Skip to main content
Science Progress logoLink to Science Progress
. 2019 Feb 27;86(1-2):9–75. doi: 10.3184/003685003783238707

Bacterial Cold Shock Responses

Michael HW Weber 1, Mohamed A Marahiel 2,
PMCID: PMC10368357  PMID: 12838604

Abstract

As a measure for molecular motion, temperature is one of the most important environmental factors for life as it directly influences structural and hence functional properties of cellular components. After a sudden increase in ambient temperature, which is termed heat shock, bacteria respond by expressing a specific set of genes whose protein products are designed to mainly cope with heat-induced alterations of protein conformation. This heat shock response comprises the expression of protein chaperones and proteases, and is under central control of an alternative sigma factor (σ32) which acts as a master regulator that specifically directs RNA polymerase to transcribe from the heat shock promotors. In a similar manner, bacteria express a well-defined set of proteins after a rapid decrease in temperature, which is termed cold shock. This protein set, however, is different from that expressed under heat shock conditions and predominantly comprises proteins such as helicases, nucleases, and ribosome-associated components that directly or indirectly interact with the biological information molecules DNA and RNA. Interestingly, in contrast to the heat shock response, to date no cold-specific sigma factor has been identified. Rather, it appears that the cold shock response is organized as a complex stimulon in which post-transcriptional events play an important role. In this review, we present a summary of research results that have been acquired in recent years by examinations of bacterial cold shock responses. Important processes such as cold signal perception, membrane adaptation, and the modification of the translation apparatus are discussed together with many other cold-relevant aspects of bacterial physiology and first attempts are made to dissect the cold shock stimulon into less complex regulatory subunits. Special emphasis is placed on findings concerning the nucleic acid-binding cold shock proteins which play a fundamental role not only during cold shock adaptation but also under optimal growth conditions.

Keywords: cold shock proteins, low temperature stress adaptation, membrane, pathogens, regulation, ribosome, temperature-dependent gene expression

Full Text

The Full Text of this article is available as a PDF (483.0 KB).

References

  • 1.Hurme R., & Rhen M. (1998) Temperature sensing in bacterial gene regulation–what it all boils down to. Mol Microbiol, 30, 1–6. [DOI] [PubMed] [Google Scholar]
  • 2.Konkel M. E., & Tilly K. (2000) Temperature-regulated expression of bacterial virulence genes. Microbes Infect, 2, 157–166. [DOI] [PubMed] [Google Scholar]
  • 3.Smirnova A., Li H., Weingart H., Aufhammer S., Burse A., Finis K., Schenk A., & Ullrich M. S. (2001) Thermoregulated expression of virulence factors in plant-associated bacteria. Arch Microbiol, 176, 393–399. [DOI] [PubMed] [Google Scholar]
  • 4.Nemecek-Marshall M., LaDuca R., & Fall R. (1993) High-level expression of ice nuclei in a Pseudomonas syringae strain is induced by nutrient limitation and low temperature. J Bacteriol, 175, 4062–4070. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 5.Davies P. L., Baardsnes J., Kuiper M. J., & Walker V. K. (2002) Structure and function of antifreeze proteins. Philos Trans R Soc Lond B Biol Sci, 357, 927–935. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 6.Lundheim R. (2002) Physiological and ecological significance of biological ice nucleators. Philos Trans R Soc Lond B Biol Sci, 357, 937–943. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 7.Wolber P. K., Deininger C. A., Southworth M. W., Vandekerckhove J., van Montagu M., & Warren G. J. (1986) Identification and purification of a bacterial ice-nucleation protein. Proc Natl Acad Sci U S A, 83, 7256–7260. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 8.Sun X., Griffith M., Pasternak J. J., & Glick B. R. (1995) Low temperature growth, freezing survival, and production of antifreeze protein by the plant growth promoting rhizobacterium Pseudomonas putida GR12–2. Can J Microbiol, 41, 776–784. [DOI] [PubMed] [Google Scholar]
  • 9.Vasina J. A., Peterson M. S., & Baneyx F. (1998) Scale-up and optimization of the low-temperature inducible cspA promoter system. Biotechnol Prog, 14, 714–721. [DOI] [PubMed] [Google Scholar]
  • 10.Gerday C., Aittaleb M., Bentahir M., Chessa J. P., Claverie P., Collins T., D'Amico S., Dumont J., Garsoux G., Georlette D., Hoyoux A., Lonhienne T., Meuwis M. A., & Feller G. (2000) Cold-adapted enzymes: from fundamentals to biotechnology. Trends Biotechnol., 18, 103–107. [DOI] [PubMed] [Google Scholar]
  • 11.Smalas A. O., Leiros H. K., Os V., & Willassen N. P. (2000) Cold adapted enzymes. Biotechnol Annu Rev, 6, 1–57. [DOI] [PubMed] [Google Scholar]
  • 12.D'Amico S., Claverie P., Collins T., Georlette D., Gratia E., Hoyoux A., Meuwis M. A., Feller G., & Gerday C. (2002) Molecular basis of cold adaptation. Philos Trans R Soc Lond B Biol Sci, 357, 917–925. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 13.Graumann P., Wendrich T. M., Weber M. H. W., Schröder K., & Marahiel M. A. (1997) A family of cold shock proteins in Bacillus subtilis is essential for cellular growth and for efficient protein synthesis at optimal and low temperatures. Mol Microbiol, 25, 741–756. [DOI] [PubMed] [Google Scholar]
  • 14.Hebraud M., & Potier P. (1999) Cold shock response and low temperature adaptation in psychrotrophic bacteria. J Mol Microbiol Biotechnol., 1, 211–219. [PubMed] [Google Scholar]
  • 15.Fujita J. (1999) Cold shock response in mammalian cells. J Mol Microbiol Biotechnol., 1, 243–255. [PubMed] [Google Scholar]
  • 16.Guy C. (1999) Molecular responses of plants to cold shock and cold acclimation. J Mol Microbiol Biotechnol., 1, 231–242. [PubMed] [Google Scholar]
  • 17.Los D. A., & Murata N. (1999) Responses to cold shock in cyanobacteria. J Mol Microbiol Biotechnol., 1, 221–230. [PubMed] [Google Scholar]
  • 18.Yamanaka K. (1999) Cold shock response in Escherichia coli. J Mol Microbiol Biotechnol., 1, 193–202. [PubMed] [Google Scholar]
  • 19.Cavicchioli R., Thomas T., & Curmi P. M. (2000) Cold stress response in Archaea. Extremophiles, 4, 321–331. [DOI] [PubMed] [Google Scholar]
  • 20.Bale J. S. (2002) Insects and low temperatures: from molecular biology to distributions and abundance. Philos Trans R Soc Lond B Biol Sci, 357, 849–862. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 21.Weber M. H. W., & Marahiel M. A. (2002) Coping with the cold: the cold shock response in the Gram-positive soil bacterium Bacillus subtilis. Philos Trans R Soc Lond B Biol Sci, 357, 895–907. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 22.Jones P. G., VanBogelen R. A., & Neidhardt F. C. (1987) Induction of proteins in response to low temperature in Escherichia coli. J Bacteriol, 169, 2092–2095. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 23.Neuhaus K., Rapposch S., Francis K. P., & Scherer S. (2000) Restart of exponential growth of cold-shocked Yersinia enterocolitica occurs after down-regulation of cspA1/A2 mRNA. J Bacteriol, 182, 3285–3288. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 24.Craig J. E., Boyle D., Francis K. P., & Gallagher M. P. (1998) Expression of the cold-shock gene cspB in Salmonella typhimurium occurs below a threshold temperature. Microbiology, 144, 697–704. [DOI] [PubMed] [Google Scholar]
  • 25.Jones P. G., Cashel M., Glaser G., & Neidhardt F. C. (1992) Function of a relaxed-like state following temperature downshifts in Escherichia coli. J Bacteriol, 174, 3903–3914. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 26.Berger F., Morellet N., Menu F., & Potier P. (1996) Cold shock and cold acclimation proteins in the psychrotrophic bacterium Arthrobacter globiformis SI55. J Bacteriol, 178, 2999–3007. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 27.Berger F., Normand P., & Potier P. (1997) capA, a cspA-like gene that encodes a cold acclimation protein in the psychrotrophic bacterium Arthrobacter globiformis SI55. J Bacteriol, 179, 5670–5676. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 28.Mayr B., Kaplan T., Lechner S., & Scherer S. (1996) Identification and purification of a family of dimeric major cold shock protein homologs from the psychrotrophic Bacillus cereus WSBC 10201. J Bacteriol, 178, 2916–2925. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 29.Lottering E. A., & Streips U. N. (1995) Induction of cold shock proteins in Bacillus subtilis. Curr Microbiol, 30, 193–199. [DOI] [PubMed] [Google Scholar]
  • 30.Graumann P., Schröder K., Schmid R., & Marahiel M. A. (1996) Cold shock stress-induced proteins in Bacillus subtilis. J Bacteriol, 178, 4611–4619. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 31.Movahedi S., & Waites W. (2002) Cold shock response in sporulating Bacillus subtilis and its effect on spore heat resistance. J Bacteriol, 184, 5275–5281. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 32.Sinchaikul S., Sookkheo B., Phutrakul S., Pan F. M., & Chen S. T. (2002) Proteomic study of cold shock protein in Bacillus stearothermophilus P1: Comparison of temperature downshifts. Proteomics, 2, 1316–1324. [DOI] [PubMed] [Google Scholar]
  • 33.Walker S. J., Archer P., & Banks J. G. (1990) Growth of Listeria monocytogenes at refrigeration temperatures. J Appl Bacteriol, 68, 157–162. [DOI] [PubMed] [Google Scholar]
  • 34.Phan-Thanh L., & Gormon T. (1995) Analysis of heat and cold shock proteins in Listeria by two-dimensional electrophoresis. Electrophoresis, 16, 444–450. [DOI] [PubMed] [Google Scholar]
  • 35.Bayles D. O., Annous B. A., & Wilkinson B. J. (1996) Cold stress proteins induced in Listeria monocytogenes in response to temperature downshock and growth at low temperatures. Appl Environ Microbiol, 62, 1116–1119. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 36.Hebraud M., & Guzzo J. (2000) The main cold shock protein of Listeria monocytogenes belongs to the family of ferritin-like proteins. FEMS Microbiol Lett, 190, 29–34. [DOI] [PubMed] [Google Scholar]
  • 37.Wemekamp-Kamphuis H. H., Karatzas A. K., Wouters J. A., & Abee T. (2002) Enhanced levels of cold shock proteins in Listeria monocytogenes LO28 upon exposure to low temperature and high hydrostatic pressure. Appl Environ Microbiol, 68, 456–463. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 38.Panoff J. M., Corroler D., Thammavongs B., & Boutibonnes P. (1997) Differentiation between cold shock proteins and cold acclimation proteins in a mesophilic gram-positive bacterium, Enterococcus faecalis JH2–2. J Bacteriol, 179, 4451–4454. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 39.Hebraud M., Dubois E., Potier P., & Labadie J. (1994) Effect of growth temperatures on the protein levels in a psychrotrophic bacterium, Pseudomonas fragi. J Bacteriol, 176, 4017–4024. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 40.Michel V., Lehoux I., Depret G., Anglade P., Labadie J., & Hebraud M. (1997) The cold shock response of the psychrotrophic bacterium Pseudomonas fragi involves four low-molecular-mass nucleic acid-binding proteins. J Bacteriol, 179, 7331–7342. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 41.Shires K., & Steyn L. (2001) The cold-shock stress response in Mycobacterium smegmatis induces the expression of a histone-like protein. Mol Microbiol, 39, 994–1009. [DOI] [PubMed] [Google Scholar]
  • 42.Mikulik K., Khanh-Hoang Q., Halada P., Bezouskova S., Benada O., & Behal V. (1999) Expression of the Csp protein family upon cold shock and production of tetracycline in Streptomyces aureofaciens. Biochem Biophys Res Commun, 265, 305–310. [DOI] [PubMed] [Google Scholar]
  • 43.Wouters J. A., Rombouts F. M., de Vos W. M., Kuipers O. P., & Abee T. (1999) Cold shock proteins and low-temperature response of Streptococcus thermophilus CNRZ302. Appl Environ Microbiol, 65, 4436–4442. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 44.Panoff J. M., Thammavongs B., Gueguen M., & Boutibonnes P. (1998) Cold stress responses in mesophilic bacteria. Cryobiology, 36, 75–83. [DOI] [PubMed] [Google Scholar]
  • 45.Eriksson S., Hurme R., & Rhen M. (2002) Low-temperature sensors in bacteria. Philos Trans R Soc Lond B Biol Sci, 357, 887–893. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 46.Israelachvili J. N., Marcelja S., & Horn R. G. (1980) Physical principles of membrane organization. Q Rev Biophys, 13, 121–200. [DOI] [PubMed] [Google Scholar]
  • 47.Cevc G. (1991) How membrane chain-melting phase-transition temperature is affected by the lipid chain asymmetry and degree of unsaturation: an effective chain-length model. Biochemistry, 30, 7186–7193. [DOI] [PubMed] [Google Scholar]
  • 48.Mantsch H. H., & McElhaney R. N. (1991) Phospholipid phase transitions in model and biological membranes as studied by infrared spectroscopy. Chem Phys Lipids, 57, 213–226. [DOI] [PubMed] [Google Scholar]
  • 49.Dowhan W. (1997) Molecular basis for membrane phospholipid diversity: why are there so many lipids? Annu Rev Biochem, 66, 199–232. [DOI] [PubMed] [Google Scholar]
  • 50.Gerhardt P. N., Tombras Smith L., & Smith G. M. (2000) Osmotic and chill activation of glycine betaine porter II in Listeria monocytogenes membrane vesicles. J Bacteriol, 182, 2544–2550. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 51.Szalontai B., Nishiyama Y., Gombos Z., & Murata N. (2000) Membrane dynamics as seen by fourier transform infrared spectroscopy in a cyanobacterium, Synechocystis PCC 6803. The effects of lipid unsaturation and the protein-to-lipid ratio. Biochim Biophys Acta, 1509, 409–419. [DOI] [PubMed] [Google Scholar]
  • 52.Jones S. L., Drouin P., Wilkinson B. J., & PD I. I. M. (2002) Correlation of long-range membrane order with temperature-dependent growth characteristics of parent and a cold-sensitive, branched-chain- fatty-acid-deficient mutant of Listeria monocytogenes. Arch Microbiol, 177, 217–222. [DOI] [PubMed] [Google Scholar]
  • 53.Los D., Horvath I., Vigh L., & Murata N. (1993) The temperature-dependent expression of the desaturase gene desA in Synechocystis PCC6803. FEBS Lett, 318, 57–60. [DOI] [PubMed] [Google Scholar]
  • 54.Kaneko T., Sato S., Kotani H., Tanaka A., Asamizu E., Nakamura Y., Miyajima N., Hirosawa M., Sugiura M., Sasamoto S., Kimura T., Hosouchi T., Matsuno A., Muraki A., Nakazaki N., Naruo K., Okumura S., Shimpo S., Takeuchi C., Wada T., Watanabe A., Yamada M., Yasuda M., & Tabata S. (1996) Sequence analysis of the genome of the unicellular cyanobacterium Synechocystis sp. strain PCC6803. II. Sequence determination of the entire genome and assignment of potential protein-coding regions. DNA Res, 3, 109–136. [DOI] [PubMed] [Google Scholar]
  • 55.Vigh L., Los D. A., Horvath I., & Murata N. (1993) The primary signal in the biological perception of temperature: Pd- catalyzed hydrogenation of membrane lipids stimulated the expression of the desA gene in Synechocystis PCC6803. Proc Natl Acad Sci U S A, 90, 9090–9094. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 56.Suzuki I., Los D. A., Kanesaki Y., Mikami K., & Murata N. (2000) The pathway for perception and transduction of low-temperature signals in Synechocystis. EMBO J, 19, 1327–1334. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 57.Suzuki I., Kanesaki Y., Mikami K., Kanehisa M., & Murata N. (2001) Cold-regulated genes under control of the cold sensor Hik33 in Synechocystis. Mol Microbiol, 40, 235–244. [DOI] [PubMed] [Google Scholar]
  • 58.Aguilar P. S., Hernandez-Arriaga A. M., Cybulski L. E., Erazo A. C., & de Mendoza D. (2001) Molecular basis of thermosensing: a two-component signal transduction thermometer in Bacillus subtilis. EMBO J, 20, 1681–1691. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 59.Kunst F., Ogasawara N., Moszer I., Albertini A. M., Alloni G., Azevedo V., Bertero M. G., Bessieres P., Bolotin A., Borchert S., Borriss R., Boursier L., Brans A., Braun M., Brignell S. C., Bron S., Brouillet S., Bruschi C. V., Caldwell B., Capuano V., Carter N. M., Choi S. K., Codani J. J., Connerton I. F., Danchin A. et al. (1997) The complete genome sequence of the gram-positive bacterium Bacillus subtilis. Nature, 390, 249–256. [DOI] [PubMed] [Google Scholar]
  • 60.Fabret C., Feher V. A., & Hoch J. A. (1999) Two-component signal transduction in Bacillus subtilis: how one organism sees its world. J Bacteriol, 181, 1975–1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 61.Fabret C., & Hoch J. A. (1998) A two-component signal transduction system essential for growth of Bacillus subtilis: implications for anti-infective therapy. J Bacteriol, 180, 6375–6383. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 62.Aguilar P. S., Cronan J. E. Jr., & de Mendoza D. (1998) A Bacillus subtilis gene induced by cold shock encodes a membrane phospholipid desaturase. J Bacteriol, 180, 2194–2200. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 63.Aguilar P. S., Lopez P., & de Mendoza D. (1999) Transcriptional control of the low-temperature-inducible des gene, encoding the delta5 desaturase of Bacillus subtilis. J Bacteriol, 181, 7028–7033. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 64.Beckering C. L., Steil L., Weber M. H. W., Völker U., & Marahiel M. A. (2002) Genomewide transcriptional analysis of the cold shock response in Bacillus subtilis. J Bacteriol, 184, 6395–6402. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 65.Maeda K., Imae Y., Shioi J. I., & Oosawa F. (1976) Effect of temperature on motility and chemotaxis of Escherichia coli. J Bacteriol, 127, 1039–1046. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 66.Nara T., Kawagishi I., Nishiyama S., Homma M., & Imae Y. (1996) Modulation of the thermosensing profile of the Escherichia coli aspartate receptor Tar by covalent modification of its methyl-accepting sites. J Biol Chem, 271, 17932–17936. [DOI] [PubMed] [Google Scholar]
  • 67.Maeda K., & Imae Y. (1979) Thermosensory transduction in Escherichia coli: inhibition of the thermoresponse by L-serine. Proc Natl Acad Sci U S A, 76, 91–95. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 68.Mizuno T., & Imae Y. (1984) Conditional inversion of the thermoresponse in Escherichia coli. J Bacteriol, 159, 360–367. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 69.Nara T., Lee L., & Imae Y. (1991) Thermosensing ability of Trg and Tap chemoreceptors in Escherichia coli. J Bacteriol, 173, 1120–1124. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 70.Maddock J. R., & Shapiro L. (1993) Polar location of the chemoreceptor complex in the Escherichia coli cell. Science, 259, 1717–1723. [DOI] [PubMed] [Google Scholar]
  • 71.Milligan D. L., & Koshland D. E. Jr. (1988) Site-directed cross-linking. Establishing the dimeric structure of the aspartate receptor of bacterial chemotaxis. J Biol Chem, 263, 6268–6275. [PubMed] [Google Scholar]
  • 72.Shimizu T. S., Le Novere N., Levin M. D., Beavil A. J., Sutton B. J., & Bray D. (2000) Molecular model of a lattice of signalling proteins involved in bacterial chemotaxis. Nat Cell Biol, 2, 792–796. [DOI] [PubMed] [Google Scholar]
  • 73.Kim S. H., Wang W., & Kim K. K. (2002) Dynamic and clustering model of bacterial chemotaxis receptors: Structural basis for signaling and high sensitivity. Proc Natl Acad Sci U S A, 99, 11611–11615. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 74.Gegner J. A., Graham D. R., Roth A. F., & Dahlquist F. W. (1992) Assembly of an MCP receptor, CheW, and kinase CheA complex in the bacterial chemotaxis signal transduction pathway. Cell, 70, 975–982. [DOI] [PubMed] [Google Scholar]
  • 75.Bren A., & Eisenbach M. (2000) How signals are heard during bacterial chemotaxis: protein-protein interactions in sensory signal propagation. J Bacteriol, 182, 6865–6873. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 76.Mowbray S. L., & Sandgren M. O. (1998) Chemotaxis receptors: a progress report on structure and function. J Struct Biol, 124, 257–275. [DOI] [PubMed] [Google Scholar]
  • 77.Iwama T., Homma M., & Kawagishi I. (1997) Uncoupling of ligand-binding affinity of the bacterial serine chemoreceptor from methylation- and temperature-modulated signaling states. J Biol Chem, 272, 13810–13815. [DOI] [PubMed] [Google Scholar]
  • 78.Nishiyama S., Nara T., Homma M., Imae Y., & Kawagishi I. (1997) Thermosensing properties of mutant aspartate chemoreceptors with methyl-accepting sites replaced singly or multiply by alanine. J Bacteriol, 179, 6573–6580. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 79.Nishiyama S. I., Umemura T., Nara T., Homma M., & Kawagishi I. (1999) Conversion of a bacterial warm sensor to a cold sensor by methylation of a single residue in the presence of an attractant. Mol Microbiol, 32, 357–365. [DOI] [PubMed] [Google Scholar]
  • 80.Oosawa K., & Imae Y. (1983) Glycerol and ethylene glycol: members of a new class of repellents of Escherichia coli chemotaxis. J Bacteriol, 154, 104–112. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 81.Oosawa K., & Imae Y. (1984) Demethylation of methyl-accepting chemotaxis proteins in Escherichia coli induced by the repellents glycerol and ethylene glycol. J Bacteriol, 157, 576–581. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 82.Nishiyama S., Maruyama I. N., Homma M., & Kawagishi I. (1999) Inversion of thermosensing property of the bacterial receptor Tar by mutations in the second transmembrane region. J Mol Biol, 286, 1275–1284. [DOI] [PubMed] [Google Scholar]
  • 83.Ninfa A. J., Ninfa E. G., Lupas A. N., Stock A., Magasanik B., & Stock J. (1988) Crosstalk between bacterial chemotaxis signal transduction proteins and regulators of transcription of the Ntr regulon: evidence that nitrogen assimilation and chemotaxis are controlled by a common phosphotransfer mechanism. Proc Natl Acad Sci U S A, 85, 5492–5496. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 84.Askwith C. C., Benson C. J., Welsh M. J., & Snyder P. M. (2001) DEG/ENaC ion channels involved in sensory transduction are modulated by cold temperature. Proc Natl Acad Sci U S A, 98, 6459–6463. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 85.Peier A. M., Moqrich A., Hergarden A. C., Reeve A. J., Andersson D. A., Story G. M., Earley T. J., Dragoni I., McIntyre P., Bevan S., & Patapoutian A. (2002) A TRP channel that senses cold stimuli and menthol. Cell, 108, 705–715. [DOI] [PubMed] [Google Scholar]
  • 86.Viswanathan C., & Zhu J. K. (2002) Molecular genetic analysis of cold-regulated gene transcription. Philos Trans R Soc Lond B Biol Sci, 357, 877–886. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 87.Herbaud M. L., Guiseppi A., Denizot F., Haiech J., & Kilhoffer M. C. (1998) Calcium signalling in Bacillus subtilis. Biochim Biophys Acta, 1448, 212–226. [DOI] [PubMed] [Google Scholar]
  • 88.VanBogelen R. A., & Neidhardt F. C. (1990) Ribosomes as sensors of heat and cold shock in Escherichia coli. Proc Natl Acad Sci U S A, 87, 5589–5593. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 89.Cashel M., Gentry D. R., Hernandez V. J., & Vinella D. (1996) The stringent response. In Escherichia coli and Salmonella: cellular and molecular biology (Eds, Neidhardt F. C., Curtiss R. III, Ingraham J. L., Lin E. C. C., Low K. B., Magasanik B., Reznikoff W. S., Riley M., Schaechter M., & Umbarger H. E.) American Society for Microbiology, Washington, D.C., pp. 1458–1496. [Google Scholar]
  • 90.Wendrich T. M., Blaha G., Wilson D. N., Marahiel M. A., & Nierhaus K. H. (2002) Dissection of the mechanism for the stringent factor RelA. Mol Cell, 10, 779–788. [DOI] [PubMed] [Google Scholar]
  • 91.Eymann C., Homuth G., Scharf C., & Hecker M. (2002) Bacillus subtilis functional genomics: global characterization of the stringent response by proteome and transcriptome analysis. J Bacteriol, 184, 2500–2520. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 92.Lund E., & Kjeldgaard N. O. (1972) Metabolism of guanosine tetraphosphate in Escherichia coli. Eur J Biochem, 28, 316–326. [DOI] [PubMed] [Google Scholar]
  • 93.Pao C. C., & Dyess B. T. (1981) Stringent control of RNA synthesis in the absence of guanosine 5'- diphosphate-3'-diphosphate. J Biol Chem, 256, 2252–2257. [PubMed] [Google Scholar]
  • 94.Mackow E. R., & Chang F. N. (1983) Correlation between RNA synthesis and ppGpp content in Escherichia coli during temperature shifts. Mol Gen Genet, 192, 5–9. [DOI] [PubMed] [Google Scholar]
  • 95.Wendrich T. M., Beckering C. L., & Marahiel M. A. (2000) Characterization of the relA/spoT gene from Bacillus stearothermophilus. FEMS Microbiol Lett, 190, 195–201. [DOI] [PubMed] [Google Scholar]
  • 96.Wendrich T. M., & Marahiel M. A. (1997) Cloning and characterization of a relA/spoT homologue from Bacillus subtilis. Mol Microbiol, 26, 65–79. [DOI] [PubMed] [Google Scholar]
  • 97.Ikehara K., Okada H., Maeda K., Ogura A., & Sugae K. (1984) Accumulation of relA gene-independent ppGpp in Bacillus subtilis vegetative cells upon temperature shift-down. J Biochem (Tokyo), 95, 895–897. [DOI] [PubMed] [Google Scholar]
  • 98.Pettijohn D. E. (1996) The nucleoid. In Escherichia coli and Salmonella: cellular and molecular biology (Eds, Neidhardt F. C., Curtiss R. III, Ingraham J. L., Lin E. C. C., Low K. B., Magasanik B., Reznikoff W. S., Riley M., Schaechter M., & Umbarger H. E.) American Society for Microbiology, Washington, D.C., pp. 158–166. [Google Scholar]
  • 99.Weber M. H. W., Volkov A. V., Fricke I., Marahiel M. A., & Graumann P. L. (2001) Localization of cold shock proteins to cytosolic spaces surrounding nucleoids in Bacillus subtilis Depends on Active Transcription. J. Bacteriol., 183, 6435–6443. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 100.Jones P. G., Krah R., Tafuri S. R., & Wolffe A. P. (1992) DNA gyrase, CS7.4, and the cold shock response in Escherichia coli. J Bacteriol, 174, 5798–5802. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 101.La Teana A., Brandi A., Falconi M., Spurio R., Pon C. L., & Gualerzi C. O. (1991) Identification of a cold shock transcriptional enhancer of the Escherichia coli gene encoding nucleoid protein H-NS. Proc Natl Acad Sci U S A, 88, 10907–10911. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 102.Dersch P., Kneip S., & Bremer E. (1994) The nucleoid-associated DNA-binding protein H-NS is required for the efficient adaptation of Escherichia coli K-12 to a cold environment. Mol Gen Genet, 245, 255–259. [DOI] [PubMed] [Google Scholar]
  • 103.Wada M., Kano Y., Ogawa T., Okazaki T., & Imamoto F. (1988) Construction and characterization of the deletion mutant of hupA and hupB genes in Escherichia coli. J Mol Biol, 204, 581–591. [DOI] [PubMed] [Google Scholar]
  • 104.Giangrossi M., Giuliodori A. M., Gualerzi C. O., & Pon C. L. (2002) Selective expression of the beta-subunit of nucleoid-associated protein HU during cold shock in Escherichia coli. Mol Microbiol, 44, 205–216. [DOI] [PubMed] [Google Scholar]
  • 105.Woldringh C. L., Jensen P. R., & Westerhoff H. V. (1995) Structure and partitioning of bacterial DNA: determined by a balance of compaction and expansion forces? FEMS Microbiol Lett, 131, 235–242. [DOI] [PubMed] [Google Scholar]
  • 106.Grau R., Gardiol D., Glikin G C., & de Mendoza D. (1994) DNA supercoiling and thermal regulation of unsaturated fatty acid synthesis in Bacillus subtilis. Mol Microbiol, 11, 933–941. [DOI] [PubMed] [Google Scholar]
  • 107.Krispin O., & Allmansberger R. (1995) Changes in DNA supertwist as a response of Bacillus subtilis towards different kinds of stress. FEMS Microbiol Lett, 134, 129–135. [DOI] [PubMed] [Google Scholar]
  • 108.Mizushima T., Kataoka K., Ogata Y., Inoue R., & Sekimizu K. (1997) Increase in negative supercoiling of plasmid DNA in Escherichia coli exposed to cold shock. Mol Microbiol, 23, 381–386. [DOI] [PubMed] [Google Scholar]
  • 109.Spurio R., Durrenberger M., Falconi M., La Teana A., Pon C. L., & Gualerzi C. O. (1992) Lethal overproduction of the Escherichia coli nucleoid protein HNS: ultramicroscopic and molecular autopsy. Mol Gen Genet, 231, 201–211. [DOI] [PubMed] [Google Scholar]
  • 110.Loshon C. A., Kraus P., Setlow B., & Setlow P. (1997) Effects of inactivation or overexpression of the sspF gene on properties of Bacillus subtilis spores. J Bacteriol, 179, 272–275. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 111.Ross M. A., & Setlow P. (2000) The Bacillus subtilis HBsu protein modifies the effects of alpha/beta- type, small acid-soluble spore proteins on DNA. J Bacteriol, 182, 1942–1948. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 112.Das H. K., & Goldstein A. (1968) Limited capacity for protein synthesis at zero degrees centigrade in Escherichia coli. J Mol Biol, 31, 209–226. [DOI] [PubMed] [Google Scholar]
  • 113.Friedman H., Lu P., & Rich A. (1971) Temperature control of initiation of protein synthesis in Escherichia coli. J Mol Biol, 61, 105–121. [DOI] [PubMed] [Google Scholar]
  • 114.Broeze R. J., Solomon C. J., & Pope D. H. (1978) Effects of low temperature on in vivo and in vitro protein synthesis in Escherichia coli and Pseudomonas fluorescens. J Bacteriol, 134, 861–874. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 115.Jones P. G., & Inouye M. (1996) RbfA, a 30S ribosomal binding factor, is a cold-shock protein whose absence triggers the cold-shock response. Mol Microbiol, 21, 1207–1218. [DOI] [PubMed] [Google Scholar]
  • 116.Farewell A., & Neidhardt F. C. (1998) Effect of temperature on in vivo protein synthetic capacity in Escherichia coli. J Bacteriol, 180, 4704–4710. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 117.Sinensky M. (1974) Homeoviscous adaptation—a homeostatic process that regulates the viscosity of membrane lipids in Escherichia coli. Proc Natl Acad Sci U S A, 71, 522–525. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 118.de Mendoza D., & Cronan J. E. J. (1983) Thermal regulation of membrane lipid fluidity in bacteria. Trends Biochem. Sci., 49–52. [Google Scholar]
  • 119.Russell N. J. (1984) Mechanisms of thermal adaptation in bacteria: Blueprints for survival. Trends Biochem. Sci., 108–112. [Google Scholar]
  • 120.de Mendoza D., Grau R., & Cronan J. E. J. (1993) Biosynthesis and function of membrane lipids. In Bacillus subtilis and other gram positive bacteria: Physiology, biochemistry and molecular biology (Eds, Losick R., Sonenshein A. L., & Hoch J. A.) American Society for Microbiology, Washington, D.C., pp. 411–425. [Google Scholar]
  • 121.Suutari M., & Laakso S. (1994) Microbial fatty acids and thermal adaptation. Crit Rev Microbiol, 20, 285–328. [DOI] [PubMed] [Google Scholar]
  • 122.Cronan J. E. J., & Rock C. O. (1996) Biosynthesis of membrane lipids. In Escherichia coli and Salmonella: cellular and molecular biology (Eds, Neidhardt F. C., Curtiss R. III, Ingraham J. L., Lin E. C. C., Low K. B., Magasanik B., Reznikoff W. S., Riley M., Schaechter M., & Umbarger H. E.) American Society for Microbiology, Washington, D.C., pp. 612–636. [Google Scholar]
  • 123.Marrakchi H., Choi K. H., & Rock C. O. (2002) A new mechanism for anaerobic unsaturated fatty acid formation in Streptococcus pneumoniae. J Biol Chem, 16, 16. [DOI] [PubMed] [Google Scholar]
  • 124.Los D. A., & Murata N. (1998) Structure and expression of fatty acid desaturases. Biochim Biophys Acta, 1394, 3–15. [DOI] [PubMed] [Google Scholar]
  • 125.Bishop D. G., Rutberg L., & Samuelsson B. (1967) The chemical composition of the cytoplasmic membrane of Bacillus subtilis. Eur J Biochem, 2, 448–453. [DOI] [PubMed] [Google Scholar]
  • 126.Kaneda T. (1991) Iso- and anteiso-fatty acids in bacteria: biosynthesis, function, and taxonomic significance. Microbiol Rev, 55, 288–302. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 127.Klein W., Weber M. H. W., & Marahiel M. A. (1999) Cold shock response of Bacillus subtilis: isoleucine-dependent switch in the fatty acid branching pattern for membrane adaptation to low temperatures. J Bacteriol, 181, 5341–5349. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 128.Diaz A. R., Mansilla M. C., Vila A. J., & De Mendoza D. (2002) Membrane topology of the Acyl-lipid desaturase from Bacillus subtilis. J Biol Chem, 24, 24. [DOI] [PubMed] [Google Scholar]
  • 129.Weber M. H. W., Klein W., Müller L., Niess U. M., & Marahiel M. A. (2001) Role of the Bacillus subtilis fatty acid desaturase in membrane adaptation during cold shock. Mol Microbiol, 39, 1321–1329. [DOI] [PubMed] [Google Scholar]
  • 130.Dunkley E. A. Jr., Clejan S., & Krulwich T. A. (1991) Mutants of Bacillus species isolated on the basis of protonophore resistance are deficient in fatty acid desaturase activity. J Bacteriol, 173, 7750–7755. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 131.Grau R., & de Mendoza D. (1993) Regulation of the synthesis of unsaturated fatty acids by growth temperature in Bacillus subtilis. Mol Microbiol, 8, 535–542. [DOI] [PubMed] [Google Scholar]
  • 132.Cybulski L. E., Albanesi D., Mansilla M. C., Altabe S., Aguilar P. S., & de Mendoza D. (2002) Mechanism of membrane fluidity optimization: isothermal control of the Bacillus subtilis acyl-lipid desaturase. Mol Microbiol, 45, 1379–1388. [DOI] [PubMed] [Google Scholar]
  • 133.Russell N. J., & Nichols D. S. (1999) Polyunsaturated fatty acids in marine bacteria—a dogma rewritten. Microbiology, 145, 767–779. [DOI] [PubMed] [Google Scholar]
  • 134.Tasaka Y., Gombos Z., Nishiyama Y., Mohanty P., Ohba T., Ohki K., & Murata N. (1996) Targeted mutagenesis of acyl-lipid desaturases in Synechocystis: evidence for the important roles of polyunsaturated membrane lipids in growth, respiration and photosynthesis. EMBO J, 15, 6416–6425. [PMC free article] [PubMed] [Google Scholar]
  • 135.Kanervo E., Tasaka Y., Murata N., & Aro E. M. (1997) Membrane lipid unsaturation modulates processing of the photosystem II reaction-center protein D1 at low temperatures. Plant Physiol, 114, 841–849. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 136.Nikaido H., & Vaara M. (1987) Outer membrane. In Escherichia coli and Salmonella: cellular and molecular biology (Eds, Neidhardt F. C., Ingraham J. L., Low K. B., Magasanik B., Schaechter M., & Umbarger H. E.) American Society for Microbiology, Washington, D.C., pp. 7–22. [Google Scholar]
  • 137.Raetz C. R. H. (1987) Structure and biosynthesis of lipid A in Escherichia coli. In Escherichia coli and Salmonella: cellular and molecular biology (Eds, Neidhardt F. C., Ingraham J. L., Low K. B., Magasanik B., Schaechter M., & Umbarger H. E.) American Society for Microbiology, Washington, D.C., pp. 498–503. [Google Scholar]
  • 138.Wollenweber H. W., Schlecht S., Luderitz O., & Rietschel E. T. (1983) Fatty acid in lipopolysaccharides of Salmonella species grown at low temperature. Identification and position. Eur J Biochem, 130, 167–171. [DOI] [PubMed] [Google Scholar]
  • 139.Carty S. M., Sreekumar K. R., & Raetz C. R. (1999) Effect of cold shock on lipid A biosynthesis in Escherichia coli. Induction At 12 degrees C of an acyl-transferase specific for palmitoleoyl-acyl carrier protein. J Biol Chem, 274, 9677–9685. [DOI] [PubMed] [Google Scholar]
  • 140.Vorachek-Warren M. K., Carty S. M., Lin S., Cotter R. J., & Raetz C. R. (2002) An Escherichia coli mutant lacking the cold shock-induced palmitoleoyltransferase of lipid A biosynthesis: absence of unsaturated acyl chains and antibiotic hypersensitivity at 12 degrees C. J Biol Chem, 277, 14186–14193. [DOI] [PubMed] [Google Scholar]
  • 141.Vorachek-Warren M. K., Ramirez S., Cotter R. J., & Raetz C. R. (2002) A triple mutant of Escherichia coli lacking secondary acyl chains on lipid A. J Biol Chem, 277, 14194–14205. [DOI] [PubMed] [Google Scholar]
  • 142.Lundrigan M. D., & Earhart C. F. (1984) Gene envY of Escherichia coli K-12 affects thermoregulation of major porin expression. J Bacteriol, 157, 262–268. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 143.Andersen J., Forst S. A., Zhao K., Inouye M., & Delihas N. (1989) The function of micF RNA. micF RNA is a major factor in the thermal regulation of OmpF protein in Escherichia coli. J Biol Chem, 264, 17961–17970. [PubMed] [Google Scholar]
  • 144.Delihas N., & Forst S. (2001) MicF: an antisense RNA gene involved in response of Escherichia coli to global stress factors. J Mol Biol, 313, 1–12. [DOI] [PubMed] [Google Scholar]
  • 145.Ermolenko D. N., & Makhatadze G. I. (2002) Bacterial cold-shock proteins. Cell Mol Life Sci, 59, 1902–1913. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 146.Goldstein J., Pollitt N. S., & Inouye M. (1990) Major cold shock protein of Escherichia coli. Proc Natl Acad Sci U S A, 87, 283–287. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 147.Weber M. H. W., Fricke I., Doll N., & Marahiel M. A. (2002) CSDBase: an interactive database for cold shock domain-containing proteins and the bacterial cold shock response. Nucleic Acids Res, 30, 375–378. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 148.Graumann P. L., & Marahiel M. A. (1998) A superfamily of proteins that contain the cold-shock domain. Trends Biochem Sci, 23, 286–290. [DOI] [PubMed] [Google Scholar]
  • 149.Yamanaka K., Fang L., & Inouye M. (1998) The CspA family in Escherichia coli: multiple gene duplication for stress adaptation. Mol Microbiol, 27, 247–255. [DOI] [PubMed] [Google Scholar]
  • 150.Felix G., & Boller T. (2002) Molecular sensing of bacteria in plants: The highly conserved RNA- binding motif RNP-1 of bacterial cold shock proteins is recognized as an elicitor signal in tobacco. J Biol Chem, 5, 5. [DOI] [PubMed] [Google Scholar]
  • 151.Schindelin H., Marahiel M. A., & Heinemann U. (1993) Universal nucleic acid-binding domain revealed by crystal structure of the B. subtilis major cold-shock protein. Nature, 364, 164–168. [DOI] [PubMed] [Google Scholar]
  • 152.Schnuchel A., Wiltscheck R., Czisch M., Herrler M., Willimsky G., Graumann P., Marahiel M. A., & Holak T. A. (1993) Structure in solution of the major cold-shock protein from Bacillus subtilis. Nature, 364, 169–171. [DOI] [PubMed] [Google Scholar]
  • 153.Wistow G. (1990) Cold shock and DNA binding. Nature, 344, 823–824. [DOI] [PubMed] [Google Scholar]
  • 154.Wolffe A. P., Tafuri S., Ranjan M., & Familari M. (1992) The Y-box factors: a family of nucleic acid binding proteins conserved from Escherichia coli to man. New Biol, 4, 290–298. [PubMed] [Google Scholar]
  • 155.Beja O., Koonin E. V., Aravind L., Taylor L. T., Seitz H., Stein J. L., Bensen D. C., Feldman R. A., Swanson R. V., & DeLong E. F. (2002) Comparative genomic analysis of archaeal genotypic variants in a single population and in two different oceanic provinces. Appl Environ Microbiol, 68, 335–345. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 156.Falsone S. F., Weichel M., Crameri R., Breitenbach M., & Kungl A. J. (2002) Unfolding and double-stranded DNA binding of the cold shock protein homologue Cla h 8 from Cladosporium herbarum. J Biol Chem, 277, 16512–16516. [DOI] [PubMed] [Google Scholar]
  • 157.Karlson D., & Imai R. (2003) Conservation of the cold shock domain protein family in plants. Plant Physiol, 131, 12–15. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 158.Sommerville J. (1999) Activities of cold-shock domain proteins in translation control. Bioessays, 21, 319–325. [DOI] [PubMed] [Google Scholar]
  • 159.Landsman D. (1992) RNP-1, an RNA-binding motif is conserved in the DNA-binding cold shock domain. Nucleic Acids Res, 20, 2861–2864. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 160.Newkirk K., Feng W., Jiang W., Tejero R., Emerson S. D., Inouye M., & Montelione G. T. (1994) Solution NMR structure of the major cold shock protein (CspA) from Escherichia coli: identification of a binding epitope for DNA. Proc Natl Acad Sci U S A, 91, 5114–5118. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 161.Schindelin H., Jiang W., Inouye M., & Heinemann U. (1994) Crystal structure of CspA, the major cold shock protein of Escherichia coli. Proc Natl Acad Sci U S A, 91, 5119–5123. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 162.Mueller U., Perl D., Schmid F. X., & Heinemann U. (2000) Thermal stability and atomic-resolution crystal structure of the Bacillus caldolyticus cold shock protein. J Mol Biol, 297, 975–988. [DOI] [PubMed] [Google Scholar]
  • 163.Kremer W., Schuler B., Harrieder S., Geyer M., Gronwald W., Welker C., Jaenicke R., & Kalbitzer H. R. (2001) Solution NMR structure of the cold-shock protein from the hyperthermophilic bacterium Thermotoga maritima. Eur J Biochem, 268, 2527–2539. [DOI] [PubMed] [Google Scholar]
  • 164.Kloks C. P., Spronk C. A., Lasonder E., Hoffmann A., Vuister G. W., Grzesiek S., & Hilbers C. W. (2002) The solution structure and DNA-binding properties of the cold-shock domain of the human Y-box protein YB-1. J Mol Biol, 316, 317–326. [DOI] [PubMed] [Google Scholar]
  • 165.Schröder K., Graumann P., Schnuchel A., Holak T. A., & Marahiel M. A. (1995) Mutational analysis of the putative nucleic acid-binding surface of the cold-shock domain, CspB, revealed an essential role of aromatic and basic residues in binding of single-stranded DNA containing the Y-box motif. Mol Microbiol, 16, 699–708. [DOI] [PubMed] [Google Scholar]
  • 166.Zeeb M., & Balbach J. (2003) Single-stranded DNA binding of the cold-shock protein CspB from Bacillus subtilis: NMR mapping and mutational characterization. Protein Sci, 12, 112–123. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 167.Hillier B. J., Rodriguez H. M., & Gregoret L. M. (1998) Coupling protein stability and protein function in Escherichia coli CspA. Fold Des, 3, 87–93. [DOI] [PubMed] [Google Scholar]
  • 168.Reid K. L., Rodriguez H. M., Hillier B. J., & Gregoret L. M. (1998) Stability and folding properties of a model beta-sheet protein, Escherichia coli CspA. Protein Sci, 7, 470–479. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 169.Schindler T., Perl D., Graumann P., Sieber V., Marahiel M. A., & Schmid F. X. (1998) Surface-exposed phenylalanines in the RNP1/RNP2 motif stabilize the cold-shock protein CspB from Bacillus subtilis. Proteins, 30, 401–406. [DOI] [PubMed] [Google Scholar]
  • 170.Schindler T., Herrler M., Marahiel M. A., & Schmid F. X. (1995) Extremely rapid protein folding in the absence of intermediates. Nat Struct Biol, 2, 663–673. [DOI] [PubMed] [Google Scholar]
  • 171.Perl D., Welker C., Schindler T., Schröder K., Marahiel M. A., Jaenicke R., & Schmid F. X. (1998) Conservation of rapid two-state folding in mesophilic, thermophilic and hyperthermophilic cold shock proteins. Nat Struct Biol, 5, 229–235. [DOI] [PubMed] [Google Scholar]
  • 172.Schindler T., Graumann P. L., Perl D., Ma S., Schmid F. X., & Marahiel M. A. (1999) The family of cold shock proteins of Bacillus subtilis. Stability and dynamics in vitro and in vivo. J Biol Chem, 274, 3407–3413. [DOI] [PubMed] [Google Scholar]
  • 173.Perl D., Mueller U., Heinemann U., & Schmid F. X. (2000) Two exposed amino acid residues confer thermostability on a cold shock protein. Nat Struct Biol, 7, 380–383. [DOI] [PubMed] [Google Scholar]
  • 174.Perl D., & Schmid F. X. (2001) Electrostatic stabilization of a thermophilic cold shock protein. J Mol Biol, 313, 343–357. [DOI] [PubMed] [Google Scholar]
  • 175.Makhatadze G. I., & Marahiel M. A. (1994) Effect of pH and phosphate ions on self-association properties of the major cold-shock protein from Bacillus subtilis. Protein Sci, 3, 2144–2147. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 176.Yamanaka K., Zheng W., Crooke E., Wang Y. H., & Inouye M. (2001) CspD, a novel DNA replication inhibitor induced during the stationary phase in Escherichia coli. Mol Microbiol, 39, 1572–1584. [DOI] [PubMed] [Google Scholar]
  • 177.Graumann P., & Marahiel M. A. (1994) The major cold shock protein of Bacillus subtilis CspB binds with high affinity to the ATTGG- and CCAAT sequences in single stranded oligonucleotides. FEBS Lett, 338, 157–160. [DOI] [PubMed] [Google Scholar]
  • 178.Jiang W., Hou Y., & Inouye M. (1997) CspA, the major cold-shock protein of Escherichia coli, is an RNA chaperone. J Biol Chem, 272, 196–202. [DOI] [PubMed] [Google Scholar]
  • 179.Hanna M. M., & Liu K. (1998) Nascent RNA in transcription complexes interacts with CspE, a small protein in E. coli implicated in chromatin condensation. J Mol Biol, 282, 227–239. [DOI] [PubMed] [Google Scholar]
  • 180.Lopez M. M., Yutani K., & Makhatadze G. I. (1999) Interactions of the major cold shock protein of Bacillus subtilis CspB with single-stranded DNA templates of different base composition. J Biol Chem, 274, 33601–33608. [DOI] [PubMed] [Google Scholar]
  • 181.Phadtare S., & Inouye M. (1999) Sequence-selective interactions with RNA by CspB, CspC and CspE, members of the CspA family of Escherichia coli. Mol Microbiol, 33, 1004–1014. [DOI] [PubMed] [Google Scholar]
  • 182.Lopez M. M., & Makhatadze G. I. (2000) Major cold shock proteins, CspA from Escherichia coli and CspB from Bacillus subtilis, interact differently with single-stranded DNA templates. Biochim Biophys Acta, 1479, 196–202. [DOI] [PubMed] [Google Scholar]
  • 183.Lopez M. M., Yutani K., & Makhatadze G. I. (2001) Interactions of the cold shock protein CspB from Bacillus subtilis with single-stranded DNA. Importance of the T base content and position within the template. J Biol Chem, 276, 15511–15518. [DOI] [PubMed] [Google Scholar]
  • 184.Brandi A., Pon C. L., & Gualerzi C. O. (1994) Interaction of the main cold shock protein CS7.4 (CspA) of Escherichia coli with the promoter region of hns. Biochimie, 76, 1090–1098. [DOI] [PubMed] [Google Scholar]
  • 185.Wang N., Yamanaka K., & Inouye M. (2000) Acquisition of double-stranded DNA-binding ability in a hybrid protein between Escherichia coli CspA and the cold shock domain of human YB-1. Mol Microbiol, 38, 526–534. [DOI] [PubMed] [Google Scholar]
  • 186.Willimsky G., Bang H., Fischer G., & Marahiel M. A. (1992) Characterization of cspB, a Bacillus subtilis inducible cold shock gene affecting cell viability at low temperatures. J Bacteriol, 174, 6326–6335. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 187.Lee S. J., Xie A., Jiang W., Etchegaray J. P., Jones P. G., & Inouye M. (1994) Family of the major cold-shock protein, CspA (CS7.4), of Escherichia coli, whose members show a high sequence similarity with the eukaryotic Y-box binding proteins. Mol Microbiol, 11, 833–839. [DOI] [PubMed] [Google Scholar]
  • 188.Nakashima K., Kanamaru K., Mizuno T., & Horikoshi K. (1996) A novel member of the cspA family of genes that is induced by cold shock in Escherichia coli. J Bacteriol, 178, 2994–2997. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 189.Wang N., Yamanaka K., & Inouye M. (1999) CspI, the ninth member of the CspA family of Escherichia coli, is induced upon cold shock. J Bacteriol, 181, 1603–1609. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 190.Yamanaka K., Mitani T., Ogura T., Niki H., & Hiraga S. (1994) Cloning, sequencing, and characterization of multicopy suppressors of a mukB mutation in Escherichia coli. Mol Microbiol, 13, 301–312. [DOI] [PubMed] [Google Scholar]
  • 191.Yamanaka K., & Inouye M. (1997) Growth-phase-dependent expression of cspD, encoding a member of the CspA family in Escherichia coli. J Bacteriol, 179, 5126–5130. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 192.Bae W., Xia B., Inouye M., & Severinov K. (2000) Escherichia coli CspA-family RNA chaperones are transcription antiterminators. Proc Natl Acad Sci U S A, 97, 7784–7789. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 193.Xia B., Ke H., & Inouye M. (2001) Acquirement of cold sensitivity by quadruple deletion of the cspA family and its suppression by PNPase S1 domain in Escherichia coli. Mol Microbiol, 40, 179–188. [DOI] [PubMed] [Google Scholar]
  • 194.Phadtare S., & Inouye M. (2001) Role of CspC and CspE in regulation of expression of RpoS and UspA, the stress response proteins in Escherichia coli. J Bacteriol, 183, 1205–1214. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 195.Hu K. H., Liu E., Dean K., Gingras M., DeGraff W., & Trun N. J. (1996) Overproduction of three genes leads to camphor resistance and chromosome condensation in Escherichia coli. Genetics, 143, 1521–1532. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 196.Giangrossi M., Exley R. M., Le Hegarat F., & Pon C. L. (2001) Different in vivo localization of the Escherichia coli proteins CspD and CspA. FEMS Microbiol Lett, 202, 171–176. [DOI] [PubMed] [Google Scholar]
  • 197.Weber M. H. W., Beckering C. L., & Marahiel M. A. (2001) Complementation of cold shock proteins by translation initiation factor IF1 in vivo. J. Bacteriol., 183, 7381–7386. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 198.Graumann P. L., & Marahiel M. A. (1999) Cold shock proteins CspB and CspC are major stationary-phase-induced proteins in Bacillus subtilis. Arch Microbiol, 171, 135–138. [DOI] [PubMed] [Google Scholar]
  • 199.Wada A. (1998) Growth phase coupled modulation of Escherichia coli ribosomes. Genes Cells, 3, 203–208. [DOI] [PubMed] [Google Scholar]
  • 200.Etchegaray J. P., & Inouye M. (1999) CspA, CspB, and CspG, major cold shock proteins of Escherichia coli, are induced at low temperature under conditions that completely block protein synthesis. J Bacteriol, 181, 1827–1830. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 201.Carter A. P., Clemons W. M. Jr., Brodersen D. E., Morgan-Warren R. J., Hartsch T., Wimberly B. T., & Ramakrishnan V. (2001) Crystal structure of an initiation factor bound to the 30S ribosomal subunit. Science, 291, 498–501. [DOI] [PubMed] [Google Scholar]
  • 202.Kay A. C., Graffe M., & Grunberg-Manago M. (1976) Purification and properties of two initiation factors from Bacillus stearothermophilus. Biochimie, 58, 183–199. [DOI] [PubMed] [Google Scholar]
  • 203.Mascarenhas J., Weber M. H. W., & Graumann P. L. (2001) Specific polar localization of ribosomes in Bacillus subtilis depends on active transcription. EMBO Rep, 2, 685–689. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 204.Schleich T., Verwolf G. L., & Twombly K. (1980) A circular dichroism study of Escherichia coli Initiation Factor-1 binding to polynucleotides. Biochim Biophys Acta, 609, 313–320. [DOI] [PubMed] [Google Scholar]
  • 205.Schouten J. P. (1985) Hybridization selection of covalent nucleic acid-protein complexes. 2. Cross-linking of proteins to specific Escherichia coli mRNAs and DNA sequences by formaldehyde treatment of intact cells. J Biol Chem, 260, 9929–9935. [PubMed] [Google Scholar]
  • 206.Schouten J. P. (1985) Hybridization selection of nucleic acid-protein complexes. 1. Detection of proteins cross-linked to specific mRNAs and DNA sequences by irradiation of intact Escherichia coli cells with ultraviolet light. J Biol Chem, 260, 9916–9928. [PubMed] [Google Scholar]
  • 207.Bycroft M., Hubbard T. J., Proctor M., Freund S. M., & Murzin A. G. (1997) The solution structure of the S1 RNA binding domain: a member of an ancient nucleic acid-binding fold. Cell, 88, 235–242. [DOI] [PubMed] [Google Scholar]
  • 208.Murzin A. G. (1993) OB(oligonucleotide/oligosaccharide binding)-fold: common structural and functional solution for non-homologous sequences. EMBO J, 12, 861–867. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 209.Phadtare S., Inouye M., & Severinov K. (2002) The nucleic acid melting activity of Escherichia coli CspE is critical for transcription antitermination and cold acclimation of cells. J Biol Chem, 277, 7239–7245. [DOI] [PubMed] [Google Scholar]
  • 210.Phadtare S., Tyagi S., Inouye M., & Severinov K. (2002) Three Amino Acids in Escherichia coli CspE Surface-exposed Aromatic Patch Are Critical for Nucleic Acid Melting Activity Leading to Transcription Antitermination and Cold Acclimation of Cells. J Biol Chem, 277, 46706–46711. [DOI] [PubMed] [Google Scholar]
  • 211.Nedwell D. B. (1999) Effect of low temperature on microbial growth: lowered affinity for substrates limits growth at low temperature. FEMS Microbiol Ecol, 30, 101–111. [DOI] [PubMed] [Google Scholar]
  • 212.Reay D. S., Nedwell D. B., Priddle J., & Ellis-Evans J. C. (1999) Temperature dependence of inorganic nitrogen uptake: reduced affinity for nitrate at sub-optimal temperatures in both algae and bacteria. Appl Environ Microbiol, 65, 2577–2584. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 213.Dammel C. S., & Noller H. F. (1995) Suppression of a cold-sensitive mutation in 16S rRNA by overexpression of a novel ribosome-binding factor, RbfA. Genes Dev, 9, 626–637. [DOI] [PubMed] [Google Scholar]
  • 214.Jones P. G., Mitta M., Kim Y., Jiang W., & Inouye M. (1996) Cold shock induces a major ribosomal-associated protein that unwinds double-stranded RNA in Escherichia coli. Proc Natl Acad Sci U S A, 93, 76–80. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 215.Ehrenberg M., Dincbas V., Freistroffer D., Heurgué-Hamard V., Karimi R., Pavlov M., & Buckingham R. H. (2000) In The ribosome–structure, functions, antibiotics and cellular interactions (Eds, Garrett R. A., Douthwaite S. R., Liljas A., Matheson A. T., Moore P. B., & Noller H. F.) Amercian Society for Microbiology, Washington, D.C., pp. 541–551. [Google Scholar]
  • 216.Chamot D., Magee W. C., Yu E., & Owttrim G. W. (1999) A cold shock-induced cyanobacterial RNA helicase. J Bacteriol, 181, 1728–1732. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 217.Chamot D., & Owttrim G. W. (2000) Regulation of cold shock-induced RNA helicase gene expression in the Cyanobacterium Anabaena sp. strain PCC 7120. J Bacteriol, 182, 1251–1256. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 218.Yu E., & Owttrim G. W. (2000) Characterization of the cold stress-induced cyanobacterial DEAD-box protein CrhC as an RNA helicase. Nucleic Acids Res, 28, 3926–3934. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 219.Iost I., & Dreyfus M. (1994) mRNAs can be stabilized by DEAD-box proteins. Nature, 372, 193–196. [DOI] [PubMed] [Google Scholar]
  • 220.O'Connell K. P., Gustafson A. M., Lehmann M. D., & Thomashow M. F. (2000) Identification of cold shock gene loci in Sinorhizobium meliloti by using a luxAB reporter transposon. Appl Environ Microbiol, 66, 401–405. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 221.Gustafson A. M., O'Connell K. P., & Thomashow M. F. (2002) Regulation of Sinorhizobium meliloti 1021 rrnA-reporter gene fusions in response to cold shock. Can J Microbiol, 48, 821–830. [DOI] [PubMed] [Google Scholar]
  • 222.Ross W., Gosink K. K., Salomon J., Igarashi K., Zou C., Ishihama A., Severinov K., & Gourse R. L. (1993) A third recognition element in bacterial promoters: DNA binding by the alpha subunit of RNA polymerase. Science, 262, 1407–1413. [DOI] [PubMed] [Google Scholar]
  • 223.O'Connell K. P., & Thomashow M. F. (2000) Transcriptional organization and regulation of a polycistronic cold shock operon in Sinorhizobium meliloti RM1021 encoding homologs of the Escherichia coli major cold shock gene cspA and ribosomal protein gene rpsU. Appl Environ Microbiol, 66, 392–400. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 224.Kolb A., Hermoso J. M., Thomas J. O., & Szer W. (1977) Nucleic acid helix-unwinding properties of ribosomal protein S1 and the role of S1 in mRNA binding to ribosomes. Proc Natl Acad Sci U S A, 74, 2379–2383. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 225.Toone W. M., Rudd K. E., & Friesen J. D. (1991) deaD, a new Escherichia coli gene encoding a presumed ATP-dependent RNA helicase, can suppress a mutation in rpsB, the gene encoding ribosomal protein S2. J Bacteriol, 173, 3291–3302. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 226.Moll I., Grill S., Grundling A., & Bläsi U. (2002) Effects of ribosomal proteins S1, S2 and the DeaD/CsdA DEAD-box helicase on translation of leaderless and canonical mRNAs in Escherichia coli. Mol Microbiol, 44, 1387–1396. [DOI] [PubMed] [Google Scholar]
  • 227.Nishi K., Morel-Deville F., Hershey J. W., Leighton T., & Schnier J. (1988) An eIF-4A-like protein is a suppressor of an Escherichia coli mutant defective in 50S ribosomal subunit assembly. Nature, 336, 496–498. [DOI] [PubMed] [Google Scholar]
  • 228.Tsu C. A., Kossen K., & Uhlenbeck O. C. (2001) The Escherichia coli DEAD protein DbpA recognizes a small RNA hairpin in 23S rRNA. RNA, 7, 702–709. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 229.Kaan T., Homuth G., Mader U., Bandow J., & Schweder T. (2002) Genome-wide transcriptional profiling of the Bacillus subtilis cold-shock response. Microbiology, 148, 3441–3455. [DOI] [PubMed] [Google Scholar]
  • 230.Agafonov D. E., Kolb V. A., Nazimov I. V., & Spirin A. S. (1999) A protein residing at the subunit interface of the bacterial ribosome. Proc Natl Acad Sci U S A, 96, 12345–12349. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 231.Agafonov D. E., Kolb V. A., & Spirin A. S. (2001) Ribosome-associated protein that inhibits translation at the aminoacyl- tRNA binding stage. EMBO Rep, 2, 399–402. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 232.Parsons L., Eisenstein E., & Orban J. (2001) Solution structure of HI0257, a bacterial ribosome binding protein. Biochemistry, 40, 10979–10986. [DOI] [PubMed] [Google Scholar]
  • 233.Rak A., Kalinin A., Shcherbakov D., & Bayer P. (2002) Solution structure of the ribosome-associated cold shock response protein Yfia of Escherichia coli. Biochem Biophys Res Commun, 299, 710–714. [DOI] [PubMed] [Google Scholar]
  • 234.Balakin A. G., Skripkin E. A., Shatsky I. N., & Bogdanov A. A. (1992) Unusual ribosome binding properties of mRNA encoding bacteriophage lambda repressor. Nucleic Acids Res, 20, 563–571. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 235.Moll I., Grill S., Gualerzi C. O., & Bläsi U. (2002) Leaderless mRNAs in bacteria: surprises in ribosomal recruitment and translational control. Mol Microbiol, 43, 239–246. [DOI] [PubMed] [Google Scholar]
  • 236.Grill S., Moll I., Giuliodori A. M., Gualerzi C. O., & Bläsi U. (2002) Temperature-dependent translation of leaderless and canonical mRNAs in Escherichia coli. FEMS Microbiol Lett, 211, 161–167. [DOI] [PubMed] [Google Scholar]
  • 237.Moll I., & Bläsi U. (2002) Differential inhibition of 30S and 70S translation initiation complexes on leaderless mRNA by kasugamycin. Biochem Biophys Res Commun, 297, 1021–1026. [DOI] [PubMed] [Google Scholar]
  • 238.Moll I., Resch A., & Bläsi U. (1998) Discrimination of 5'-terminal start codons by translation initiation factor 3 is mediated by ribosomal protein S1. FEBS Lett, 436, 213–217. [DOI] [PubMed] [Google Scholar]
  • 239.Grill S., Moll I., Hasenohrl D., Gualerzi C. O., & Bläsi U. (2001) Modulation of ribosomal recruitment to 5'-terminal start codons by translation initiation factors IF2 and IF3. FEBS Lett, 495, 167–171. [DOI] [PubMed] [Google Scholar]
  • 240.Grill S., Gualerzi C. O., Londei P., & Bläsi U. (2000) Selective stimulation of translation of leaderless mRNA by initiation factor 2: evolutionary implications for translation. EMBO J, 19, 4101–4110. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 241.Kandror O., DeLeon A., & Goldberg A. L. (2002) Trehalose synthesis is induced upon exposure of Escherichia coli to cold and is essential for viability at low temperatures. Proc Natl Acad Sci U S A, 99, 9727–9732. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 242.Ko R., Smith L. T., & Smith G. M. (1994) Glycine betaine confers enhanced osmotolerance and cryotolerance on Listeria monocytogenes. J Bacteriol, 176, 426–431. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 243.Bayles D. O., & Wilkinson B. J. (2000) Osmoprotectants and cryoprotectants for Listeria monocytogenes. Lett Appl Microbiol, 30, 23–27. [DOI] [PubMed] [Google Scholar]
  • 244.Becker L. A., Evans S. N., Hutkins R. W., & Benson A. K. (2000) Role of sigma(B) in adaptation of Listeria monocytogenes to growth at low temperature. J Bacteriol, 182, 7083–7087. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 245.Graumann P. L., & Marahiel M. A. (1999) Cold shock response in Bacillus subtilis. J Mol Microbiol Biotechnol., 1, 203–209. [PubMed] [Google Scholar]
  • 246.Kandror O., & Goldberg A. L. (1997) Trigger factor is induced upon cold shock and enhances viability of Escherichia coli at low temperatures. Proc Natl Acad Sci U S A, 94, 4978–4981. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 247.Fischer G., Tradler T., & Zarnt T. (1998) The mode of action of peptidyl prolyl cis/trans isomerases in vivo: binding vs. catalysis. FEBS Lett, 426, 17–20. [DOI] [PubMed] [Google Scholar]
  • 248.Stoller G., Rucknagel K. P., Nierhaus K. H., Schmid F. X., Fischer G., & Rahfeld J. U. (1995) A ribosome-associated peptidyl-prolyl cis/trans isomerase identified as the trigger factor. EMBO J, 14, 4939–4948. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 249.Lee H. C., & Bernstein H. D. (2002) Trigger factor retards protein export in E. coli. J Biol Chem, 277, 43527–43535. [DOI] [PubMed] [Google Scholar]
  • 250.Lelivelt M. J., & Kawula T. H. (1995) Hsc66, an Hsp70 homolog in Escherichia coli, is induced by cold shock but not by heat shock. J Bacteriol, 177, 4900–4907. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 251.Agar J. N., Krebs C., Frazzon J., Huynh B. H., Dean D. R., & Johnson M. K. (2000) IscU as a scaffold for iron-sulfur cluster biosynthesis: sequential assembly of [2Fe-2S] and [4Fe-4S] clusters in IscU. Biochemistry, 39, 7856–7862. [DOI] [PubMed] [Google Scholar]
  • 252.Hoff K. G., Ta D. T., Tapley T. L., Silberg J. J., & Vickery L. E. (2002) Hsc66 substrate specificity is directed toward a discrete region of the iron-sulfur cluster template protein IscU. J Biol Chem, 277, 27353–27359. [DOI] [PubMed] [Google Scholar]
  • 253.Porankiewicz J., & Clarke A. K. (1997) Induction of the heat shock protein ClpB affects cold acclimation in the cyanobacterium Synechococcus sp. strain PCC 7942. J Bacteriol, 179, 5111–5117. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 254.Porankiewicz J., Schelin J., & Clarke A. K. (1998) The ATP-dependent Clp protease is essential for acclimation to UV-B and low temperature in the cyanobacterium Synechococcus. Mol Microbiol, 29, 275–283. [DOI] [PubMed] [Google Scholar]
  • 255.Hossain M. M., & Nakamoto H. (2002) HtpG plays a role in cold acclimation in cyanobacteria. Curr Microbiol, 44, 291–296. [DOI] [PubMed] [Google Scholar]
  • 256.Liu S., Graham J. E., Bigelow L., Morse P. D. 2nd, & Wilkinson B. J. (2002) Identification of Listeria monocytogenes genes expressed in response to growth at low temperature. Appl Environ Microbiol, 68, 1697–1705. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 257.Tjalsma H., Kontinen V. P., Pragai Z., Wu H., Meima R., Venema G., Bron S., Sarvas M., & van Dijl J. M. (1999) The role of lipoprotein processing by signal peptidase II in the Gram- positive eubacterium Bacillus subtilis. Signal peptidase II is required for the efficient secretion of alpha-amylase, a non-lipoprotein. J Biol Chem, 274, 1698–1707. [DOI] [PubMed] [Google Scholar]
  • 258.Kontinen V. P., & Sarvas M. (1993) The PrsA lipoprotein is essential for protein secretion in Bacillus subtilis and sets a limit for high-level secretion. Mol Microbiol, 8, 727–737. [DOI] [PubMed] [Google Scholar]
  • 259.Hirose I., Sano K., Shioda I., Kumano M., Nakamura K., & Yamane K. (2000) Proteome analysis of Bacillus subtilis extracellular proteins: a two-dimensional protein electrophoretic study. Microbiology, 146, 65–75. [DOI] [PubMed] [Google Scholar]
  • 260.Tjalsma H., Bolhuis A., Jongbloed J. D., Bron S., & van Dijl J. M. (2000) Signal peptide-dependent protein transport in Bacillus subtilis: a genome-based survey of the secretome. Microbiol Mol Biol Rev, 64, 515–547. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 261.Antelmann H., Tjalsma H., Voigt B., Ohlmeier S., Bron S., van Dijl J. M., & Hecker M. (2001) A proteomic view on genome-based signal peptide predictions. Genome Res, 11, 1484–1502. [DOI] [PubMed] [Google Scholar]
  • 262.Pogliano K. J., & Beckwith J. (1993) The Cs sec mutants of Escherichia coli reflect the cold sensitivity of protein export itself. Genetics, 133, 763–773. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 263.Bolhuis A., Broekhuizen C. P., Sorokin A., van Roosmalen M. L., Venema G., Bron S., Quax W. J., & van Dijl J. M. (1998) SecDF of Bacillus subtilis, a molecular Siamese twin required for the efficient secretion of proteins. J Biol Chem, 273, 21217–21224. [DOI] [PubMed] [Google Scholar]
  • 264.Saier M. H. Jr. (2000) A functional-phylogenetic classification system for transmembrane solute transporters. Microbiol Mol Biol Rev, 64, 354–411. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 265.Flower A. M. (2001) SecG function and phospholipid metabolism in Escherichia coli. J Bacteriol, 183, 2006–2012. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 266.Nakamura K., Yahagi S., Yamazaki T., & Yamane K. (1999) Bacillus subtilis histone-like protein, HBsu, is an integral component of a SRP-like particle that can bind the Alu domain of small cytoplasmic RNA. J Biol Chem, 274, 13569–13576. [DOI] [PubMed] [Google Scholar]
  • 267.Chen M., Xie K., Jiang F., Yi L., & Dalbey R. E. (2002) YidC, a newly defined evolutionarily conserved protein, mediates membrane protein assembly in bacteria. Biol Chem, 383, 1565–1572. [DOI] [PubMed] [Google Scholar]
  • 268.Stragier P., & Losick R. (1996) Molecular genetics of sporulation in Bacillus subtilis. Annu Rev Genet, 30, 297–241. [DOI] [PubMed] [Google Scholar]
  • 269.Aronson J. N., & Thompson F. M. (1971) Bacillus thuringiensis sporulation at suboptimal temperature. J Bacteriol, 105, 445–448. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 270.Rhie H. G., & Shimkets L. J. (1991) Low-temperature induction of Myxococcus xanthus developmental gene expression in wild-type and csgA suppressor cells. J Bacteriol, 173, 2206–2211. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 271.Strauch M. A., de Mendoza D., & Hoch J. A. (1992) Cis-unsaturated fatty acids specifically inhibit a signal-transducing protein kinase required for initiation of sporulation in Bacillus subtilis. Mol Microbiol, 6, 2909–2917. [DOI] [PubMed] [Google Scholar]
  • 272.Yamanaka K., & Inouye M. (2001) Selective mRNA degradation by polynucleotide phosphorylase in cold shock adaptation in Escherichia coli. J Bacteriol, 183, 2808–2816. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 273.Lease R. A., & Belfort M. (2000) Riboregulation by DsrA RNA: trans-actions for global economy. Mol Microbiol, 38, 667–672. [DOI] [PubMed] [Google Scholar]
  • 274.Becker L. A., Cetin M. S., Hutkins R. W., & Benson A. K. (1998) Identification of the gene encoding the alternative sigma factor σB from Listeria monocytogenes and its role in osmotolerance. J Bacteriol, 180, 4547–4554. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 275.Tanabe H., Goldstein J., Yang M., & Inouye M. (1992) Identification of the promoter region of the Escherichia coli major cold shock gene, cspA. J Bacteriol, 174, 3867–3873. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 276.Vasina J. A., & Baneyx F. (1996) Recombinant protein expression at low temperatures under the transcriptional control of the major Escherichia coli cold shock promoter cspA. Appl Environ Microbiol, 62, 1444–1447. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 277.Goldenberg D., Azar I., Oppenheim A. B., Brandi A., Pon C. L., & Gualerzi C. O. (1997) Role of Escherichia coli cspA promoter sequences and adaptation of translational apparatus in the cold shock response. Mol Gen Genet, 256, 282–290. [DOI] [PubMed] [Google Scholar]
  • 278.Brandi A., Spurio R., Gualerzi C. O., & Pon C. L. (1999) Massive presence of the Escherichia coli ‘major cold-shock protein’ CspA under non-stress conditions. EMBO J, 18, 1653–1659. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 279.Kaan T., Jürgen B., & Schweder T. (1999) Regulation of the expression of the cold shock proteins CspB and CspC in Bacillus subtilis. Mol Gen Genet, 262, 351–354. [DOI] [PubMed] [Google Scholar]
  • 280.Brandi A., Pietroni P., Gualerzi C. O., & Pon C. L. (1996) Post-transcriptional regulation of CspA expression in Escherichia coli. Mol Microbiol, 19, 231–240. [DOI] [PubMed] [Google Scholar]
  • 281.Goldenberg D., Azar I., & Oppenheim A. B. (1996) Differential mRNA stability of the cspA gene in the cold-shock response of Escherichia coli. Mol Microbiol, 19, 241–248. [DOI] [PubMed] [Google Scholar]
  • 282.Beran R. K., & Simons R. W. (2001) Cold-temperature induction of Escherichia coli polynucleotide phosphorylase occurs by reversal of its autoregulation. Mol Microbiol, 39, 112–125. [DOI] [PubMed] [Google Scholar]
  • 283.Danchin A. (1997) Comparison between the Escherichia coli and Bacillus subtilis genomes suggests that a major function of polynucleotide phosphorylase is to synthesize CDP. DNA Res, 4, 9–18. [DOI] [PubMed] [Google Scholar]
  • 284.Zangrossi S., Briani F., Ghisotti D., Regonesi M. E., Tortora P., & Deho G. (2000) Transcriptional and post-transcriptional control of polynucleotide phosphorylase during cold acclimation in Escherichia coli. Mol Microbiol, 36, 1470–1480. [DOI] [PubMed] [Google Scholar]
  • 285.Mathy N., Jarrige A. C., Robert-Le Meur M., & Portier C. (2001) Increased expression of Escherichia coli polynucleotide phosphorylase at low temperatures is linked to a decrease in the efficiency of autocontrol. J Bacteriol, 183, 3848–3854. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 286.Goverde R. L., Huis in't Veld J. H., Kusters J. G., & Mooi F. R. (1998) The psychrotrophic bacterium Yersinia enterocolitica requires expression of pnp, the gene for polynucleotide phosphorylase, for growth at low temperature (5°C). Mol Microbiol, 28, 555–569. [DOI] [PubMed] [Google Scholar]
  • 287.Luttinger A., Hahn J., & Dubnau D. (1996) Polynucleotide phosphorylase is necessary for competence development in Bacillus subtilis. Mol Microbiol, 19, 343–356. [DOI] [PubMed] [Google Scholar]
  • 288.Wang W., & Bechhofer D. H. (1996) Properties of a Bacillus subtilis polynucleotide phosphorylase deletion strain. J Bacteriol, 178, 2375–2382. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 289.Repoila F., & Gottesman S. (2001) Signal transduction cascade for regulation of RpoS: temperature regulation of DsrA. J Bacteriol, 183, 4012–4023. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 290.Graumann P., & Marahiel M. A. (1997) Effects of heterologous expression of CspB, the major cold shock protein of Bacillus subtillis, on protein synthesis in Escherichia coli. Mol Gen Genet, 253, 745–752. [DOI] [PubMed] [Google Scholar]
  • 291.Apweiler R., Attwood T. K., Bairoch A., Bateman A., Birney E., Biswas M., Bucher P., Cerutti L., Corpet F., Croning M. D., Durbin R., Falquet L., Fleischmann W., Gouzy J., Hermjakob H., Hulo N., Jonassen I., Kahn D., Kanapin A., Karavidopoulou Y., Lopez R., Marx B., Mulder N. J., Oinn T. M., Pagni M., Servant F., Sigrist C. J., & Zdobnov E. M. (2001) The InterPro database, an integrated documentation resource for protein families, domains and functional sites. Nucleic Acids Res, 29, 37–40. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 292.Appel R. D., Bairoch A., & Hochstrasser D. F. (1994) A new generation of information retrieval tools for biologists: the example of the ExPASy www server. Trends Biochem Sci, 19, 258–260. [DOI] [PubMed] [Google Scholar]
  • 293.Saitou N., & Nei M. (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol, 4, 406–425. [DOI] [PubMed] [Google Scholar]

Articles from Science Progress are provided here courtesy of SAGE Publications

RESOURCES