Chronic kidney disease affects approximately 15% of US adults or 37 million people, resulting in $87 billion healthcare cost annually1. Diabetes, obesity and hypertension are leading risk factors for chronic kidney disease, and glomerular hyperfiltration is a major pathophysiological mechanism contributing to proteinuria and glomerulosclerosis in these conditions. If left untreated, glomerular hyperfiltration is usually followed by rapid decline in glomerular filtration rate due to progressive nephron loss, ultimately leading to chronic kidney disease and end-stage renal disease2. Pre-glomerular myogenic tone and tubuloglomerular feedback are the primary mechanisms of renal autoregulation that maintain constant renal blood flow and glomerular filtration rate in a wide range of renal perfusion pressure3. This autoregulatory capacity is compromised in diabetes and obesity such that even modest fluctuations in arterial pressure are transmitted to the glomeruli resulting in elevated glomerular capillary pressure, hyperfiltration, and glomerular damage. Blunted tubuloglomerular feedback was considered the chief cause of hyperglycemic glomerular hyperfiltration, but this paradigm may need to change. In this issue of Hypertension, Fei at al made an intriguing discovery that high glucose can increase glomerular filtration rate through direct vasodilatory effects in renal resistance vessels4.
Tubuloglomerular feedback is initiated when the macula densa senses an increased load of sodium chloride delivered to the distal nephron via the Na+-K+−2Cl− co-transporter. This triggers macula densa cells to release adenosine triphosphate (ATP) which is hydrolyzed to adenosine by extracellular nucleases. ATP and adenosine activate afferent arteriolar P2X purinergic receptors and the A1 adenosine receptor respectively to stimulate preglomerular vasoconstriction3. These events lead to a decrease in glomerular capillary pressure and a subsequent reduction in the filtered sodium/chloride load. Dampened tubuloglomerular feedback was believed to be the primary cause of deleterious glomerular hyperfiltration in diabetes and obesity. Under hyperglycemia, augmented glucose reabsorption via sodium/glucose co-transporter (SGLT) 1 and 2 in the proximal tubule creates an electrical gradient that drives passive chloride re-uptake (Figure 1). The resultant decrease in chloride delivery to the macula densa leads to dampened tubuloglomerular feedback and weakened myogenic tone in the afferent arteriole. As a major breakthrough in the management of diabetic kidney disease, inhibition of SGLT2, which mediates 80–90% of glucose reabsorption in the proximal tubule, corrects glomerular hyperfiltration through improved tubuloglomerular feedback5.
Figure 1. Classical and new mechanisms of glomerular hyperfiltration during hyperglycemia.
The classical concept holds that in hyperglycemia increased sodium (Na+) reabsorption through SGLT1/2 and passive chloride (Cl−) re-uptake in the proximal tubule causes a decreased delivery of Cl− to the macula densa. This blunts tubuloglomerular feedback (TGF) leading to weakened afferent arteriolar constriction and glomerular hyperfiltration. Red arrows denote pathological changes caused by hyperglycemia. The study by Fei et al supports a new paradigm where hyperglycemia and/or hyperosmolality directly stimulate vasodilation in renal microvessels through the Piezo1-CaMKII-eNOS pathway. In response to high glucose, there is greater vasodilation in the afferent arteriole (AA) than in the efferent arteriole (EA), resulting in elevated glomerular capillary pressure (PGC) and augmented GFR. These hemodynamic derangements ultimately lead to proteinuria, glomerulosclerosis, and chronic kidney disease (CKD). EC, endothelial cell. CaMKII, Ca2+/Calmodulin-dependent protein kinase type II. SGLT, sodium-glucose co-transporter.
However, is impaired autoregulation in hyperglycemia solely caused by a blunted tubuloglomerular feedback response? This traditional concept is challenged by paradigm-shifting findings by Fei et al4. Using state-of-the-art microvascular perfusion and myography, the authors discovered that acute hyperglycemia induced profound afferent arteriolar vasodilation and glomerular hyperfiltration, as evidenced by markedly enhanced GFR, through a novel pathway involving Piezo1, Ca2+/Calmodulin-dependent protein kinase type II (CaMKII), and endothelial nitric oxide synthase (eNOS) (Figure 1).
Piezo1 is a mechanosensitive, Ca2+-permeable, non-selective cation channel that facilitates shear stress-induced eNOS activation and nitric oxide generation6, 7. The Piezo1-CaMKII-eNOS pathway was supported by unequivocal pharmacological and molecular data obtained in perfused juxtaglomerular preparations, isolated renal microvessels, and cultured endothelial cells. Although Piezo1 is expressed in the vascular smooth muscle, it is dispensable for arterial myogenic tone. Thus, while smooth muscle actions cannot be ruled out, piezo1-dependent vasodilation is likely to be primarily mediated by eNOS as L-NG-Nitro-arginine methyl ester completely abolished the dilatory effects. However, hyperglycemic afferent arteriolar dilation may not be entirely mechanosensitive as high glucose-induced nitric oxide generation and vasodilation is mediated, at least in part, by glucose transporter 19, suggesting intracellular signaling triggered by glucose uptake may also contribute. Moreover, hyperosmotic mannitol had similar vasodilating effects as hyperglycemia that could also be prevented by Piezo1 inhibition, raising the question whether Piezo1 plays a role in osmosensing. Future genetic studies involving endothelium-specific deletion of Piezo1 and/or glucose transporter 1 are warranted to delineate the molecular pathways involved in hyperglycemic vasodilation in pre-glomerular resistance vessels.
The Fei et al study also revealed that hyperglycemia induced greater vasodilation in the afferent arteriole than efferent arteriole or vasa recta. This is consistent with early observations by Brenner and associates that afferent arteriolar resistance decreases more than the efferent arteriolar resistance in the ischemic renal mass ablation model, which may account for the single-nephron hyperfiltration and subsequent development of glomerulosclerosis and chronic kidney disease8. Calcium channel blockers (e.g. nifedipine) exacerbates glomerulosclerosis in the remnant kidney model despite significant blood-pressure lowering effects, further supporting a role of pathological vasodilation in the progression of chronic kidney disease10. These observations, along with convergent evidence from the laboratory of Liu and associates9, strongly support a pivotal role of pre-glomerular vasodilation in pathogenic glomerular hyperfiltration.
In comparison to diabetes, glomerular hyperfiltration in hypertension can occur without afferent arteriolar vasodilation. For example, we recently showed that female transgenic mice selectively expressing a human hypertension-causing mutation in Cullin3 ubiquitin ligase (Cul3Δ9, denoting lack of exon 9) in the endothelium developed profound salt-sensitive hypertension, glomerular hyperfiltration and microalbuminuria11. The augmented glomerular filtration rate cannot be attributed to preglomerular vasodilation, and in fact, high salt-fed Cul3Δ9 transgenic mice exhibited a marked decline in endothelium-dependent vasodilation in renal microvessels due to impaired eNOS activation and diminished nitric oxide production. Indeed, impaired vasodilation in preglomerular resistance vessels is a hallmark of salt sensitive hypertension, and is often accompanied by elevated renovascular resistance and blunted renal blood flow12, 13. These hemodynamic derangements are associated with increased glomerular capillary pressure and filtration fraction in salt-sensitive hypertension, causing a greater propensity to develop albuminuria and glomerulosclerosis14.
It is tempting to speculate whether the Piezo1 contributes to high salt-induced vasodilation, which is an adaptive response that offsets the pressor effect of volume expansion in salt resistant humans12, 13. Whether the Piezo1 pathway is altered in salt-sensitive hypertension is opportunity for investigation.
Acknowledgement
The author sincerely thanks Dr. Thu H. Le for her timely feedback and editing assistance in the preparation of this manuscript.
Funding Sources
This work was supported by NIDDK K01 DK126792, a University of Rochester Environmental Health Science Center pilot award (Prime sponsor: NIEHS P30ES001247), and a University of Rochester Program for Advanced Immune Bioimaging Pilot Award (Prime Sponsor: NIAID P01AI102851).
Footnotes
Disclosures
None.
References
- 1.Chronic Kidney Disease in the United States, 2021. US Department of Health and Human Services, Centers for Disease Control and Prevention. 2021. [Google Scholar]
- 2.Palatini P Glomerular hyperfiltration: a marker of early renal damage in pre-diabetes and pre-hypertension. Nephrol Dial Transplant. 2012;27:1708–14. [DOI] [PubMed] [Google Scholar]
- 3.Burke M, Pabbidi MR, Farley J and Roman RJ. Molecular mechanisms of renal blood flow autoregulation. Curr Vasc Pharmacol. 2014;12:845–58. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 4.Fei L, Xu M, Wang H, Zhong C, Jiang S, Lichtenberger F-B, Erdoğan C, Wang H, Bonk J, Lai EY, Persson P, Kovács R, Zheng Z, Patzak A and Khedkar P. Piezo1 mediates vasodilation induced by acute hyperglycemia in mouse renal arteries and microvessels. Hypertension. 2023;In Press. [DOI] [PubMed] [Google Scholar]
- 5.Fioretto P, Zambon A, Rossato M, Busetto L and Vettor R. SGLT2 Inhibitors and the Diabetic Kidney. Diabetes Care. 2016;39 Suppl 2:S165–71. [DOI] [PubMed] [Google Scholar]
- 6.Li J, Hou B, Tumova S, Muraki K, Bruns A, Ludlow MJ, Sedo A, Hyman AJ, McKeown L, Young RS, Yuldasheva NY, Majeed Y, Wilson LA, Rode B, Bailey MA, Kim HR, Fu Z, Carter DA, Bilton J, Imrie H, Ajuh P, Dear TN, Cubbon RM, Kearney MT, Prasad RK, Evans PC, Ainscough JF and Beech DJ. Piezo1 integration of vascular architecture with physiological force. Nature. 2014;515:279–282. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 7.Jin YJ, Chennupati R, Li R, Liang G, Wang S, Iring A, Graumann J, Wettschureck N and Offermanns S. Protein kinase N2 mediates flow-induced endothelial NOS activation and vascular tone regulation. J Clin Invest. 2021;131. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 8.Hostetter TH, Olson JL, Rennke HG, Venkatachalam MA and Brenner BM. Hyperfiltration in remnant nephrons: a potentially adverse response to renal ablation. Am J Physiol. 1981;241:F85–93. [DOI] [PubMed] [Google Scholar]
- 9.Zhang J, Jiang S, Wei J, Yip KP, Wang L, Lai EY and Liu R. Glucose dilates renal afferent arterioles via glucose transporter-1. Am J Physiol Renal Physiol. 2018;315:F123–F129. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 10.Griffin KA, Picken MM and Bidani AK. Deleterious effects of calcium channel blockade on pressure transmission and glomerular injury in rat remnant kidneys. J Clin Invest. 1995;96:793–800. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 11.Wu J, Fang S, Lu KT, Kumar G, Reho JJ, Brozoski DT, Otanwa AJ, Hu C, Nair AR, Wackman KK, Agbor LN, Grobe JL and Sigmund CD. Endothelial Cullin3 Mutation Impairs Nitric Oxide-Mediated Vasodilation and Promotes Salt-Induced Hypertension. Function (Oxf). 2022;3:zqac017. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 12.Kurtz TW, DiCarlo SE, Pravenec M and Morris RC Jr., The pivotal role of renal vasodysfunction in salt sensitivity and the initiation of salt-induced hypertension. Curr Opin Nephrol Hypertens. 2018;27:83–92. [DOI] [PubMed] [Google Scholar]
- 13.Wu J, Agbor LN, Fang S, Mukohda M, Nair AR, Nakagawa P, Sharma A, Morgan DA, Grobe JL, Rahmouni K, Weiss RM, McCormick JA and Sigmund CD. Failure to Vasodilate in Response to Salt Loading Blunts Renal Blood Flow and Causes Salt-Sensitive Hypertension. Cardiovasc Res. 2021. Jan 1;117(1):308–319. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 14.Campese VM, Parise M, Karubian F and Bigazzi R. Abnormal renal hemodynamics in black salt-sensitive patients with hypertension. Hypertension. 1991;18:805–12. [DOI] [PubMed] [Google Scholar]