Skip to main content
Science Progress logoLink to Science Progress
. 2019 Feb 27;89(3-4):167–211. doi: 10.3184/003685006783238335

Variations on a Theme: Diverse N-Acyl Homoserine Lactone-Mediated Quorum Sensing Mechanisms in Gram-Negative Bacteria

Debra Smith a, Jin-Hong Wang b, Jane E Swatton a, Peter Davenport a, Bianca Price a, Helga Mikkelsen a, Hannah Stickland a, Kahoko Nishikawa a,c, NoéMie Gardiol a, David R Spring d, Martin Welch a,
PMCID: PMC10368359  PMID: 17338438

Abstract

Many Gram-negative bacteria employ a mechanism of cell–cell communication known as quorum sensing (QS). The role of QS is to enable the cells in a culture to coordinate their gene expression profile with changes in the population cell density. The best characterized mechanisms of QS employ N-acylated homoserine lactones (AHLs) as signalling molecules. These AHLs are made by enzymes known as Luxl homologs, and accumulate in the culture supernatant at a rate proportional to the increase in cell density. Once the AHL concentration exceeds a certain threshold value, these ligands bind to intracellular receptors known as LuxR homologs. The latter are transcriptional regulators, whose activity alters upon binding the AHL ligand, thereby eliciting a change in gene transcription. Over the last five years, it has become increasingly obvious that this is a rather simplistic view of AHL-dependent QS, and that in fact, there is considerable diversity in the way in which Luxl-R homologs operate. The aim of the current review is to describe these variations on the basic theme, and to show how functional genomics is revolutionizing our understanding of QS-controlled regulons.

Keywords: N-acyl homoserine lactones, biofilms, cell-cell communication, Luxl, LuxR, quorum sensing, signal transduction

Full Text

The Full Text of this article is available as a PDF (2.0 MB).

References

  • 1.Reading N. C., and Sperandio V. (2006) Quorum sensing: the many languages of bacteria. FEMS Microbiol. Lett., 254, 1–11. [DOI] [PubMed] [Google Scholar]
  • 2.Soberon-Chavez G., Aguirre-Ramirez M., and Ordonez L. (2005) Is Pseudomonas aeruginosa only “sensing quorum”? Crit. Rev. Microbiol., 31, 171–182. [DOI] [PubMed] [Google Scholar]
  • 3.Whitehead N. A., Barnard A. M., Slater H., Simpson N. J., and Salmond G. P. (2001) Quorum-sensing in Gram-negative bacteria. FEMS Microbiol. Rev., 25, 65–404. [DOI] [PubMed] [Google Scholar]
  • 4.West S. A., Griffin A. S., Gardner A., and Diggle S. P. (2006) Social evolution theory for microorganisms. Nat. Rev. Microbiol., 4, 597–607. [DOI] [PubMed] [Google Scholar]
  • 5.Lyon G. J., and Novick R. P. (2004) Peptide signalling in Staphylococcus aureus and other Gram-positive bacteria. Peptides, 25, 1389–1403. [DOI] [PubMed] [Google Scholar]
  • 6.Sturme M. H., Kleerebezem M., Nakayama J., Akkermans A. D., Vaugha E. E., and de Vos W. M. (2002) Cell to cell communication by autoinducing peptides in Gram-positive bacteria. Antonie Van Leeuwenhoek, 81, 233–243. [DOI] [PubMed] [Google Scholar]
  • 7.Nealson K. H., Platt T., and Hastings J. W. (1970) Cellular control of the synthesis and activity of the bacterial luminescent system. J. Bacteriol., 104, 313–322. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 8.Eberhard A. (1972) Inhibition and activation of bacterial luciferase synthesis. J. Bacteriol., 109, 1101–1105. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 9.Fuqua W. C., Winans S. C., and Greenberg E. P. (1994) Quorum sensing in bacteria: the LuxR–LuxI family of cell density-responsive transcriptional regulators. J. Bacteriol., 176, 269–275. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 10.Lupp C., and Ruby E. G. (2005) Vibrio fischeri uses two quorum-sensing systems for the regulation of early and late colonization factors. J. Bacterio., 187, 3620–3629. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 11.Ruby E. G., and Lee K. H. (1998) The Vibrio fischeri-Euprymna scolopes light organ association: current ecological paradigms. Appl. Environ. Microbiol., 64, 805–812. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 12.Eberhard A., Burlingame A. L., Eberhard C., Kenyon G. L., Nealson K. H. et al. (1981) Structural identification of autoinducer of Photobacterium fischeri. Biochemistry, 20, 2444–2449. [DOI] [PubMed] [Google Scholar]
  • 13.Cao J. G., and Meighen E. A. (1989) Purification and structural identification of an autoinducer for the luminescence system of Vibrio harveyi. J. Biol. Chem., 264, 21670–21676. [PubMed] [Google Scholar]
  • 14.Engebrecht J., and Silverman M. (1984) Identification of genes and gene products necessary for bacterial bioluminescence. Proc. Natl. Acad. Sci. USA, 81, 4154–4158. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 15.Parsek M. R., Val D. L., Hanzelka B. L., Cronan J. E. Jr., and Greenberg E. P. (1999) Acyl homoserine-lactone quorum-sensing signal generation. Proc. Natl. Acad. Sci. USA, 96, 4360–4365. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 16.Fuqua C., Winans S. C., and Greenberg E. P. (1996) Census and consensus in bacterial ecosystems: the LuxR–LuxI family of quorum-sensing transcriptional regulators. Ann. Rev. Microbiol., 50, 727–751. [DOI] [PubMed] [Google Scholar]
  • 17.Urbanowski M. L., Lostroh C. P., and Greenberg E. P. (2004) Reversible acyl-homoserine lactone binding to purified Vibrio fischeri LuxR protein. J. Bacterio., 186, 631–637. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 18.Hanzelka B. L., and Greenberg E. P. (1995) Evidence that the N-terminal region of the Vibrio fischeri LuxR protein constitutes an autoinducer-binding domain. J. Bacterio., 177, 815–817. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 19.Stevens A. M., Dolan K. M., and Greenberg E. P. (1994) Synergistic binding of the Vibrio fischeri LuxR transcriptional activator domain and RNA polymerase to the lux promoter region. Proc. Natl. Acad. Sci. USA, 91, 12619–12623. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 20.Stevens A. M., and Greenberg E. P. (1997) Quorum sensing in Vibrio fischeri: essential elements for activation of the luminescence genes. J. Bacterial., 179, 557–562. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 21.Egland K. A., and Greenberg E. P. (2001) Quorum sensing in Vibrio fischeri: analysis of the LuxR DNA binding region by alanine-scanning mutagenesis. J. Bacteriol., 183, 382–386. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 22.Gilson L., Kuo A., and Dunlap P. V. (1995) AinS and a new family of autoinducer synthesis proteins. J. Bacteriol., 177, 6946–6951. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 23.Hanzelka B. L., Parsek M. R., Val D. L., Dunlap P. V., Cronan J. E. Jr., and Greenberg E. P. (1999) Acylhomoserine lactone synthase activity of the Vibrio fischeri AinS protein. J. Bacteriol., 181, 5766–5770. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 24.Lupp C., Urbanowski M., Greenberg E. P., and Ruby E. G. (2003) The Vibrio fischeri quorum-sensing systems ain and lux sequentially induce luminescence gene expression and are important for persistence in the squid host. Mol. Microbiol., 50, 319–331. [DOI] [PubMed] [Google Scholar]
  • 25.Fidopiastis P. M., Miyamoto C. M., Jobling M. G., Meighen E. A., and Ruby E. G. (2002) LitR, a new transcriptional activator in Vibrio fischeri, regulates luminescence and symbiotic light organ colonization. Mol. Microbiol., 45, 131–143. [DOI] [PubMed] [Google Scholar]
  • 26.Ruby E. G., Urbanowski M., Campbell J., Dunn A., Faini M., Gunsalus R., Lostroh P., Lupp C., McCann J., Millikan D., Schaefer A., Stabb E., Stevens A., Visick K., Whistler C., and Greenberg E. P. (2005) Complete genome sequence of Vibrio fischeri: a symbiotic bacterium with pathogenic congeners. Proc. Natl. Acad. Sci. USA, 102, 3004–3009. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 27.Callahan S. M., and Dunlap P. V. (2000) LuxR- and acyl-homoserine-lactone-controlled non-lux genes define a quorum-sensing regulon in Vibrio fischeri. J. Bacteriol., 182, 2811–2822. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 28.Toth I. K., Bell K. S., Holeva M. C., and Birch P. R. J. (2003) Soft rot erwiniae: from genes to genomes. Mol. Plant Pathol., 4, 17–30. [DOI] [PubMed] [Google Scholar]
  • 29.Bell K. S., Sebaihia M., Pritchard L., Holden M. T., Hyman L. J., Holeva M. C. et al. (2004) Genome sequence of the enterobacterial phytopathogen Erwinia carotovora subsp. atroseptica and characterization of virulence factors. Proc. Natl. Acad. Sci. USA, 101, 11105–11110. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 30.Jones S., Yu B., Bainton N. J., Birdsall M., Bycroft B. W., Chhabra S. R., Cox A. J., Golby P., Reeves P. J., Stephens S., Winson M. K., Salmond G. P. C., Stewart G. S. A. B., and Williams P. (1993) The lux autoinducer regulates the production of exoenzyme virulence determinants in Erwinia carotovora and Pseudomonas aeruginosa. EMBO J., 12, 2477–2482. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 31.Pirhonen M., Flego D., Heikinheimo R., and Palva E. T. (1993) A small diffusible signal molecule is responsible for the global control of virulence and exoenzyme production in the plant pathogen Erwinia carotovora. EMBO J., 12, 2467–2476. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 32.Toth I. K., Newton J. A., Hyman L. J., Lees A. K., Daykin M., Ortori C., Williams P., and Fray R. G. (2004) Potato plants genetically modified to produce N-acylhomoserine lactones increase susceptibility to soft rot erwiniae. Mol. Plant Microbe Interact., 17, 880–887. [DOI] [PubMed] [Google Scholar]
  • 33.Barnard A. M., and Salmond G. P. (2006) Quorum sensing in Erwinia species. Anal. Bioanal. Chem. (in press). [DOI] [PubMed] [Google Scholar]
  • 34.Chatterjee A., Cui Y., Hasegawa H., Leigh N., Dixit V., and Chatterjee A. K. (2005) Comparative analysis of two classes of quorum-sensing signalling systems that control production of extracellular proteins and secondary metabolites in Erwinia carotovora subspecies. J. Bacteriol., 187, 8026–8038. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 35.Andersson R. A., Eriksson A. R., Heikinheimo R., Mae A., Pirhonen M., Koiv V. et al. (2000) Quorum sensing in the plant pathogen Erwinia carotovora subsp. carotovora: the role of expR(Ecc). Mol. Plant Microbe Interact., 13, 384–393. [DOI] [PubMed] [Google Scholar]
  • 36.Burr T., Barnard A. M., Corbett M. J., Pemberton C. L., Simpson N. J., and Salmond G. P. (2006) Identification of the central quorum sensing regulator of virulence in the enteric phytopathogen, Erwinia carotovora: the VirR repressor. Mol. Microbiol., 59, 113–125. [DOI] [PubMed] [Google Scholar]
  • 37.Cui Y., Chatterjee A., Hasegawa H., Dixit V., Leigh N., and Chatterjee A. K. (2005) ExpR, a LuxR homolog of Erwinia carotovora subsp. carotovora, activates transcription of rsmA, which specifies a global regulatory RNA-binding protein. J. Bacterial., 187, 4792–4803. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 38.Cui Y., Chatterjee A., Hasegawa H., and Chatterjee A. K. (2006) Erwinia carotovora subspecies produce duplicate variants of ExpR, LuxR homologs that activate rsmA transcription but differ in their interactions with N-acylhomoserine lactone signals. J. Bacteriol., 188, 4715–4726. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 39.Welch M., Dutton J. M., Glansdorp F. G., Thomas G. L., Smith D. S., Coulthurst S. J., Barnard A. M., Salmond G. P., and Spring D. R. (2005) Structure-activity relationships of Erwinia carotovora quorum sensing signalling molecules. Bioorg. Med. Chem. Lett., 15, 4235–4238. [DOI] [PubMed] [Google Scholar]
  • 40.Coplin D. L., and Majerczak D. R. (1990) Extracellular polysaccharide genes in Erwinia stewartii: directed mutagenesis and complementation analysis. Mol. Plant-Microbe Interact., 3, 286–292. [Google Scholar]
  • 41.Minogue T. D., Carlier A. L., Koutsoudis M. D., and von Bodman S. B. (2005) The cell density-dependent expression of stewartan exopolysaccharide in Pantoea stewartii ssp. stewartii is a function of EsaR-mediated repression of the rcsA gene. Mol. Microbiol., 56, 189–203. [DOI] [PubMed] [Google Scholar]
  • 42.Minogue T. D., Wehland-von Trebra M., Bernhard F., and von Bodman S. B. (2002) The autoregulatory role of EsaR, a quorum-sensing regulator in Pantoea stewartii ssp. stewartii: evidence for a repressor function. Mol. Microbiol., 44, 1625–1635. [DOI] [PubMed] [Google Scholar]
  • 43.Wei J. R., and Lai H. C. (2006) N-acylhomoserine lactone-dependent cell-to-cell communication and social behaviour in the genus Serratia. Int. J. Med. Microbiol., 296, 117–124. [DOI] [PubMed] [Google Scholar]
  • 44.Harris A. K., Williamson N. R., Slater H., Cox A., Abbasi S., Foulds I., Simonsen H. T., Leeper F. J., and Salmond G. P. (2004) The Serratia gene cluster encoding biosynthesis of the red antibiotic, prodigiosin, shows species- and strain-dependent genome context variation. Microbiology, 150, 3547–3560. [DOI] [PubMed] [Google Scholar]
  • 45.Slater H., Crow M., Everson L., and Salmond G. P. (2003) Phosphate availability regulates biosynthesis of two antibiotics, prodigiosin and carbapenem, in Serratia via both quorum-sensing-dependent and -independent pathways. Mol. Microbiol., 47, 303–320. [DOI] [PubMed] [Google Scholar]
  • 46.Fineran P. C., Slater H., Everson L., Hughes K., and Salmond G. P. (2005) Biosynthesis of tripyrrole and beta-lactam secondary metabolites in Serratia: integration of quorum sensing with multiple new regulatory components in the control of prodigiosin and carbapenem antibiotic production. Mol. Microbiol., 56, 1495–1517. [DOI] [PubMed] [Google Scholar]
  • 47.Thomson N. R., Crow M. A., McGowan S. J., Cox A., and Salmond G. P. (2000) Biosynthesis of carbapenem antibiotic and prodigiosin pigment in Serratia is under quorum sensing control. Molec. Microbiol., 36, 539–556. [DOI] [PubMed] [Google Scholar]
  • 48.Collins C. H., Leadbetter J. R., and Arnold F. H. (2006) Dual selection enhances the signalling specificity of a variant of the quorum-sensing transcriptional activator LuxR. Nat. Biotechnol., 24, 708–712. [DOI] [PubMed] [Google Scholar]
  • 49.Lerat E., and Moran N. A. (2004) The evolutionary history of quorum-sensing systems in bacteria. Molec. Biol. Evolut., 21, 903–913. [DOI] [PubMed] [Google Scholar]
  • 50.Collins C. H., Arnold F. H., and Leadbetter J. R. (2005) Directed evolution of Vibrio fischeri LuxR for increased sensitivity to a broad spectrum of acyl-homoserine lactones. Molec. Microbiol., 55, 712–723. [DOI] [PubMed] [Google Scholar]
  • 51.McGowan S. J., Sebaihia M., O'Leary S., Hardie K. R., Williams P., Stewart G. S. A. B., Bycroft B. W., and Salmond G. P. C. (1997) Analysis of the carbapenem gene cluster of Erwinia carotovora: definition of the antibiotic biosynthetic genes and evidence for a novel beta-lactam resistance mechanism. Molec. Microbiol., 26, 545–556. [DOI] [PubMed] [Google Scholar]
  • 52.McGowan S., Sebaihia M., Jones S., Yu B., Bainton N., Chan P. F., Bycroft B., Stewart G. S. A. B., Williams P., and Salmond G. P. C. (1995) Carbapenem antibiotic production in Erwinia carotovora is regulated by CarR, a homologue of the LuxR transcriptional regulator. Microbiology, 141, 541–550. [DOI] [PubMed] [Google Scholar]
  • 53.Welch M., Todd D. E., Whitehead N. A., McGowan S. J., Bycroft B. W., and Salmond G. P. (2000) N-acyl homoserine lactone binding to the CarR receptor determines quorum-sensing specificity in Erwinia. EMBO J., 19, 631–641. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 54.Holden M. T., McGowan S. J., Bycroft B. W., Stewart G. S., Williams P., and Salmond G. P. C. (1998) Cryptic carbapenem antibiotic production genes are widespread in Erwinia carotovora: facile trans activation by the carR transcriptional regulator. Microbiology, 144, 1495–1508. [DOI] [PubMed] [Google Scholar]
  • 55.Vannini A., Volpari C., Gargioli C., Muraglia E., Cortese R., De Francesco R., Neddermann P., and Marco S. D. (2002) The crystal structure of the quorum sensing protein TraR bound to its autoinducer and target DNA. EMBO J., 21, 4393–4401. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 56.Zhang R. G., Pappas T., Brace J. L., Miller P. C., Oulmassov T., Molyneaux J. M., Anderson J. C., Bashkin J. K., Winans S. C., and Joachimiak A. (2002) Structure of a bacterial quorum-sensing transcription factor complexed with pheromone and DNA. Nature, 417, 971–974. [DOI] [PubMed] [Google Scholar]
  • 57.Koch B., Liljefors T., Persson T., Nielsen J., Kjelleberg S., and Givskov M. (2005) The LuxR receptor: the sites of interaction with quorum-sensing signals and inhibitors. Microbiology, 151, 3589–3602. [DOI] [PubMed] [Google Scholar]
  • 58.Coulthurst S. J., Williamson N. R., Harris A. K. P., Spring D. R., and Salmond G. P. C. (2006) Metabolic and regulatory engineering of Serratia marcescens: mimicking phage-mediated horizontal acquisition of antibiotic biosynthesis and quorum-sensing capacities. Microbiology, 152, 1899–1911. [DOI] [PubMed] [Google Scholar]
  • 59.Manefield M., and Turner S. L. (2002) Quorum sensing in context: out of molecular biology and into microbial ecology. Microbiology, 148, 3762–3764. [DOI] [PubMed] [Google Scholar]
  • 60.Gray K. M., and Garey J. R. (2001) The evolution of bacterial Luxl and LuxR quorum sensing regulators. Microbiology, 147, 2379–2387. [DOI] [PubMed] [Google Scholar]
  • 61.Zhu J., Oger P. M., Schrammeijer B., Hooykaas P. J., Farrand S. K., and Winans S. C. (2000) The bases of crown gall tumorigenesis. J. Bacterial., 182, 3885–3895. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 62.Brencic A., and Winans S. C. (2005) Detection of and response to signals involved in host-microbe interactions by plant-associated bacteria. Microbiol. Molec. Biol. Rev., 69, 155–194. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 63.Von Bodman S. B., Bauer W. D., and Coplin D. L. (2003) Quorum sensing in plant-pathogenic bacteria. Ann. Rev. Phytopathol., 41, 455–482. [DOI] [PubMed] [Google Scholar]
  • 64.Qin Y., Luo Z. Q., Smyth A. J., Gao P., von Bodman S., and Farrand S. K. (2001) Quorum-sensing signal binding results in dimerization of TraR and its release from membranes into the cytoplasm. EMBO J., 19, 5212–5221. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 65.Zhu J., and Winans S. C. (1999) Autoinducer binding by the quorum-sensing regulator TraR increases affinity for target promoters in vitro and decreases TraR turnover rates in whole cells. Proc. Natl. Acad. Sci. USA, 96, 4832–4837. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 66.Fuqua W. C., and Winans S. C. (1994) A LuxR-LuxI type regulatory system activates Agrobacterium Ti plasmid conjugal transfer in the presence of a plant tumor metabolite. J. Bacteriol., 176, 2796–2806. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 67.Hwang I., Li P. L., Zhang L., Piper K. R., Cook D. M. et al. (1994) TraI, a Luxl homologue, is responsible for production of conjugation factor, the Ti plasmid N-acylhomoserine lactone autoinducer. Proc. Natl. Acad. Sci. USA, 91, 4639–4643. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 68.Zhu J., and Winans S. C. (2001) The quorum-sensing transcriptional regulator TraR requires its cognate signalling ligand for protein folding, protease resistance, and dimerization. Proc. Natl. Acad. Sci. USA, 98, 1507–1512. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 69.Fuqua C., Burbea M., and Winans S. C. (1995) Activity of the Agrobacterium Ti plasmid conjugal transfer regulator TraR is inhibited by the product of the traM gene. J. Bacteriol., 177, 1367–1373. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 70.Hwang I., Smyth A. J., Luo Z. Q., and Farrand S. K. (1999) Modulating quorum sensing by antiactivation: TraM interacts with TraR to inhibit activation of Ti plasmid conjugal transfer genes. Mol. Microbiol., 34, 282–294. [DOI] [PubMed] [Google Scholar]
  • 71.Oger P., Kim K. S., Sackett R. L., Piper K. P., and Farrand S. K. (1998) Octopine-type Ti plasmids code for a mannopine-inducible dominant-negative allele of traR, the quorum-sensing activator that regulates Ti plasmid conjugal transfer. Molec. Microbiol., 27, 277–288. [DOI] [PubMed] [Google Scholar]
  • 72.Chai Y., Zhu J., and Winans S. C. (2001) TrlR, a defective TraR-like protein of Agrobacterium tumefaciens, blocks TraR function in vitro by forming inactive TrlR:TraR dimers. Molec. Microbiol., 40, 414–421. [DOI] [PubMed] [Google Scholar]
  • 73.Dong Y. H., Xu J. L., Li X. Z., and Zhang L. H. (2000) AiiA, an enzyme that inactivates the acylhomoserine lactone quorum-sensing signal and attenuates the virulence of Erwinia carotovora. Proc. Natl. Acad. Sci. USA, 97, 3526–3531. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 74.Dong Y. H., Wang L. H., Xu J. L., Zhang H. B., Zhang X. F., and Zhang L. H. (2001) Quenching quorum-sensing-dependent bacterial infection by an N-acyl homoserine lactonase. Nature, 411, 813–817. [DOI] [PubMed] [Google Scholar]
  • 75.Thomas P. W., Stone E. M., Costello A. L., Tierney D. L., and Fast W. (2005) The quorum-quenching lactonase from Bacillus thuringiensis is a metalloprotein. Biochemistry, 44, 7559–7569. [DOI] [PubMed] [Google Scholar]
  • 76.Liu D., Lepore B. W., Petsko G. A., Thomas P. W., Stone E. M., Fast W., and Ringe D. (2005) Three-dimensional structure of the quorum-quenching N-acyl homoserine lactone hydrolase from Bacillus thuringiensis. Proc. Natl. Acad. Sci. USA, 102, 11882–11887. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 77.Kim M. H., Choi W. C., Kang H. O., Lee J. S., Kang B. S., Kim K. J., Derewenda Z. S., Oh T. K., Lee C. H., and Lee J. K. (2005) The molecular structure and catalytic mechanism of a quorum-quenching N-acyl-L-homoserine lactone hydrolase. Proc. Natl. Acad. Sci. USA, 102, 17606–17611. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 78.Wang L. H., Weng L. X., Dong Y. H., and Zhang L. H. (2004) Specificity and enzyme kinetics of the quorum-quenching N-Acyl homoserine lactone lactonase (AHL-lactonase). J. Biol. Chem., 279, 13645–13651. [DOI] [PubMed] [Google Scholar]
  • 79.Zhang H. B., Wang L. H., and Zhang L. H. (2002) Genetic control of quorum-sensing signal turnover in Agrobacterium tumefaciens. Proc. Natl. Acad. Sci. USA, 99, 4638–4643. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 80.Zhang H. B., Wang C., and Zhang L. H. (2004) The quormone degradation system of Agrobacterium tumefaciens is regulated by starvation signal and stress alarmone (p)ppGpp. Molec. Microbiol., 52, 1389–1401. [DOI] [PubMed] [Google Scholar]
  • 81.Wang C., Zhang H. B., Wang L. H., and Zhang L. H. (2006) Succinic semialdehyde couples stress response to quorum-sensing signal decay in Agrobacterium tumefaciens. Molec. Microbiol., (in press). [DOI] [PubMed] [Google Scholar]
  • 82.Chevrot R., Rosen R., Haudecoeur E., Cirou A., Shelp B. J., Ron E., and Faure D. (2006) GABA controls the level of quorum-sensing signal in Agrobacterium tumefaciens. Proc. Natl. Acad. Sci. USA, 103, 7460–7464. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 83.Dong Y. H., Gusti A. R., Zhang Q., Xu J. L., and Zhang L. H. (2002) Identification of quorum-quenching N-acyl homoserine lactonases from Bacillus species. Appl. Environ. Microbiol., 68, 1754–1759. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 84.Park S. Y., Lee S. J., Oh T. K., Oh J. W., Koo B. T., Yum D. Y., and Lee J. K. (2003) AhlD, an N-acyl-homoserine lactonase in Arthrobacter sp., and predicted homologues in other bacteria. Microbiology, 149, 1541–1550. [DOI] [PubMed] [Google Scholar]
  • 85.Lee S. J., Park S. Y., Lee J. J., Yum D. Y., Koo B. T., and Lee J. K. (2002) Genes encoding the N-acyl homoserine lactone-degrading enzyme are widespread in many subspecies of Bacillus thuringiensis. Appl. Environ. Microbiol., 68, 3919–3924. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 86.Huang J. J., Petersen A., Whiteley M., and Leadbetter J. R. (2006) Identification of QuiP, the product of gene PA1032, as the second acyl-homoserine lactone acylase of Pseudomonas aeruginosa PAO1. Appl. Environ. Microbiol., 72, 1190–1197. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 87.Lin Y. H., Xu J. L., Hu J., Wang L. H., Ong S. L., Leadbetter J. R., and Zhang L. H. (2003) Acyl-homoserine lactone acylase from Ralstonia strain XJ12B represents a novel and potent class of quorum-quenching enzymes. Molec. Microbiol., 47, 849–860. [DOI] [PubMed] [Google Scholar]
  • 88.Leadbetter J. R., and Greenberg E. P. (2000) Metabolism of acyl-homoserine lactone quorum-sensing signals by Variovorax paradoxus. J. Bacteriol., 182, 6921–6926. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 89.Huang J. J., Han J. I., Zhang L. H., and Leadbetter J. R. (2003) Utilization of acyl-homoserine lactone quorum signals for growth by a soil pseudomonad and Pseudomonas aeruginosa PAO1. Appl. Environ. Microbiol., 69, 5941–5949. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 90.Sio C. F., Otten L. G., Cool R. H., Diggle S. P., Braun P. G., Bos R., Daykin M., Camara M., Williams P., and Quax W. J. (2006) Quorum quenching by an N-acyl-homoserine lactone acylase from Pseudomonas aeruginosa PAO1. Infect. Immunol., 74, 1673–1682. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 91.Wisniewski-Dye F., and Downie J. A. (2002) Quorum-sensing in Rhizobium. Antonie Van Leeuwenhoek, 81, 397–407. [DOI] [PubMed] [Google Scholar]
  • 92.Van Delden C., and Iglewski B. H. (1998) Cell-to-cell signalling and Pseudomonas aeruginosa infections. Emerg. Infect. Dis., 4, 551–560. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 93. http://textbookofbacteriology.net/pseudomonas.html
  • 94.Singh P. K., Schaefer A. L., Parsek M. R., Moninger T. O., Welsh M. J., and Greenberg E. P. (2000) Quorum-sensing signals indicate that cystic fibrosis lungs are infected with bacterial biofilms. Nature, 407, 762–764. [DOI] [PubMed] [Google Scholar]
  • 95.Hoffmann N., Rasmussen T. B., Jensen P. O., Stub C., Hentzer M., Molin S., Ciofu O., Givskov M., Johansen H. K., and Hoiby N. (2005) Novel mouse model of chronic Pseudomonas aeruginosa lung infection mimicking cystic fibrosis. Infect. Immunol., 73, 2504–2514. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 96.Wu H., Song Z., Hentzer M., Andersen J. B., Molin S., Givskov M., and Hoiby N. (2004) Synthetic furanones inhibit quorum-sensing and enhance bacterial clearance in Pseudomonas aeruginosa lung infection in mice. J. Antimicrob. Chemother., 53, 1054–1061. [DOI] [PubMed] [Google Scholar]
  • 97.Schuster M., and Greenberg E. P. (2006) A network of networks: quorum-sensing gene regulation in Pseudomonas aeruginosa. Int. J. Med. Microbiol., 296, 73–81. [DOI] [PubMed] [Google Scholar]
  • 98.Schuster M., Urbanowski M. L., and Greenberg E. P. (2004) Promoter specificity in Pseudomonas aeruginosa quorum sensing revealed by DNA binding of purified LasR. Proc. Natl. Acad. Sci. USA, 101, 15833–15839. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 99.Wagner V. E., Bushneil D., Passador L., Brooks A. I., and Iglewski B. H. (2003) Microarray analysis of Pseudomonas aeruginosa quorum-sensing regulons: effects of growth phase and environment. J. Bacteriol., 185, 2080–2095. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 100.Ventre L., Ledgham F., Prima V., Lazdunski A., Foglino M., and Sturgis J. N. (2003) Dimerization of the quorum sensing regulator RhlR: development of a method using EGFP fluorescence anisotropy. Mol. Microbiol., 48, 187–198. [DOI] [PubMed] [Google Scholar]
  • 101.Davies D. G., Parsek M. R., Pearson J. P., Iglewski B. H., Costerton J. W., and Greenberg E. P. (1998) The involvement of cell-to-cell signals in the development of a bacterial biofilm. Science, 280, 295–298. [DOI] [PubMed] [Google Scholar]
  • 102.Favre-Bonte S., Kohler T., and Van Delden C. (2003) Biofilm formation by Pseudomonas aeruginosa: role of the C4-HSL cell-to-cell signal and inhibition by azithromycin. J. Antimicrob. Chemother., 52, 598–604. [DOI] [PubMed] [Google Scholar]
  • 103.Pesci E. C., Milbank J. B., Pearson J. P., McKnight S., Kende A. S., Greenberg E. P., and Iglewski B. H. (1999) Quinolone signalling in the cell-to-cell communication system of Pseudomonas aeruginosa. Proc. Natl. Acad. Sci. USA, 96, 11229–11234. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 104.Gallagher L. A., McKnight S. L., Kuznetsova M. S., Pesci E. C., and Manoil C. (2002) Functions required for extracellular quinolone signalling by Pseudomonas aeruginosa. J. Bacterial., 184, 6472–6480. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 105.Diggle S. P., Winzer K., Chhabra S. R., Worrall K. E., Camara M., and Williams P. (2003) The Pseudomonas aeruginosa quinolone signal molecule overcomes the cell density-dependency of the quorum sensing hierarchy, regulates rhl-dependent genes at the onset of stationary phase and can be produced in the absence of LasR. Molec. Microbiol., 50, 29–43. [DOI] [PubMed] [Google Scholar]
  • 106.Deziel E., Gopalan S., Tampakaki A. P., Lepine F., Padfield K. E., Saucier M., Xiao G., and Rahme L. G. (2005) The contribution of MvfR to Pseudomonas aeruginosa pathogenesis and quorum sensing circuitry regulation: multiple quorum sensing-regulated genes are modulated without affecting lasRI, rhlRI or the production of N-acyl-L-homoserine lactones. Molec. Microbiol., 55, 998–1014. [DOI] [PubMed] [Google Scholar]
  • 107.Diggle S. P., Lumjiaktase P., Dipilato F., Winzer K., Kunakorn M., Barrett D. A., Chhabra S. R., Camara M., and Williams P. (2006) Functional genetic analysis reveals a 2-Alkyl-4-quinolone signalling system in the human pathogen Burkholderia pseudomallei and related bacteria. Chem. Biol., 13, 701–710. [DOI] [PubMed] [Google Scholar]
  • 108.Mashburn L. M., and Whiteley M. (2005) Membrane vesicles traffic signals and facilitate group activities in a prokaryote. Nature, 437, 422–425. [DOI] [PubMed] [Google Scholar]
  • 109.Hentzer M., Wu H., Andersen J. B., Riedel K., Rasmussen T. B., Bagge N., Kumar N., Schembri M. A., Song Z., Kristoffersen P., Manefield M., Costerton J. W., Molin S., Eberl L., Steinberg P., Kjelleberg S., Hoiby N., and Givskov M. (2003) Attenuation of Pseudomonas aeruginosa virulence by quorum sensing inhibitors. EMBO J., 22, 3803–3815. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 110.Schuster M., Lostroh C. P., Ogi T., and Greenberg E. P. (2003) Identification, timing, and signal specificity of Pseudomonas aeruginosa quorum-controlled genes: a transcriptome analysis. J. Bacteriol., 185, 2066–2079. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 111.Smith R. S., and Iglewski B. H. (2003) Pseudomonas aeruginosa quorum sensing as a potential antimicrobial target. J. Clin. Invest., 112, 1460–1465. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 112.Yarwood J. M., Volper E. M., and Greenberg E. P. (2005) Delays in Pseudomonas aeruginosa quorum-controlled gene expression are conditional. Proc. Natl, Acad. Sci. USA, 102, 9008–9013. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 113.Chugani S. A., Whiteley M., Lee K. M., D'Argenio D., Manoil C., and Greenberg E. P. (2001) QscR, a modulator of quorum-sensing signal synthesis and virulence in Pseudomonas aeruginosa. Proc. Natl. Acad. Sci. USA, 98, 2752–2757. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 114.Ledgham F., Ventre I., Soscia C., Foglino M., Sturgis J. N., and Lazdunski A. (2003) Interactions of the quorum sensing regulator QscR: interaction with itself and the other regulators of Pseudomonas aeruginosa LasR and RhlR. Molec. Microbiol., 48, 199–210. [DOI] [PubMed] [Google Scholar]
  • 115.Lee J. H., Lequette Y., and Greenberg E. P. (2006) Activity of purified QscR, a Pseudomonas aeruginosa orphan quorum-sensing transcription factor. Molec. Microbiol., 59, 602–609. [DOI] [PubMed] [Google Scholar]
  • 116.Lequette Y., Lee J. H., Ledgham F., Lazdunski A., and Greenberg E. P. (2006) A distinct QscR regulon in the Pseudomonas aeruginosa quorum-sensing circuit. J. Bacteriol., 188, 3365–3370. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 117.Costerton J. W. et al. (1995) Microbial biofilms. Ann. Rev. Microbiol., 49, 711–745. [DOI] [PubMed] [Google Scholar]
  • 118.Parsek M. R., and Greenberg E. P. (2005) Sociomicrobiology: the connections between quorum sensing and biofilms. Trends Microbiol., 13, 27–33. [DOI] [PubMed] [Google Scholar]
  • 119.Allesen-Holm M., Barken K. B., Yang L., Klausen M., Webb J. S., Kjelleberg S., Molin S., Givskov M., and Tolker-Nielsen T. (2006) A characterization of DNA release in Pseudomonas aeruginosa cultures and biofilms. Molec. Microbiol., 59, 1114–1128. [DOI] [PubMed] [Google Scholar]
  • 120.Sauer K., Camper A. K., Ehrlich G. D., Costerton J. W., and Davies D. G. (2002) Pseudomonas aeruginosa displays multiple phenotypes during development as a biofilm. J. Bacteriol., 184, 1140–1154. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 121.Webb J. S., Thompson L. S., James S., Charlton T., Tolker-Nielsen T., Koch B., Givskov M., and Kjelleberg S. (2003) Cell death in Pseudomonas aeruginosa biofilm development. J. Bacteriol., 185, 4585–9452. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 122.Rasmussen T. B., and Givskov M. (2006) Quorum sensing inhibitors: a bargain of effects. Microbiolog., 152, 895–904. [DOI] [PubMed] [Google Scholar]
  • 123.Smith R. S., and Iglewski B. H. (2003) Pseudomonas aeruginosa quorum sensing as a potential antimicrobial target. J. Clin. Invest., 112, 1460–1465. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 124.Smith K. M., Bu Y., and Suga H. (2003) Library screening for synthetic agonists and antagonists of a Pseudomonas aeruginosa autoinducer. Chem. Biol., 10, 563–571. [DOI] [PubMed] [Google Scholar]
  • 125.Welch M., Mikkelsen H., Swatton J. E., Smith D., Thomas G. L., Glansdorp F. G., and Spring D. R. (2005) Cell-cell communication in Gram-negative bacteria. Mol. Biosyst., 1, 196–202. [DOI] [PubMed] [Google Scholar]
  • 126.Wagner V. E., Frelinger J. G., Barth R. K., and Iglewski B. H. (2006) Quorum sensing: dynamic response of Pseudomonas aeruginosa to external signals. Trends Microbiol., 14, 55–58. [DOI] [PubMed] [Google Scholar]
  • 127.Wu L., Estrada O., Zaborina O., Bains M., Shen L., Kohler J. E., Patel N., Musch M. W., Chang E. B., Fu Y. X., Jacobs M. A., Nishimura M. I., Hancock R. E., Turner J. R., and Alverdy J. C. (2005) Recognition of host immune activation by Pseudomonas aeruginosa. Science, 309, 774–777. [DOI] [PubMed] [Google Scholar]
  • 128.Pritchard D. I. (2006) Immune modulation by Pseudomonas aeruginosa quorum-sensing signal molecules. Int. J. Med. Microbiol., 296, 111–116. [DOI] [PubMed] [Google Scholar]
  • 129.Davies D. (2003) Understanding biofilm resistance to antibacterial agents. Nat. Rev. Drug Discov., 2, 114–122. [DOI] [PubMed] [Google Scholar]
  • 130.Whiteley M., Bangera M. G., Bumgarner R. E., Parsek M. R., Teitzel G. M., Lory S., and Greenberg E. P. (2001) Gene expression in Pseudomonas aeruginosa biofilms. Nature, 413, 860–864. [DOI] [PubMed] [Google Scholar]
  • 131.De Kievit T. R., Gillis R., Marx S., Brown C., and Iglewski B. H. (2001) Quorum-sensing genes in Pseudomonas aeruginosa biofilms: their role and expression patterns. Appl. Environ. Microbiol., 67, 1865–1873. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 132.Kaeberlein T., Lerwis K., and Epstein S. S. (2002) Isolating “uncultivable” microorganisms in pure culture in a simulated natural environment. Science, 296, 1127–1129. [DOI] [PubMed] [Google Scholar]
  • 133.Lamont I. L., Beare P. A., Ochsner U., Vasil A. I., and Vasil M. L. (2002) Siderophore-mediated signalling regulates virulence factor production in Pseudomonas aeruginosa. Proc. Natl Acad. Sci. USA, 99, 7072–7077. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 134.Winzer K., Hardie K. R., and Williams P. (2002) Bacterial cell-to-cell communication: sorry, can't talk now-gone to lunch! Curr. Opin. Microbiol., 5, 16–222. [DOI] [PubMed] [Google Scholar]
  • 135.Surette M. G., Miller M. B., and Bassler B. L. (1999) Quorum sensing in Escherichia coli, Salmonella typhimurium, and Vibrio harveyr. a new family of genes responsible for autoinducer production. Proc. Natl. Acad. Sci. USA, 96, 1639–1644. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 136.Henke J. M., and Bassler B. L. (2004) Three parallel quorum-sensing systems regulate gene expression in Vibrio harveyi. J. Bacteriol., 186, 6902–6914. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 137.Miller M. B., Skorupski K., Lenz D. H., Taylor R. K., and Bassler B. L. (2002) Parallel quorum sensing systems converge to regulate virulence in Vibrio cholerae. Cell, 110, 303–314. [DOI] [PubMed] [Google Scholar]
  • 138.Chen X., Schauder S., Potier N., Van Dorsselaer A., Pelczer I., Bassler B. L., and Hughson F. M. (2002) Structural identification of a bacterial quorum-sensing signal containing boron. Nature, 415, 545–549. [DOI] [PubMed] [Google Scholar]
  • 139.Schauder S., Shokat K., Surette M. G., and Bassler B. L. (2001) The LuxS family of bacterial autoinducers: biosynthesis of a novel quorum-sensing signal molecule. Molec. Microbiol., 41, 463–476. [DOI] [PubMed] [Google Scholar]
  • 140.Duan K., Dammel C., Stein J., Rabin H., and Surette M. G. (2003) Modulation of Pseudomonas aeruginosa gene expression by host microflora through interspecies communication. Molec. Microbiol., 50, 1477–1491. [DOI] [PubMed] [Google Scholar]
  • 141.Coulthurst S. J., Kurz C. L., and Salmond G. P. (2004) luxS mutants of Serratia defective in autoinducer-2-dependent “quorum sensing” show strain-dependent impacts on virulence and production of carbapenem and prodigiosin. Microbiology, 150, 1901–1910. [DOI] [PubMed] [Google Scholar]
  • 142.Vendeville A., Winzer K., Heurlier K., Tang C. M., and Hardie K. R. (2005) Making ‘sense’ of metabolism: autoinducer-2, LuxS and pathogenic bacteria. Nat. Rev. Microbiol., 3, 383–396. [DOI] [PubMed] [Google Scholar]
  • 143.Miller S. T., Xavier K. B., Campagna S. R., Taga M. E., Semmelhack M. F., Bassler B. L., and Hughson F. M. (2004) Salmonella typhimurium recognizes a chemically distinct form of the bacterial quorum-sensing signal AI-2. Molec. Cell, 15, 677–687. [DOI] [PubMed] [Google Scholar]

Articles from Science Progress are provided here courtesy of SAGE Publications

RESOURCES