Skip to main content
Science Progress logoLink to Science Progress
. 2019 Feb 27;89(3-4):243–266. doi: 10.3184/003685006783238290

Deciphering a Complex Genetic Regulatory Network: The Bacillus Subtilis σW Protein and Intrinsic Resistance to Antimicrobial Compounds

John D Helmann 1,
PMCID: PMC10368348  PMID: 17338440

Abstract

Bacillus subtilis, a spore-forming soil bacterium, is the preeminent model system for the analysis of gene regulation in Gram-positive bacteria. Early genetic analyses established that this organism uses alternative sigma (σ) subunits to reprogram RNA polymerase to activate genes required for growth phase transitions, motility, general stress response, and sporulation. Unexpectedly, the genome sequence predicts the presence of an additional seven a subunits: all members of the extracytoplasmic function (ECF) a subfamily of regulators that typically respond to cell envelope stresses. Here, we review our current understanding of one of these a factors, a with an emphasis on experimental strategies and approaches. Exposure to cell envelope active antibiotics and toxic peptides triggers a signaling cascade that releases σW from its cognate anti-σ thereby allowing transcription of ∼60 σW-dependent genes. These genes encode proteins that inactivate, sequester, or eliminate toxic compounds from the cell.

Keywords: gene regulation, transcription, RNA polymerase, sigma, cell wall, antibiotic, bacteriocin, genomics, microarray

Full Text

The Full Text of this article is available as a PDF (529.2 KB).

References

  • 1.Paget M. S., and Helmann J. D. (2003) The sigma70 family of sigma factors. Genome Biol., 4, 203. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 2.Helmann J. D. (2002) The extracytoplasmic function (ECF) sigma factors. Adv. Microbiol. Physiol., 46, 47–110. [DOI] [PubMed] [Google Scholar]
  • 3.Huang X., Decatur A., Sorokin A., and Helmann J. D. (1997) The Bacillus subtilis sigma(X) protein is an extracytoplasmic function sigma factor contributing to survival at high temperature. J. Bacteriol., 179, 2915–2921. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 4.Huang X., and Helmann J. D. (1998) Identification of target promoters for the Bacillus subtilis sigma X factor using a consensus-directed search. J. Molec. Biol., 279, 165–173. [DOI] [PubMed] [Google Scholar]
  • 5.Qiu J., and Helmann J. D. (2001) The -10 region is a key promoter specificity determinant for the Bacillus subtilis extracytoplasmic-function sigma factors sigma(X) and sigma(W). J. Bacteriol., 183, 1921–1927. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 6.Huang X., Fredrick K. L., and Helmann J. D. (1998) Promoter recognition by Bacillus subtilis sigmaW: autoregulation and partial overlap with the sigmaX regulon. J. Bacteriol., 180, 3765–3770. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 7.Huang X., Gaballa A., Cao M., and Helmann J. D. (1999) Identification of target promoters for the Bacillus subtilis extracytoplasmic function sigma factor, sigma W. Molec. Microbiol., 31, 361–371. [DOI] [PubMed] [Google Scholar]
  • 8.Hinton J. C. (1997) The Escherichia coli genome sequence: the end of an era or the start of the FUN? Molec. Microbiol., 26, 417–422. [DOI] [PubMed] [Google Scholar]
  • 9.Cao M., Kobel P. A., Morshedi M. M., Wu M. F., Paddon C., and Helmann J. D. (2002) Defining the Bacillus subtilis sigma(W) regulon: a comparative analysis of promoter consensus search, run-off transcription/macroarray analysis (ROMA), and transcriptional profiling approaches. J. Molec. Biol., 316, 443–457. [DOI] [PubMed] [Google Scholar]
  • 10.Cao M., Bernat B. A., Wang Z., Armstrong R. N., and Helmann J. D. (2001) FosB, a cysteine-dependent fosfomycin resistance protein under the control of sigma(W), an extracytoplasmic-function sigma factor in Bacillus subtilis. J. Bacteriol., 183, 2380–2383. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 11.Sikder D., and Kodadek T. (2005) Genomic studies of transcription factor-DNA interactions. Curr. Opin. Chem. Biol., 9, 38–45. [DOI] [PubMed] [Google Scholar]
  • 12.Cao M., Wang T., Ye R., and Helmann J. D. (2002) Antibiotics that inhibit cell wall biosynthesis induce expression of the Bacillus subtilis sigma(W) and sigma(M) regulons. Molec. Microbiol., 45, 1267–1276. [DOI] [PubMed] [Google Scholar]
  • 13.Wiegert T., Homuth G., Versteeg S., and Schumann W. (2001) Alkaline shock induces the Bacillus subtilis sigma(W) regulon. Molec. Microbiol., 41, 59–71. [DOI] [PubMed] [Google Scholar]
  • 14.Turner M. S., and Helmann J. D. (2000) Mutations in multidrug efflux homologs, sugar isomerases, and antimicrobial biosynthesis genes differentially elevate activity of the sigma(X) and sigma(W) factors in Bacillus subtilis. J. Bacteriol., 182, 5202–5210. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 15.Qian Q., Lee C. Y., Helmann J. D., and Strauch M. A. (2002) AbrB is a regulator of the sigma(W) regulon in Bacillus subtilis. FEMS Microbiol. Lett., 211, 219–223. [DOI] [PubMed] [Google Scholar]
  • 16.Gonzalez-Pastor J. E., Hobbs E. C., and Losick R. (2003) Cannibalism by sporulating bacteria. Science, 301, 510–513. [DOI] [PubMed] [Google Scholar]
  • 17.Butcher B. G., and Helmann J. D. (2006) Identification of Bacillus subtilis sigma-dependent genes that provide intrinsic resistance to antimicrobial compounds produced by Bacilli. Molec. Microbiol., 60, 765–782. [DOI] [PubMed] [Google Scholar]
  • 18.Ellermeier C. D., Hobbs E. C., Gonzalez-Pastor J. E., and Losick R. (2006) A three-protein signaling pathway governing immunity to a bacterial cannibalism toxin. Cell, 124, 549–559. [DOI] [PubMed] [Google Scholar]
  • 19.Ellermeier C. D., and Losick R. (2006) Evidence for a novel protease governing regulated intramembrane proteolysis and resistance to antimicrobial peptides in Bacillus subtilis. Genes Dev., 20, 1911–1922. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 20.Stein T. (2005) Bacillus subtilis antibiotics: structures, syntheses and specific functions. Molec. Microbiol., 56, 845–857. [DOI] [PubMed] [Google Scholar]
  • 21.Pietiainen M., Gardemeister M., Mecklin M., Leskela S., Sarvas M., and Kontinen V. P. (2005) Cationic antimicrobial peptides elicit a complex stress response in Bacillus subtilis that involves ECF-type sigma factors and two-component signal transduction systems. Microbiology, 151, 1577–1592. [DOI] [PubMed] [Google Scholar]
  • 22.Rowley G., Spector M., Kormanec J., and Roberts M. (2006) Pushing the envelope: extracytoplasmic stress responses in bacterial pathogens. Nat. Rev. Microbiol., 4, 383–394. [DOI] [PubMed] [Google Scholar]
  • 23.Schobel S., Zellmeier S., Schumann W., and Wiegert T. (2004) The Bacillus subtilis sigmaW anti-sigma factor RsiW is degraded by intramembrane proteolysis through YluC. Molec. Microbiol., 52, 1091–105. [DOI] [PubMed] [Google Scholar]
  • 24.Zellmeier S., Schumann W., and Wiegert T. (2006) Involvement of Clp protease activity in modulating the Bacillus subtilis sigmaw stress response. Molec. Microbiol., 61, 1569–1582. [DOI] [PubMed] [Google Scholar]
  • 25.Heinrich J., and Wiegert T. (2006) YpdC determines site-1 degradation in regulated intramembrane proteolysis of the RsiW anti-sigma factor of Bacillus subtilis. Molec. Microbiol., 62, 566–579. [DOI] [PubMed] [Google Scholar]
  • 26.Cao M., and Helmann J. D. (2004) The Bacillus subtilis extracytoplasmic-function sigmaX factor regulates modification of the cell envelope and resistance to cationic antimicrobial peptides. J. Bacteriol., 186, 1136–1146. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 27.Cao M., Moore C. M., and Helmann J. D. (2005) Bacillus subtilis paraquat resistance is directed by sigmaM, an extracytoplasmic function sigma factor, and is conferred by YqjL and BcrC. J. Bacteriol., 187, 2948–2956. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 28.Cao M., and Helmann J. D. (2002) Regulation of the Bacillus subtilis bcrC bacitracin resistance gene by two extracytoplasmic function sigma factors. J. Bacteriol., 184, 6123–6129. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 29.Cao M., Salzberg L., Tsai C. S., Mascher T., Bonilla C., Wang T., Ye R. W., Marquez-Magana L., and Helmann J. D. (2003) Regulation of the Bacillus subtilis extracytoplasmic function protein sigma(Y) and its target promoters. J. Bacteriol., 185, 4883–4890. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 30.Yoshimura M., Asai K., Sadaie Y., and Yoshikawa H. (2004) Interaction of Bacillus subtilis extracytoplasmic function (ECF) sigma factors with the N-terminal regions of their potential anti-sigma factors. Microbiology, 150, 591–599. [DOI] [PubMed] [Google Scholar]
  • 31.Zellmeier S., Hofmann C., Thomas S., Wiegert T., and Schumann W. (2005) Identification of sigma(V)-dependent genes of Bacillus subtilis. FEMS Microbiol. Lett., 253, 221–229. [DOI] [PubMed] [Google Scholar]
  • 32.Asai K., Yamaguchi H., Kang C. M., Yoshida K., Fujita Y., and Sadaie Y. (2003) DNA microarray analysis of Bacillus subtilis sigma factors of extracytoplasmic function family. FEMS Microbiol. Lett., 220, 155–160. [DOI] [PubMed] [Google Scholar]
  • 33.Helmann J. D., and Moran C. P. Jr. RNA polymerae and sigma factors. In: Sonenshein A. L., and Losick R. (eds.), Bacillus subtilis and Its Relatives: From Genes to Cells, pp. 289–312. ASM Press, Washington D.C.2002. [Google Scholar]

Articles from Science Progress are provided here courtesy of SAGE Publications

RESOURCES