Skip to main content
Science Progress logoLink to Science Progress
. 2019 Feb 27;89(3-4):151–166. doi: 10.3184/003685006783238317

Dna Supercoiling and Bacterial Gene Expression

Charles J Dorman 1,
PMCID: PMC10368349  PMID: 17338437

Abstract

DNA in bacterial cells is maintained in a negatively supercoiled state. This contributes to the organization of the bacterial nucleoid and also influences the global gene expression pattern in the cell through modulatory effects on transcription. Supercoiling arises as a result of changes to the linking number of the relaxed double-stranded DNA molecule and is set and reset by the action of DNA topoisomerases. This process is subject to a multitude of influences that are usually summarized as environmental stress. Responsiveness of linking number change to stress offers the promise of a mechanism for the wholesale adjustment of the transcription programme of the cell as the bacterium experiences different environments. Recent data from DNA microarray experiments support this proposition. The emerging picture is one of DNA supercoiling acting at or near the apex of a regulatory hierarchy where it collaborates with nucleoid-associated proteins and transcription factors to determine the gene expression profile of the cell.

Keywords: DNA supercoiling; DNA topoisomerase; DNA gyrase; negative supercoiling; positive supercoiling; transcription; nucleoid-associated proteins; Fis; IHF, H–NS

Full Text

The Full Text of this article is available as a PDF (153.9 KB).

References

  • 1.Dorman C. J. (1994) Genetics of Bacterial Virulence. Blackwell Science, Oxford. [Google Scholar]
  • 2.Trim N. J., and Marko J. F. (1998) Architecture of the bacterial chromosome. ASM Press, 64(5), 276–283. [Google Scholar]
  • 3.Stein R. A., Deng S., and Higgins N. P. (2005) Measuring chromosome dynamics on different time scales using resolvases with varying half-lives. Mol. Microbiol., 56, 1049–1061. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 4.Deng S., Stein R. A., and Higgins N. P. (2005) Organization of supercoil domains and their reorganization by transcription. Mol. Microbiol., 57, 1511–1521. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 5.Postow L., Hardy C. D., Arsuaga J., and Cozzarelli N. R. (2004) Topological domain structure of the Escherichia coli chromosome. Genes Dev., 18, 1766–1779. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 6.Miller W. G., and Simons R. W. (1993) Chromosomal supercoiling in Escherichia coli. Mol. Microbiol., 10, 675–684. [DOI] [PubMed] [Google Scholar]
  • 7.Pavitt G. D., and Higgins C. F. (1993) Chromosomal domains of supercoiling in Salmonella typhimurium. Mol. Microbiol., 10, 685–696. [DOI] [PubMed] [Google Scholar]
  • 8.Zimmerman S. B. (2006) Cooperative transitions of isolated Escherichia coli nucleoids: implications for the nucleoid of a cellular phase. J. Struct. Biol., 153, 160–175. [DOI] [PubMed] [Google Scholar]
  • 9.Schneider R., Lurz R., Lüder R., Tolksdorf C., Travers A., and Muskhelishvili G. (2001) An architectural role for the Escherichia coli chromatin protein FIS in organizing DNA. Nucleic Acids Res., 29, 5107–5114. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 10.Dorman C. J., and Deighan P. (2003) Regulation of gene expression by histone-like proteins in bacteria. Curr. Opin. Genet. Dev., 13, 179–184. [DOI] [PubMed] [Google Scholar]
  • 11.Sinden R. R. (1994) DNA Structure and function. Academic Press, San Diego. [Google Scholar]
  • 12.Dorman C. J. (2002) DNA topology and regulation of bacterial gene expression. SGM Symp., 61, 39–56. [Google Scholar]
  • 13.Giaever G. N., Snyder L., and Wang J. C. (1988) DNA supercoiling in vivo. Biophys. Chem., 29, 7–15. [DOI] [PubMed] [Google Scholar]
  • 14.Drlica K. (1992) Control of bacterial DNA supercoiling. Mol. Microbiol., 6, 425–433. [DOI] [PubMed] [Google Scholar]
  • 15.DiNardo S., Voelkel K. A., Sternglanz R., Reynolds A. E., and Wright A. (1983) Escherichia coli DNA topoisomerase I mutants have compensatory mutations at or near DNA gyrase genes. Cold Spring Harbor Symp. Quant. Biol., 47, 779–784. [DOI] [PubMed] [Google Scholar]
  • 16.Free A., and Dorman C. J. 1994. Escherichia coli tyrT gene transcription is sensitive to DNA supercoiling in its native chromosomal context: effect of DNA topoisomerase IV over-expression on tyrT promoter function. Mol. Microbiol., 14, 151–161. [DOI] [PubMed] [Google Scholar]
  • 17.Drlica K., and Zhao X. (1997) DNA gyrase, topoisomerase IV, and the 4-quinolones. Microbiol. Mol. Biol. Rev., 61, 377–392. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 18.Dorman C. J., Lynch A. S., Ni Bhriain N., and Higgins C. F. (1989) DNA supercoiling in Escherichia coli: topA mutations can be suppressed by DNA amplifications involving the tolC locus. Mol. Microbiol., 3, 531–540. [DOI] [PubMed] [Google Scholar]
  • 19.Kato J.-L., Nishimura Y., Imamura R., Niki H., Hiraga S., and Suzuki H. (1990) New topoisomerase essential for chromosome segregation in E. coli. Cell, 63, 393–404. [DOI] [PubMed] [Google Scholar]
  • 20.Hatfield G. W., and Benham C. J. (2002) DNA topology-mediated control of global gene expression in Escherichia coli. Ann. Rev. Genet., 36, 175–203. [DOI] [PubMed] [Google Scholar]
  • 21.Travers A., and Muskhelishvili G. (2005) DNA supercoiling–a global transcriptional regulator for enterobacterial growth? Nat. Rev. Microbiol., 3, 157–169. [DOI] [PubMed] [Google Scholar]
  • 22.Wagner R. (2000) Transcription Regulation in Prokaryotes. Oxford University Press. [Google Scholar]
  • 23.Bordes P., Conter A., Morales V., Bouvier J., Kolb A., and Gutierrez C. (2003) DNA supercoiling contributes to disconnect sigmaS accumulation from sigmaS-dependent transcription in Escherichia coli. Mol. Microbiol., 48, 561–571. [DOI] [PubMed] [Google Scholar]
  • 24.Liu L. F., and Wang J. C. (1987) Supercoiling of the DNA template during transcription. Proc. Natl Acad. Sci. USA, 84, 7024–7027. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 25.Wu H. Y., Tan J., and Fang M. (1995) Long-range interaction between two promoters: activation of the leu-500 promoter by a distant upstream promoter. Cell, 82, 445–451. [DOI] [PubMed] [Google Scholar]
  • 26.Higgins C. F., Dorman C. J., Stirling D. A., Waddell L., Booth I. R., May G., and Bremer E. (1988) A physiological role for DNA supercoiling in the osmotic regulation of gene expression in S. typhimurium and E. coli. Cell, 52, 569–584. [DOI] [PubMed] [Google Scholar]
  • 27.Dorman C. J., Barr G. C., Ni Bhriain N., and Higgins C. F. (1988) DNA supercoiling and the anaerobic and growth-phase regulation of tonB gene expression. J. Bacteriol., 170, 2816–2826. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 28.Dorman C. J., Ni Bhriain N., and Higgins C. F. (1990) DNA supercoiling and the environmental regulation of virulence gene expression in Shigella flexneri. Nature, 344, 789–792. [DOI] [PubMed] [Google Scholar]
  • 29.Karem K., and Foster J. W. (1993) The influence of DNA topology on the environmental regulation of a pH-regulated locus in Salmonella typhimurium. Mol. Microbiol., 10, 75–86. [DOI] [PubMed] [Google Scholar]
  • 30.Cheung K. J., Badarinarayana V., Selinger D. W., Janse D., and Church G. M. (2003) A microarray-based antibiotic screen identifies a regulatory role for supercoiling in the osmotic stress response of Escherichia coli. Genome Res., 13, 206–215. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 31.Peter B. J., Arsuaga J., Breier A. M., Khodursky A. B., Brown P. O., and Cozzarelli N. R. (2004) Genome transcriptional response to loss of chromosomal supercoiling in Escherichia coli. Genome Biol., 5, R87. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 32.Blot N., Mavathur R., Geertz M., Travers A., and Muskhelishvili G. (2006) Homeostatic regulation of supercoiling sensitivity coordinates transcription of the bacterial genome. EMBO Rep., 7, 710–715. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 33.Travers A., and Muskhelishvili G. (2005) Bacterial chromatin. Curr. Opin. Genet. Dev., 15, 507–514. [DOI] [PubMed] [Google Scholar]
  • 34.Kelly A., Goldberg M. D., Carroll R. K., Danino V., Hinton J. C. D., and Dorman C. J. (2004) A global role for Fis in the transcriptional control of metabolic and type III secretion genes of Salmonella enterica serovar Typhimurium. Microbiology, 150, 2037–2053. [DOI] [PubMed] [Google Scholar]
  • 35.Travers A., Schneider R., and Muskhelishvili G. (2001) DNA supercoiling and transcription in Escherichia coli: The FIS connection. Biochimie, 83, 213–217. [DOI] [PubMed] [Google Scholar]
  • 36.Rochman M., Blot N., Dyachenko M., Glaser G., Travers A., and Muskhelishvili G. (2004) Buffering of stable RNA promoter activity against DNA relaxation requires a far upstream sequence. Mol. Microbiol., 53, 143–152. [DOI] [PubMed] [Google Scholar]
  • 37.Muskhelishvili G., and Travers A. (2003) Transcription factor as a topological homeostat. Front Biosci., 8, d279–285. [DOI] [PubMed] [Google Scholar]
  • 38.Dorman C. J. (2004) H-NS: a universal regulator for a dynamic genome. Nature Rev. Microbiol., 2, 391–400. [DOI] [PubMed] [Google Scholar]
  • 39.Prosseda G., Falconi M., Giangrossi M., Gualerzi C. O., Micheli G., and Colonna B. (2004) The virF promoter in Shigella: more than just a curved DNA stretch. Mol. Microbiol., 51, 523–537. [DOI] [PubMed] [Google Scholar]
  • 40.Navarre W. W., Porwollik S., Wang Y., McClelland M., Rosen H., Libby S. J., and Fang F. C. (2006) Selective silencing of foreign DNA with low GC content by the H-NS protein in Salmonella. Science, 313, 236–238. [DOI] [PubMed] [Google Scholar]
  • 41.Lucchini S., Rowley G., Goldberg M. D., Hurd D., Harrison M., and Hinton J. C. D. (2006) H-NS mediates the silencing of laterally acquired genes in bacteria. PLoS Pathog., Aug 18, 2(8). [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 42.Arfin S. M., Long A. D., Ito E. T., Tolleri L., Riehle M. M., Paegle E. S., and Hatfield G. W. (2000) Global gene expression profiling in Escherichia coli K12. The effects of integration host factor. J. Biol. Chem., 275, 29672–29684. [DOI] [PubMed] [Google Scholar]
  • 43.Mangan M. W., Lucchini S., Danino V., Ó Cróinín T., Hinton J. C. D., and Dorman C. J. (2006) The integration host factor (IHF) integrates stationary phase and virulence gene expression in Salmonella enterica serovar Typhimurium. Mol. Microbiol., 59, 1831–1847. [DOI] [PubMed] [Google Scholar]
  • 44.Parekh B. S., Sheridan S. D., and Hatfield G. W. (1996) Effects of integration host factor and DNA supercoiling on transcription from the ilvPG promoter of Escherichia coli. J. Biol. Chem., 271, 20258–20264. [DOI] [PubMed] [Google Scholar]
  • 45.Opel M. L., Aeling K. A., Holmes W. M., Johnson R. C., Benham C. J., and Hatfield G. W. (2004) Activation of transcription initiation from a stable RNA promoter by a Fis protein-mediated DNA structural transmission mechanism. Mol. Microbiol., 53, 665–674. [DOI] [PubMed] [Google Scholar]
  • 46.Dorman C. J. (1991) DNA supercoiling and the environmental regulation of virulence gene expression in bacterial pathogens. Infect. Immunol., 59, 745–749. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 47.Dorman C. J. (2004) Virulence gene regulation in Shigella. In: Curtiss R. III, Ingraham J. L., Kaper J. B., Maloy S., Neidhardt F. C., Riley M. M., Squires C. J., Wanner B. L., and Bock A. (eds.), Escherichia coli and Salmonella: Cellular and Molecular Biology, 3rd edn. EcoSal; online. Posted 29th December, 2004 at http://www.ecosal.org. American Society for Microbiology, Washington, D.C. [Google Scholar]
  • 48.Rhen M., and Dorman C. J. (2005) Hierarchical gene regulators adapt Salmonella enterica to its host milieus. Int. J. Med. Microbiol., 295, 487–502. [DOI] [PubMed] [Google Scholar]
  • 49.Ó Cróinín T., Carroll R. K., Kelly A., and Dorman C. J. (2006) Roles for DNA supercoiling and the FIS protein in modulating expression of virulence genes during intracellular growth of Salmonella enterica serovar Typhimurium. Mol. Microbiol., 62, 869–882. [DOI] [PubMed] [Google Scholar]

Articles from Science Progress are provided here courtesy of SAGE Publications

RESOURCES