Skip to main content

This is a preprint.

It has not yet been peer reviewed by a journal.

The National Library of Medicine is running a pilot to include preprints that result from research funded by NIH in PMC and PubMed.

bioRxiv logoLink to bioRxiv
[Preprint]. 2023 Jul 19:2023.07.19.549668. [Version 1] doi: 10.1101/2023.07.19.549668

Multiple objects evoke fluctuating responses in several regions of the visual pathway

Meredith N Schmehl, Valeria C Caruso, Yunran Chen, Na Young Jun, Shawn M Willett, Jeff T Mohl, Douglas A Ruff, Marlene Cohen, Akinori F Ebihara, Winrich Freiwald, Surya T Tokdar, Jennifer M Groh
PMCID: PMC10370052  PMID: 37502939

Abstract

How neural representations preserve information about multiple stimuli is mysterious. Because tuning of individual neurons is coarse (for example, visual receptive field diameters can exceed perceptual resolution), the populations of neurons potentially responsive to each individual stimulus can overlap, raising the question of how information about each item might be segregated and preserved in the population. We recently reported evidence for a potential solution to this problem: when two stimuli were present, some neurons in the macaque visual cortical areas V1 and V4 exhibited fluctuating firing patterns, as if they responded to only one individual stimulus at a time. However, whether such an information encoding strategy is ubiquitous in the visual pathway and thus could constitute a general phenomenon remains unknown. Here we provide new evidence that such fluctuating activity is also evoked by multiple stimuli in visual areas responsible for processing visual motion (middle temporal visual area, MT), and faces (middle fundus and anterolateral face patches in inferotemporal cortex – areas MF and AL), thus extending the scope of circumstances in which fluctuating activity is observed. Furthermore, consistent with our previous results in the early visual area V1, MT exhibits fluctuations between the representations of two stimuli when these form distinguishable objects but not when they fuse into one perceived object, suggesting that fluctuating activity patterns may underlie visual object formation. Taken together, these findings point toward an updated model of how the brain preserves sensory information about multiple stimuli for subsequent processing and behavioral action.

Impact Statement

We find neural fluctuations in multiple areas along the visual cortical hierarchy that could allow the brain to represent distinct co-occurring visual stimuli.

Full Text Availability

The license terms selected by the author(s) for this preprint version do not permit archiving in PMC. The full text is available from the preprint server.


Articles from bioRxiv are provided here courtesy of Cold Spring Harbor Laboratory Preprints

RESOURCES