Skip to main content

This is a preprint.

It has not yet been peer reviewed by a journal.

The National Library of Medicine is running a pilot to include preprints that result from research funded by NIH in PMC and PubMed.

bioRxiv logoLink to bioRxiv
[Preprint]. 2023 Jul 19:2023.07.17.549429. [Version 1] doi: 10.1101/2023.07.17.549429

A Versatile Photocrosslinkable Silicone Composite for 3D Printing Applications

Mecit Altan Alioglu, Yasar Ozer Yilmaz, Ethan Michael Gerhard, Vaibhav Pal, Deepak Gupta, Syed Hasan Askari Rizvi, Ibrahim T Ozbolat
PMCID: PMC10370143  PMID: 37502908

Abstract

Embedded printing has emerged as a valuable tool for fabricating complex structures and microfluidic devices. Currently, an ample of amount of research is going on to develop new materials to advance its capabilities and increase its potential applications. Here, we demonstrate a novel, transparent, 3D printable, photocrosslinkable, and tuneable silicone composite that can be utilized as a support bath or an extrudable ink for embedded printing. The proposed silicone composite can be tuned to achieve ideal rheological properties, such as optimal self-recovery and yield stress, for use in 3D printing. When used as a support bath, it facilitated the generation microfluidic devices with circular channels of diameter up to 30 µm. To demonstrate its utility, flow focusing microfluidic devices were fabricated for generation of Janus microrods, which can be easily modified for multitude of applications. When used as an extrudable ink, 3D printing of complex-shaped micro- and macro-constructs were achieved with integrated electronics, which greatly extends its potential applications towards developing complex flexible parts for soft robotics and prosthetics. Further, its biocompatibility was tested with multiple cell types to validate its applicability for medical and tissue engineering use. Altogether, this material offers a myriad of potential applications in material and medical fields by providing a facile approach to develop complicated 3D structures and interconnected channels that can further advance microfluidics and soft-robotics research.

Full Text Availability

The license terms selected by the author(s) for this preprint version do not permit archiving in PMC. The full text is available from the preprint server.


Articles from bioRxiv are provided here courtesy of Cold Spring Harbor Laboratory Preprints

RESOURCES