI] [PubMed] [Google Scholar]
  • 11.Modrich P. (1991) Mechanisms and biological effects of mismatch repair. Ann. Rev. Genet., 25, 229–253. [DOI] [PubMed] [Google Scholar]
  • 12.Feng G., Tsui H.C., and Winkler M.E. (1996) Depletion of the cellular amounts of the MutS and MutH methyl-directed mismatch repair proteins in stationary-phase Escherichia coli K-12 cells. J. Bacteriol., 178, 2388–2396. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 13.Foster P.L., and Cairns J. (1992) Mechanisms of directed mutations. Genetics, 131, 783–789. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 14.Davis B.D. (1989) Transcriptional bias: A non-Lamarckian mechanism for substrate-induced mutations. Proc. Natl. Acad. Sci. USA, 86, 5005–5009. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 15.Singer B., and Kusmierek J.T. (182) Chemical mutagenesis. Ann. Rev. Biochem., 52, 655–693. [DOI] [PubMed] [Google Scholar]
  • 16.Lindahl T., and Neiberg B. (1972) Role of depurination of native deoxyribonucleic acid. Biochemistry, 11, 3610–3618. [DOI] [PubMed] [Google Scholar]
  • 17.Lindahl T., and Neiberg B. (1974) Heat-induced deamination of cytosine residues in deoxyribonucleic acid. Biochemistry, 13, 345–3410. [DOI] [PubMed] [Google Scholar]
  • 18.Cairns J., and Foster P.L. Adaptive reversion of a frameshift mutation in Escherichia coli. Genetics, 128, 659–701. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 19.Savic D.J., and Kanazir D.T. (1972) The effect of histidine operative-constitutive mutation on UV-induced mutability with the histidine operon of Salmonella typhimurium. Mol. Gen. Genet., 118, 45–50. [DOI] [PubMed] [Google Scholar]
  • 20.Savic D.J., and Kanazir D.T. (1975) UV-induced reversion patterns of constitutive and repressed Salmonella histidine auxotrophs. Mol. Gen. Genet., 137, 143–150. [DOI] [PubMed] [Google Scholar]
  • 21.Partridge M., and Morgan M.K. (1988) Is bacterial evolution random or selective? Nature, 336, 22. [DOI] [PubMed] [Google Scholar]
  • 22.Charlesworth D., Charlesworth B., and Bull J.J. (1988) Origin of mutants disputed. Nature, 336, 525. [DOI] [PubMed] [Google Scholar]
  • 23.Lenski R.E., Slatkin M., and Ayala F.J. (1989) Mutation and selection in bacterial population: Alternatives to the hypothesis of directed mutations. Proc. Natl. Acad. Sci. USA, 86, 2775–2779. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 24.Radicella J.P., Park P.U., and Fox M.S. (1995) Adaptive mutation in Escherichia coli: A role for conjugation. Science, 268, 418–420. [DOI] [PubMed] [Google Scholar]
  • 25.Ryan F.J. (1955) Spontaneous mutation in non-dividing bacteria. Genetics, 40, 726–738. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 26.Ryan F.J. (1959) Bacterial mutation in a stationary phase and the question of cell turnover. J. Gen. Microbiol., 21, 530–549. [DOI] [PubMed] [Google Scholar]
  • 27.Ryan F.J., Okada T., and Nagata D. (1963) Spontaneous mutation in spheroplasts of Escherichia coli. J. Gen. Microbiol. 30, 193–199. [DOI] [PubMed] [Google Scholar]
  • 28.Shapiro J.A. (1984) Observation on the formation of clones containing araB-lacZ cistron fusions. Mol. Gen. Genet., 194, 79–90. [DOI] [PubMed] [Google Scholar]
  • 29.Mittler J.E., and Lenski E. (1990) New data on excision of Mu from E. coli MCS2 cast doubt on directed mutation hypothesis. Nature, 344, 173–175. [DOI] [PubMed] [Google Scholar]
  • 30.Hall B.G. (1988) Adaptive evolution that requires multiple spontaneous mutations. I. Mutations involving an insertion sequence. Genetics, 120, 887–897. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 31.Parker L.L., Bettes P.W., and Hall B.G. (1988) Activation of a cryptic gene by excision of DNA fragment. J. Bacteriol., 170, 218–222. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 32.Symonds N. (1989) Anticipatory mutagenesis? Nature, 337, 119. [DOI] [PubMed] [Google Scholar]
  • 33.Mitler J.E., and Lenski E. (1992) Experimental evidence for an alternative to director mutation in the bgl operon. Nature, 356, 446–448. [DOI] [PubMed] [Google Scholar]
  • 34.Hall B.G. (1991) Adaptive evolution that requires multiple spontaneous mutations: mutations involving base substitution. Proc. Natl. Acad. Sci. USA, 88, 5882–5886. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 35.Foster P.L. (1992) Directed mutations between unicorns and goats. J. Bacteriol., 174, 1711–1716. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 36.Harris R.S., Longerich S., and Rosenberg S.M. (1993) Recombination in adaptive mutation. Science, 264, 258–260. [DOI] [PubMed] [Google Scholar]
  • 37.Kowalczkowski S.C., Dixon D.A., Eggleston A.K., Lauder S.D., and Rehrauer W.M. (1994) Biochemistry of homologous recombination in Escherichia coli. Microgiol. Rev., 58, 401–465. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 38.Foster P.L., and Trimarchi J.M. (1995) Adaptive reversion of an episonal frameshift mutation in Escherichia coli requires conjugal functions but not actual conjugation. Proc. Natl. Acad. Sci., 92, 5487–5490. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 39.Galiski T., and Roth J.R. (1995) Evidence that F plasmid transfer replication underlines apparent adaptive mutation. Science, 268, 421–423. [DOI] [PubMed] [Google Scholar]
  • 40.Rosenberg S.M., Lonerich S., Gee P., and Harris R.S. (1994) Adaptive mutation by deletion in small mononucleotide repeats. Science, 265, 405–407. [DOI] [PubMed] [Google Scholar]
  • 41.Foster P.L., and Trimarchi J.M. (1994) Adaptive reversion of a frameshift mutation in Escherichia coli by simple base deletions in homopolymeric runs. Science, 265, 407–409. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 42.Harris R.S., Ross K.J., and Rosenberg S.M. (1996) Opposing roles of the Holliday junction processing systems of Escherichia coli in recombination-dependent adaptive mutation. Genetics, 142, 681–691. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 43.Foster P.L., Trimarchi J.M., and Maurer R.A. (1996) Two enzymes both which process recombination intermediates, have opposite effects on adaptive mutations in Escherichia coli. Genetics, 142, 25–37. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 44.West S.E. (1994) The processing of recombination intermediates: mechanistic insights from studies of bacterial proteins. Cell, 76, 9–15. [DOI] [PubMed] [Google Scholar]
  • 45.Mandal T.N., Mahdi A.A., Sharples G.J., and Lloyd R.G. (1993) Resolution of Holliday intermediates in recombination and DNA repair: indirect suppression of rubA, ruvB and ruvC mutations. J. Bacteriol., 175, 4325–4332. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 46.Kuzminov A. (1995) Collapse and repair of replication forks in Escherichia coli. Mol. Microbiol., 16, 373–384. [DOI] [PubMed] [Google Scholar]
  • 47.Kuzminov A., Schabtach E., and Stahl F.W. (1994) Chi sites in combination with RecA protein increase the survival of linear DNA in Esherichia coli inactivating ExoV activity of RecBCD nuclease. EMBO J., 13, 2764–2776. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 48.Firth N., Ippen-Ihler K., and Skurray R.A. (1996) structure and function of the F factor and mechanism of conjugation. In: Escherichia coli and Salmonella. Cellular and Molecular Biology. (Ed.: Neidhardt F.C.) American Society for Microbiology. [Google Scholar]
  • 49.Foster P.L., Gudmunsson G., Trimarchi J.M., Cai H., and Goodman M.F. (1995) Proofreading-defective DNA polymerase II increases adaptive mutation in Escherichia coli. Proc. Natl. Acad. Sci. USA, 92, 7951–7955. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 50.Savic D.J. (1996) Adaptive mutation: an additional view. Mol. Microbiol., 21, 429–430. [DOI] [PubMed] [Google Scholar]
  • 51.Rosenberg S.M., Harris R.S., and Torkelson J. (1995) Molecular handles on adaptive mutations. Mol. Microbiol., 18, 185–189. [DOI] [PubMed] [Google Scholar]
  • 52.Ozawa A., and Freter R. (1964) Ecological mechanisms controlling growth of Escherichia coli in continuous flow culture and in the mouse intestine. J. Infect. Dis., 114, 235–242. [DOI] [PubMed] [Google Scholar]
  • 53.Martin A., Auger E.A., Blum P.L., and Schultz J.A. (1989) Genetic basis of starvation survival in nondifferentiating bacteria. Ann. Rev. Microbiol., 43, 293–316. [DOI] [PubMed] [Google Scholar]

Articles from Science Progress are provided here courtesy of SAGE Publications

RESOURCES