Skip to main content
Science Progress logoLink to Science Progress
. 2019 Feb 27;89(3-4):213–242. doi: 10.3184/003685006783238308

The Role of Two-Component Regulation Systems in the physiology of the Bacterial Cell

Martijn Bekker 3, M Joost Teixeira De Mattos 2, Klaas J Hellingwerf 1,
PMCID: PMC10368358  PMID: 17338439

Abstract

Two-component regulation systems (TCRSs) are the dominant type of signal transduction system in prokaryotes that are used to inform the cellular trancriptional machinery (and additional targets for regulation, like the motility apparatus) about actual changes in the extracellular physico-chemical conditions. We now review their molecular structure and enzymatic characteristics, their mutual interactions and its implications, and their role in cellular physiology. Specific emphasis is placed on the ArcB/A system, a representative of the phosphorelay type of TCRS, and a key player in the adjustment of the cellular make-up of enterobacteria in response to alterations in the oxygen availability. Also some applied aspects of the TCRSs are discussed, i.e. their role as a target to develop new anti-bacterials and their application in biotechnology (or: ‘synthetic biology’).

Keywords: Two-component system, TCRS, physiology, histidine protein kinase, response regulator, antimicrobials, signal transduction, synthetic biology, ArcB, oxygen regulation

Full Text

The Full Text of this article is available as a PDF (271.1 KB).

References

  • 1.Ulrich L. E., Koonin E. V., and Zhulin I. B. (2005) One-component systems dominate signal transduction in prokaryotes. Trends Microbiol., 13, 52. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 2.Koretke K. K., Lupas A. N., Warren P. V., Rosenberg M., and Brown J. R. (2000) Evolution of two-component signal transduction. Molec. Biol. Evolut., 17, 1956. [DOI] [PubMed] [Google Scholar]
  • 3.Jung K. H., Trivedi V. D., and Spudich J. L. (2003) Demonstration of a sensory rhodopsin in eubacteria. Molec. Microbiol., 47, 1513. [DOI] [PubMed] [Google Scholar]
  • 4.Galperin M. Y. (2005) A census of membrane-bound and intracellular signal transduction proteins in bacteria: bacterial IQ, extroverts and introverts. BMC Microbiol., 5, 35. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 5.Stock J. B., Ninfa A. J., and Stock A. M. (1989) Protein phosphorylation and regulation of adaptive responses in bacteria. Microbiol. Rev., 53, 450. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 6.Parkinson J. S., and Kofoid E. C. (1992) Communication modules in bacterial signaling proteins. Annu. Rev. Genet., 26, 71. [DOI] [PubMed] [Google Scholar]
  • 7.Qin L., Cai S., Zhu Y., and Inouye M. (2003) Cysteine-scanning analysis of the dimerization domain of Env, zan osmosensing histidine kinase. J. Bacteriol., 185, 3429. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 8.West A. H., and Stock A. M. (2001) Histidine kinases and response regulator proteins in two-component signaling systems. Trends Biochem. Sci., 26, 369. [DOI] [PubMed] [Google Scholar]
  • 9.Zapf J., Sen U., Madhusudan, Hoch J. A., and Varughese K. I. (2000) A transient interaction between two phosphorelay proteins trapped in a crystal lattice reveals the mechanism of molecular recognition and phosphotransfer in signal transduction. Structure, 8, 851. [DOI] [PubMed] [Google Scholar]
  • 10.Xu Q., Porter S. W., and West A. H. (2003) The yeast YPD1/SLN1 complex: insights into molecular recognition in two-component signaling systems. Structure, 11, 1569. [DOI] [PubMed] [Google Scholar]
  • 11.Mukhopadhyay D., and Varughese K. I. (2005) A computational analysis on the specificity of interactions between histidine kinases and response regulators. J. Biomolec. Struct. Dyn., 22, 555. [DOI] [PubMed] [Google Scholar]
  • 12.Kim D., and Forst S. (2001) Genomic analysis of the histidine kinase family in bacteria and archaea. Microbiology, 147, 1197. [DOI] [PubMed] [Google Scholar]
  • 13.Galperin M. Y. (2006) Structural classification of bacterial response regulators: diversity of output domains and domain combinations. J. Bacteriol., 188, 4169. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 14.Zhang W., and Shi L. (2005) Distribution and evolution of multiple-step phosphorelay in prokaryotes: lateral domain recruitment involved in the formation of hybrid-type histidine kinases. Microbiology, 151, 2159. [DOI] [PubMed] [Google Scholar]
  • 15.Dutta R., Qin L., and Inouye M. (1999) Histidine kinases: diversity of domain organization. Molec. Microbiol., 34, 633. [DOI] [PubMed] [Google Scholar]
  • 16.Hellingwerf K. J. (2005) Bacterial observations: a rudimentary form of intelligence? Trends Microbiol., 13, 152. [DOI] [PubMed] [Google Scholar]
  • 17.Yamamoto K., Hirao K., Oshima T., Aiba H., Utsumi R., and Ishihama A. (2005) Functional characterization in vitro of all two-component signal transduction systems from Escherichia coli. J. Biol. Chem., 280, 1448. [DOI] [PubMed] [Google Scholar]
  • 18.Matsubara M., Kitaoka S. L., Takeda S. I., and Mizuno T. (2000) Tuning of the porin expression under anaerobic growth conditions by his-to-Asp cross-phosphorelay through both the EnvZ-osmosensor and ArcB-anaerosensor in Escherichia coli. Genes Cells, 5, 555. [DOI] [PubMed] [Google Scholar]
  • 19.Jacobs C., Hung D., and Shapiro L. (2001) Dynamic localization of a cytoplasmic signal transduction response regulator controls morphogenesis during the Caulobacter cell cycle. Proc. Natl. Acad. Sci. USA, 98, 4095. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 20.Kato A., and Groisman E. A. (2004) Connecting two-component regulatory systems by a protein that protects a response regulator from dephosphorylation by its cognate sensor. Genes Dev., 18, 2302. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 21.Eguchi Y., and Utsumi R. (2005) A novel mechanism for connecting bacterial two-component signal-transduction systems. Trends Biochem. Sci., 30, 70. [DOI] [PubMed] [Google Scholar]
  • 22.Oshima T., Aiba H., Masuda Y., Kanaya S., Sugiura M., Wanner B. L., Mori H., and Mizuno T. (2002) Transcriptome analysis of all two-component regulatory system mutants of Escherichia coli K-12. Molec. Microbiol., 46, 281. [DOI] [PubMed] [Google Scholar]
  • 23.Ogura M., Yamaguchi H., Yoshida K., Fujita Y., and Tanaka T. (2001) DNA microarray analysis of Bacillus subtilis DegU, ComA and PhoP regulons: an approach to comprehensive analysis of B. subtilis two-component regulatory systems. Nucl. Acids Res., 29, 3804. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 24.Kobayashi K., Ogura M., Yamaguchi H., Yoshida K., Ogasawara N., Tanaka T., and Fujita Y. (2001) Comprehensive DNA microarray analysis of Bacillus subtilis two-component regulatory systems. J. Bacterio., 183, 7365. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 25.Hagiwara D., Sugiura M., Oshima T., Mori H., Aiba H., Yamashino T., and Mizuno T. (2003) Genome-wide analyses revealing a signaling network of the RcsC-YojN-RcsB phosphorelay system in Escherichia coli. J. Bacteriol., 185, 5735. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 26.Hagiwara D., Yamashino T., and Mizuno T. (2004) A Genome-wide view of the Escherichia coli BasS-BasR two-component system implicated in iron-responses. Biosci. Biotechnol. Biochem., 68, 1758. [DOI] [PubMed] [Google Scholar]
  • 27.Lee L. J., Barrett J. A., and Poole R. K. (2005) Genome-wide transcriptional response of chemostat-cultured Escherichia coli to zinc. J. Bacteriol., 187, 1124. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 28.Baek J. H., and Lee S. Y. (2006) Novel gene members in the Pho regulon of Escherichia coli. FEMS Microbiol. Lett., 264, 104. [DOI] [PubMed] [Google Scholar]
  • 29.Overton T. W., Griffiths L., Patel M. D., Hobman J. L., Penn C. W., Cole J. A., and Constantinidou C. (2006) Microarray analysis of gene regulation by oxygen, nitrate, nitrite, FNR, NarL and NarP during anaerobic growth of Escherichia coli: new insights into microbial physiology. Biochem. Soc. Trans., 34, 104. [DOI] [PubMed] [Google Scholar]
  • 30.Krol E., and Becker A. (2004) Global transcriptional analysis of the phosphate starvation response in Sinorhizobium meliloti strains 1021 and 2011. Molec. Genet. Genomics, 272, 1. [DOI] [PubMed] [Google Scholar]
  • 31.Pflock M., Finsterer N., Joseph B., Mollenkopf H., Meyer T. F., and Beier D. (2006) Characterization of the ArsRS regulon of Helicobacter pylori, involved in acid adaptation. J. Bacteriol., 188, 3449. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 32.Ishige T., Krause M., Bott M., Wendisch V. F., and Sahm H. (2003) The phosphate starvation stimulon of Corynebacterium glutamicum determined by DNA microarray analyses. J. Bacteriol., 185, 4519. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 33.Yang Y. L., and Liao J. C. (2005) Determination of functional interactions among signalling pathways in Escherichia coli K-12. Metab. Engng., 7, 280. [DOI] [PubMed] [Google Scholar]
  • 34.Stock J., and Da Re S. (2000) Signal transduction: response regulators on and off. Curr. Biol., 10, R420. [DOI] [PubMed] [Google Scholar]
  • 35.Hellingwerf K. J., Postma P. W., Tommassen J., and Westerhoff H. V. (1995) Signal transduction in bacteria: phospho-neural network(s) in Escherichia colli FEMS Microbiol. Rev., 16, 309. [DOI] [PubMed] [Google Scholar]
  • 36.Mizuno T. (1997) Compilation of all genes encoding two-component phosphotransfer signal transducers in the genome of Escherichia coli. DNA Res., 4, 161. [DOI] [PubMed] [Google Scholar]
  • 37.Verhamme D. T., Arents J. C., Postma P. W., Crielaard W., and Hellingwerf K. J. (2001) Glucose-6-phosphate-dependent phosphoryl flow through the Uhp two-component regulatory system. Microbiology, 147, 3345. [DOI] [PubMed] [Google Scholar]
  • 38.Howell A., Dubrac S., Noone D., Varughese K. I., and Devine K. (2006) Interactions between the YycFG and PhoPR two-component systems in Bacillus subtilis: the PhoR kinase phosphorylates the non-cognate YycF response regulator upon phosphate limitation. Molec. Microbiol., 59, 1199. [DOI] [PubMed] [Google Scholar]
  • 39.Dorel C., Lejeune P., and Rodrigue A. (2006) The Cpx system of Escherichia coli, a strategic signaling pathway for confronting adverse conditions and for settling biofilm communities? Res. Microbiol., 157, 306. [DOI] [PubMed] [Google Scholar]
  • 40.Sawers G., and Bock A. (1988) Anaerobic regulation of pyruvate formate-lyase from Escherichia coli K-12. J. Bacteriol., 170, 5330. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 41.Milo R., Shen-Orr S., Itzkovit zS., Kashtan N., Chklovskii D., and Alon U. (2002) Network motifs: simple building blocks of complex networks. Science, 298, 824. [DOI] [PubMed] [Google Scholar]
  • 42.de Jong H., and Ropers D. (2006) Strategies for dealing with incomplete information in the modeling of molecular interaction networks. Brief Bioinform. [DOI] [PubMed] [Google Scholar]
  • 43.Spudich G. M., Miller E. J., and Marqusee S. (2004) Destabilization of the Escherichia coli RNase H kinetic intermediate: switching between a two-state and three-state folding mechanism. J. Molec. Biol., 335, 609. [DOI] [PubMed] [Google Scholar]
  • 44.Fujita M., and Losick R. (2005) Evidence that entry into sporulation in Bacillus subtilis is governed by a gradual increase in the level and activity of the master regulator SpoOA. Genes Dev., 19, 2236. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 45.Beier D., and Gross R. (2006) Regulation of bacterial virulence by two-component systems. Curr. Opin. Microbiol., 9, 143. [DOI] [PubMed] [Google Scholar]
  • 46.Benda C., Scheufler C. T., eau de Marsac N., and Gartner W. (2004) Crystal structures of two cyanobacterial response regulators in apo- and phosphorylated form reveal a novel dimerization motif of phytochrome-associated response regulators. Biophys. J., 87, 476. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 47.Len O., Strack A., Tran-Betcke A., and Friedrich B. (1997) A hydrogen-sensing system in transcriptional regulation of hydrogenase gene expression in Alcaligenes species. J. Bacteriol., 179, 1655. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 48.Eraso J. M., and Kaplan S. (2000) From redox flow to gene regulation: role of the PrrC protein of Rhodobacter sphaeroides 2.4.1. Biochemistry, 39, 2052. [DOI] [PubMed] [Google Scholar]
  • 49.Schwoppe C., Winkler H. H., and Neuhaus H. E. (2002) Properties of the glucose-6-phosphate transporter from Chlamydia pneumoniae (HPTcp) and the glucose-6-phosphate sensor from Escherichia coli (UhpC). J. Bacterial., 184, 2108. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 50.Hellingwerf K. J. (2002) The molecular basis of sensing and responding to light in microorganisms. Antonie Van Leeuwenhoek, 81, 51. [DOI] [PubMed] [Google Scholar]
  • 51.Alexeeva S., de Kort B., Sawers G., Hellingwerf K. J., and de Mattos M. J. (2000) Effects of limited aeration and of the ArcAB system on intermediary pyruvate catabolism in Escherichia coli. J. Bacteriol., 182, 4934. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 52.Iuchi S., Cameron D. C., and Lin E. C. (1989) A second global regulator gene (arcB) mediating repression of enzymes in aerobic pathways of Escherichia coli. J. Bacterial., 171, 868. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 53.Malpica R., Franco B., Rodrigue zC., Kwon O., and Georgellis D. (2004) Identification of a quinone-sensitive redox switch in the ArcB sensor kinase. Proc. Natl. Acad. Sci. USA, 101, 13318. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 54.Ross M. D., Dayhoff J. E., and Mugler D. H. (1990) Toward modeling a dynamic biological neural network. Math. Comput. Model., 13, 97. [DOI] [PubMed] [Google Scholar]
  • 55.Hopfield J. J., and Tank D. W. (1986) Computing with neural circuits: a model. Science, 233, 625. [DOI] [PubMed] [Google Scholar]
  • 56.Boorsma A., Foat B. C., Vis D., Klis F., and Bussemaker H. J. (2005) T-profiler: scoring the activity of predefined groups of genes using gene expression data. Nucleic Acids Res., 33, W592. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 57.Cheek S., Zhang H., and Grishin N. V. (2002) Sequence and structure classification of kinases. J. Molec. Biol., 320, 855. [DOI] [PubMed] [Google Scholar]
  • 58.Stephenson K., and Hoch J. A. (2002) Virulence- and antibiotic resistance-associated two-component signal transduction systems of Gram-positive pathogenic bacteria as targets for antimicrobial therapy. Pharmacol. Ther., 93, 293. [DOI] [PubMed] [Google Scholar]
  • 59.Yamada-Okabe T., Mio T., Ono N., Kashima Y., Matsui M., Arisawa M., and Yamada-Okabe H. (1999) Roles of three histidine kinase genes in hyphal development and virulence of the pathogenic fungus C. and ida albicans. J. Bacteriol., 181, 7243. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 60.Rohde B. H., and Quadri L. E. (2006) Functional characterization of a three-component regulatory system involved in quorum sensing-based regulation of peptide antibiotic production in Carnobacterium maltaromaticum. BMC Microbiol., 6, 93. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 61.Barrett J. F., and Hoch J. A. (1998) Two-component signal transduction as a target for microbial anti-infective therapy. Antimicrob. Agents Chemother., 42, 1529. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 62.Stephenson K., Yamaguchi Y., and Hoch J. A. (2000) The mechanism of action of inhibitors of bacterial two-component signal transduction systems. J. Biol. Chem., 275, 38900. [DOI] [PubMed] [Google Scholar]
  • 63.Gilmour R., Foster J. E., Sheng Q., McClain J. R., Riley A., Sun P. M., Ng W. L., Yan D., Nicas T. I., Henry K., and Winkler M. E. (2005) New class of competitive inhibitor of bacterial histidine kinases. J. Bacteriol., 187, 8196. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 64.Lyon G. J., Mayville P., Muir T. W., and Novick R. P. (2000) Rational design of a global inhibitor of the virulence response in Staphylococcus aureus, based in part on localization of the site of inhibition to the receptor-histidine kinase, AgrC. Proc. Natl. Acad. Sci. USA, 97, 13330. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 65.Wright J. S. 3rd, Lyon G. J., George E. A., Muir T. W., and Novick R. P. (2004) Hydrophobic interactions drive lig and -receptor recognition for activation and inhibition of staphylococcal quorum sensing. Proc. Natl. Acad. Sci. USA, 101, 16168. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 66.Bulter T., Lee S. G., Wong W. W., Fung E., Connor M. R., and Liao J. C. (2004) Design of artificial cell-cell communication using gene and metabolic networks. Proc. Natl. Acad. Sci. USA, 101, 2299. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 67.Picon A., Teixeira de Mattos M. J., and Postma P. W. (2005) Reducing the glucose uptake rate in Escherichia coli affects growth rate but not protein production. Biotechnol. Bioengng., 90, 191. [DOI] [PubMed] [Google Scholar]

Articles from Science Progress are provided here courtesy of SAGE Publications

RESOURCES