Skip to main content
Materials logoLink to Materials
. 2023 Jul 8;16(14):4894. doi: 10.3390/ma16144894

The Optical and Spectroscopic Properties of Fuchsite, Spodumene, and Lepidolite from Northern Scandinavia (Kautokeino, Kaustinen, Kolmozero)

Miłosz Huber 1,*, Daniel M Kamiński 2, Urszula Maciołek 3
Editor: Dimitrios Papoulis
PMCID: PMC10381879  PMID: 37512169

Abstract

Li-Ce-Ta (LCT) pegmatites containing lithium mineralization in the form of spodumene and lepidolite, as well as fuchsite, from the regions of northern Scandinavia (N Norway, N Finland, N Russia) were studied. Detailed analyses of the chemical compositions of these minerals were carried out, involving scanning electron microscopy (SEM) with energy-dispersive spectroscopy (EDS), Fourier transform infrared (FTIR) spectroscopy with attenuated total reflectance (ATR), and X-ray photoelectron spectroscopy (XPS) studies. Their crystal structures were confirmed with the X-ray diffraction technique. Studies involving microscopy were also carried out, indicating the optical features of these minerals. Based on the analyses carried out in the studied rocks, the characteristics of these minerals were determined, as well as the crystallization conditions. This research indicates that the N Scandinavian area is prospective and may lead to further discoveries of this type of pegmatite in the studied region.

Keywords: LCT pegmatites, Kautokeino, Kaustinen, Kolmozero, N Scandinavia, spodumene, fuchsite, lepidolite, crystal structure, optical properties

1. Introduction

In northern Scandinavia, pegmatite veins containing rare lithium and schists with chromium minerals are found in the regions of northern Norway [1], Finland [2], and the Kola Peninsula in Russia [3], among rocks constituting the cratonic basement of the Northern Fennoscandia [4]. These rocks contain minerals such as mica (lepidolite, fuchsite, muscovite) and pyroxene (spodumene), which co-occur with quartz, plagioclase, orthoclase, and several ore minerals: oxides (e.g., columbite, tantalite, cassiterite, sillenite, clarkeite) and sulfides (pyrite, chalcopyrite). Their thickness reaches several meters, and they cut through their metamorphic host rocks [5]. The previous study of these rocks was mainly concerned with analyses for the needs of economic geology [6]. The purpose of this article is a detailed analysis of the mineralogy of these rocks and a discussion of the crystalline structure characteristics of spodumene, lepidolite, and fuchsite.

2. Study Area and Massifs Geology

The northern part of the Scandinavian Peninsula is part of the Fennoscandia (Figure 1). In this region, Archean and Proterozoic rocks are exposed, forming various types of gneisses that constitute the basement of the Baltic Shield [3,7,8,9,10,11,12,13,14]. In the Fennoscandia, numerous intrusions have been found, such as the Tonalite Trondheimite Granodiorites of Murmansk (3.75 Ga) [3] and Jergul (2.97 Ga) [15], Patchenvarek anorthosites (2.92 Ga) [16], and enderbites (2.83 Ga) [9], with layered Paleoproterozoic intrusions in Monchegorsk (2.50 Ga) [17]. These rocks metamorphosed in the amphibolite and granulite facies [18,19]. Alkaline metavolcanic rocks and granitoid intrusions occur in the vicinity of the discussed pegmatite sites [20,21,22]. This is the case in the Kaustinen and Kolmozero areas, where numerous pegmatite veins can be found in these rocks [23,24,25,26]. In the Kaustinen area (Finland) and the Kolmozero area, there are pegmatite veins with lithium–cesium–tantalum mineralization (LCT), which are up to several meters thick and 100 m or more in length. In the Kautokeino area, schists containing chromic mica are visible. The age of Kautokeino and Kaustinen rocks spans the range of 1.9–1.8 Ga [27,28,29]. These rocks are exposed on the surface or covered by Pleistocene sediments [30,31]. In these locations, high-relief landscapes have developed [32,33,34,35,36].

Figure 1.

Figure 1

Simplified geological–tectonic map of N Scandinavia (after [37]) with the sample locations.

3. Materials and Methods

Rock samples were collected between 2018 and 2022. During this period, the discussed massifs were visited, and the geological documentation of the samples was also carried out. In Scandinavia, rock samples were taken from the site of their occurrence. The selected rocks were targeted for thin-section preparations. Subsequently, the minerals were subjected to analyses using a Leica DM2500P (Heerbrugg, Switzerland) polarizing optical microscope [38,39,40,41] and with a scanning electron microscope, a Hitachi SU6600 (Tokyo, Japan), equipped with energy-dispersive spectroscopy (EDS) [42,43]. The samples were analyzed under a low vacuum (10 Pa), 15 kV accelerating voltage, and beam diameter of 0.2 µm. A total of 525 analyses were performed using the microprobe (at Kautokeino, 72; at Kaustinen, 179; and at Kolmozero, 274). The selected minerals were separated and analyzed with single-crystal X-ray diffraction. Data were collected using a Rigaku diffractometer (Tokyo, Japan) [44] with CuKα radiation (λ = 1.54184 Å) at 293 K. Crystallographic refinement and data collection, as well as data reduction and analysis, were performed with a CrysAlisPro v42 [45]. The selected single crystals were mounted on the nylon loop with oil. The structures were determined by applying direct methods using the SHELXS-86 program and refined with SHELXL [46,47] in Olex2 software [48]. Table 1 provides the experimental details for the single crystals’ X-ray measurements. These samples were also examined with the Fourier transform infrared (FTIR) technique [49,50]. The samples were measured using a Nicolet 8700A Thermo Scientific Shimadzu FTIR spectrophotometer (Waltham, MA, USA) equipped with an attenuated total reflectance (ATR) accessory, a Smart Orbit™ diamond ATR QATR-S (Riyadh, Saudi Arabia) (wideband diamond crystal). Every spectrum was obtained from 256 records at a 4 cm−1 resolution ranging from 4000 to 400 cm−1. The elaboration of a spectrum was carried out using the OMNIC program. Optical and microscopic studies were performed at the Department of Geology, Soil Science, and Geoinformation of the Institute of Earth and Environmental Sciences, and crystal chemistry studies were performed at the Department of Crystallochemistry, Faculty of Chemistry, Maria Curie-Skłodowska University, in Lublin. The UHV multi-chamber system (Prevac, Poland) was used to carry out the X-ray photoelectron spectroscopy (XPS) measurements. Molybdenum mounts were used to hold the measured samples. The chamber pressure was 5 × 10−9 mbar during analysis. The mineral surface was excited with X-rays (Al Kα, 1486.6 eV) from a Scienta SAX-100 X-ray source equipped with an XM 650 X-ray monochromator. The hemispherical electron analyzer R 4000 (Scienta, Uppsala, Sweden) operating in sweep mode was used to detect photons arriving from the sample. The energy of the spectra was calibrated using the C1s aliphatic carbon peak, EB = 285 eV. The CasaXPS v2.3.23-PR1 software from Casa Software Ltd. (London, UK) was used to analyze the measured data. The full width at half maximum (FWHM) and relative peak shift were fixed in the fitting process [51,52].

Table 1.

Single crystals’ X-ray diffraction results for all studied minerals.

Mineral Fuchsite Lepidolite Spodumene
Empirical formula Al1.63Cr0.37KSi4O12.1 Al2Fe0.93H0.25LiSi4O12.12 Al2Li2Si4O12
Temperature/K 294 294 294
Crystal system monoclinic monoclinic monoclinic
Space group C2/c C2/c I2/a
a/Å 5.2149(1) 5.2037(2) 5.2204(1)
b/Å 9.0505(2) 9.0250(4) 8.3947(2)
c/Å 20.0457(5) 20.1588(8) 9.0993(2)
α/° 90 90 90
β/° 95.78(1) 95.52(1) 102.40(1)
γ/° 90 90 90
Volume/Å3 941.29(4) 942.32(7) 389.462(17)
Z 4 4 2
ρcalcg/cm3 2.881 2.956 3.174
Crystal size/mm3 0.6 × 0.6 × 0.08 0.4 × 0.3 × 0.05 0.3 × 0.2 × 0.1
Data/restraints/parameters 844/0/89 854/0/98 344/0/48
Goodness-of-fit on F2 1.081 1.111 1.113
Final R indexes [I ≥ 2σ (I)] R1 = 0.0530,
wR2 = 0.1444
R1 = 0.0712,
wR2 = 0.2039
R1 = 0.0184,
wR2 = 0.0553
Largest diff. peak/hole/e Å−3 0.88/−0.79 0.88/−1.40 0.28/−0.26

4. Results

4.1. Host Rock Petrology

The examined lithologies are located in the Kolmozero–Voronya Greenstone Belt, Pohjanmaa Schist Belt (Kaustinen Pegmatites), and Kautokeino Greenstone Belt. The LCT pegmatites from the Kolmozero area are located in the Kolmozero–Voronya Greenstone Belt, separating the Murmansk block from the Kola block, composed of mixed metasediments and metavolcanites. These formations are intersected by numerous intrusions of alkaline and acidic rocks. The discussed LCT pegmatites intersect the alkaline rocks of the Patchemvarek anorthosite intrusion. This intrusion is located on the border of the Kolmozero block with the plagiogranites of the Murmansk block [53]. These rocks are in direct contact with biotite gneisses and amphibolites of the Kolmozero–Voronya Belt. There are fine-grained tourmaline-muscovite granites with pegmatite apophyses rich in tourmaline, garnet, and apatite. The studies of Kudrashov et al. [54] indicated that these are pegmatites of hydrothermal–metasomatic origin [55,56].

The Kaustinen pegmatite province is located in Western Finland. It is situated among supracrustal rocks belonging to the Pohjanmaa Schist Belt [57,58]. It is surrounded by the Vaasa granitoid complex to the west and Central Finland granitoides to the east [6]. The Pohjanmaa Schist Belt is composed of micaceous schists and gneisses, along with metavolcanic rocks. These rocks were metamorphosed under the amphibolite facies of 1.89–1.88 Ga [59]. The lithium-rich pegmatites from the Kaustinen province belong to the albite spodumene type according to the classification of Černy and Ercit [55]. They were formed during the metamorphism of the rocks of the Pohjanmaa belt. The pegmatites form a complex of veins cutting the rocks of the Pohjanmaa Käpyaho belt and others [60,61,62,63].

In the region of the Palaeoproterozoic Kautokeino Greenstone Belt, where muscovite-fuchsite and quartz-orthoclase schists are located between the gneissic Ráiseatnu Complex (1868–1828 Ma) to the west and the metaplutonic Jergul Complex to the east (tonalite–trondhjemite–granodiorite–granite plutonic rocks formed between 2975 and 2776 Ma). In the Kautokeino Greenstone Belt, metasedimentary–metavolcanic rocks are present, with numerous mafic intrusions [27]. The Masi Formation in the Archean basement is formed of a quartz-feldspar conglomerate with muscovite interbedding and ore mineralization composed of iron and copper sulfides (pyrite, chalcopyrite). It is intersected by the mafic sills of the Haaskalehto formation (2220 Ma age). [64] Among these formations are the discussed fuchsite-rich rocks, which may have formed as an alteration product of detrital chromite grains [65].

4.1.1. Kautokeino

The paleoproterozoic metamorphic formations classified as the Alta-Kautokeino Greenstone Belt are exposed in the Kautokeino region. Among these formations, there are mica schists [66] containing fuchsite (Figure 2A). This rock is an intense green-pink, characterized by layering resulting from a gneissic, streaky texture. The rock has a grano-lepidoblastic texture and is also characterized by a glomeroblastic, locally diablastic texture. Under an optical microscope, large quartz crystals are visible, forming irregular, hooked aggregates in contact with each other. Opaque minerals, such as pyrite and chalcopyrite, are visible between the muscovite and fuchsite. Close to the quartz crystals, microcline and Na-rich plagioclase are also present, forming leucocratic zones. In the interstices of plagioclase and microcline, small crystals of epidote are encountered. In addition to these zones are areas richer in femic minerals. They are represented by aggregates of biotite, which co-occur with fuchsite to form a streaky structure in the rock. These minerals form aggregates, resulting in interlaced streaks in the discussed rock. Opaque minerals can be observed, and zircon and apatite are woven into the biotite flakes. The detailed results of the phase studies in the micro-area are discussed below.

Figure 2.

Figure 2

Macroscopic images of rocks under investigation. Schist with fuchsite from Kautokeino (A), pegmatite with lepidolite from Kaustinen (B), and pegmatite from Kolmozero with spodumene (C) and lepidolite (D). Abbreviations: fu—fuchsite, sp—spodumene, lp—lepidolite, qtz—quartz, mu—muscovie, pl—plagioclase, or—orthoclase.

4.1.2. Kaustinen

In the Kaustinen area, pegmatites with a silicon-gray color, coarse crystalline structure, and compact, disordered texture are exposed among the gneisses. Their age was determined to be 1.79 Ga (U-Pb method) [67]. Under an optical microscope, the quartz crystals form large grains in contact with each other and closely interlocking. The quartz in the studied rock has wavy extinction. Alongside these are large orthoclase crystals adjacent to the quartz (Figure 2B). They are accompanied by much smaller tabular grains of Na-rich plagioclase, often between the orthoclase and quartz. Femic minerals are represented by muscovite forming large clusters of flakes, in the background of which fine zircon crystals are visible. Muscovite crystals are near the pyroxene. Biotite is also visible in the form of small flakes, usually between large pyroxene crystals. The pyroxenes in the discussed rock form large crystals, reaching several centimeters in size. They are represented by spodumene (and hypersthene). The spodumene forms compact crystals with jagged boundaries in which quartz and muscovite are visible. The hypersthene is anhedral. Opaque minerals (columbite-tantalite, sillenite) are visible in the form of small crystals close to the quartz, sometimes also forming solid inclusions, accompanying zircon. The detailed results of the micro-area phase studies are discussed below.

4.1.3. Kolmozero

In the area of the Kola Peninsula between the Kola and Murmansk blocks is the Archean Kolmozero–Voronya Greenstone Belt. Adjacent to the LCT pegmatites are Archean gabbro-anorthosites and granitic rocks. The analyzed pegmatites are dated to 1.90–1.86 Ga [68]. The pegmatites containing spodumene and lepidolite are cream-gray-colored rocks with a coarse crystalline texture and a compact, disorderly texture (Figure 2C). In thin sections, there are large crystals of quartz interlocking with each other. The quartz forms clumped aggregates in the space between the other phases. Alongside these minerals are visible crystals of Na-rich plagioclase. In the described rock, orthoclase, usually reaching a considerable size, is also visible near the other leucocratic minerals. Among the potassium feldspars, microcline usually forms small crystals. Alongside these minerals, flakes of biotite and muscovite can be identified, interspersed among the quartz and plagioclase. Biotite is much less abundant than muscovite, which predominates. In the pegmatites with lepidolite, this mineral accompanies muscovite, forming deformed flake aggregates of varying sizes. Large crystals of spodumene, reaching several centimeters in length, are visible alongside these minerals. They are surrounded by biotite, lepidolite, and plagioclase. In addition, small crystals of opaque minerals are visible near muscovite flakes occurring in interstices of quartz and feldspar. Zircon crystals are also visible within mica flakes. Accessory apatite forms small crystals co-occurring with femic minerals.

4.2. SEM-EDS Analyses

In the case of the Kautokeino rocks, the examined trioctahedral mica can mainly be classified as annite and siderophyllite [69,70,71] (Figure 3). These micas co-occur with fuchsite-forming overgrowths (Table A1).

Figure 3.

Figure 3

Mineral composition of trioctahedral micas from Kautokeino schists. The element content is expressed in wt.%. The yellow area represents the composition of the most frequent, naturally occurring biotites [71].

Dioctahedral micas are represented by muscovite with fuchsite and lepidolite (Table A1). Muscovite usually shows a low Na+ content (up to 5 wt.%). In the rocks from Kautokeino, in addition to muscovite, it was found that all the chromic micas examined were fuchsites. Some of the examined chromium micas have a composition characteristic of paragonite (Figure 4). In addition, an admixture of clinozoisite and epidote (mainly in the Kaustinen pegmatites, Table A1) was found in the discussed rocks.

Figure 4.

Figure 4

Type of dioctahedral micas examined in the discussed rocks (based on [72,73], modified by the authors). The element content is expressed in wt.%.

The examined pyroxenes are mainly represented by spodumene, with an Na content of up to 5 wt.%. In the examined samples, spodumene dominates, while admixtures of jade particles occur in small amounts (Table A2). Hypersthene was also found in the latter.

The accompanying leucocratic minerals are represented by quartz, usually with an admixture of up to 4% of aluminum oxide. The plagioclase is represented by albite with a small admixture of oligoclase (4%), as well as andesine (6%) and labradorite (6%). The labradorite is an admixture found mainly in the pegmatites from Kaustinen. Accessory minerals are represented by zircon and apatite. Zircon crystals are mainly found in close association with muscovite flakes. Phosphates are represented mainly by a variety of hydroxyapatites, with approximately 3% carboxy apatite and 2% fluoroapatite.

In addition, opaque minerals were found in the exanimated rocks. In the Kolmozero pegmatite, columbite ((Fe,Mn)Nb2O6) forms euhedral crystals, usually close to spodumene, quartz, and plagioclase [2]. Along with columbite, tantalite is visible. Tantalite ((Fe, Mn)Ta2O6) is replaced with bixbyite in the oxidation zone. Magnetite was also found. The sample also presents clarkeite (Na,Ca,Pb)2(UO2)2(O,OH)3 in the vicinity of apatite and sillenite Bi12SiO in the vicinity of femic minerals.

The opaque minerals in the investigated rocks are represented by multiple phases. In the case of the schists from Kautokeino, the opaque phases include cassiterite and pyrite. In the pegmatite from Kaustinen, the opaque phases include magnetite and ilmenite, accompanied by titanite. Trace or minor cassiterite was also found, as well as galena, sphalerite, and chalcopyrite, which, together with barite, form disseminations. Columbite and tantalite were also found, although in smaller amounts relative to the Kolmozero pegmatite.

4.3. Optical Properties of the Discussed Minerals

Spodumene forms large xenomorphic crystals, with sizes reaching several cm. This mineral usually has a light green color. Sometimes, it resembles plagioclase, which, when undergoing sericitization, also has a slight gray-green tint. In the microscopic image, it sometimes forms a diablastic texture according to the (100) miller index. It is usually found near micas represented by muscovite, lepidolite, and, less often, biotite (Figure 5). The schist is highly visible. Small admixtures of Fe-oxides can be seen along the schistosity of the rock. The straw color on the thin section has a clear, positive relief, with darkening extinction.

Figure 5.

Figure 5

Microphotographs of spodumene (sp) from Kaustinen under transmitted light (A) and polarized light (B) accompanying quartz (qtz) and muscovite (mu) crystals.

Lepidolite forms large lamellar aggregates, usually colored pearly pink. Macroscopically, this mineral forms flakes reaching up to 1 cm in size. It is usually quite visible in the rock due to its coloration and luster. In the microscopic image, it forms numerous adhesions of varying sizes. It is present with spodumene, near plagioclase and quartz. Between the mica flakes, rutile be observed. In the thin section, it is colorless, with a faint, negative relief. Under polarized light, it shows second-order interference colors, optically resembling biotite (Figure 6). Our microscopic observations of lepidolite showed some deformation of its lamellae due to dynamic processes.

Figure 6.

Figure 6

Microphotographs of lepidolite (lp) from Kolmozero under transmitted light (A) and polarized light (B) with quartz (qtz).

Fuchsite forms fine, scaly accumulations, the size of which reaches several millimeters. Macroscopically, it is colored green and has a pearly luster. It is highly visible against the background of biotite and feldspar in the investigated rocks. Fine zircon grains are visible in the background of the fuchsite aggregates (Figure 7). In the microscopic image, they form polysynthetic adhesions with muscovite occurring between quartz and orthoclase. The sample shows pleochroism with a delicate greenish (β)-bluish (α) coloration. Under polarized light, it shows intense second-order interference colors, making it similar to muscovite.

Figure 7.

Figure 7

Microphotographs of fuchsite (fu) from Kautoteino under transmitted light (A) and polarized light (B) near biotite (bt) and quartz (qtz) crystals.

4.4. Spectroscopic Properties of the Minerals under Investigation

Infrared studies carried out for spodumene showed some small oscillations at a wavelength of 3612 cm−1, which can be explained by the influence of water. Values in the vicinity of 1005 cm−1 may be related to stretching vibrations for silicon-oxygen tetrahedra [74]. Vibrations in the vicinity of 779 cm−1 can be correlated with Si-O stretching vibrations. Similarly, for lengths of 647 cm−1 to 448 cm−1, non-bridging bending vibrations for O-Si-O can be found with the participation of aluminum, which can also substitute the spodumene structure in an octahedral position (Figure 8). The latter oscillations are also affected by the position of lithium (448 cm−1), which, combined with oxygen, contributes to their modification. Through a comparison with the crystals of jadeite, it can be seen that substitution with Na cation with an ionic radius of 186 pm [75] in the M6 position shifts these vibrations to 455 cm−1. In comparison, magnesium enstatite, in the M6 position, has 447 cm−1 vibrations (enstatite [76] and bronzite [77]). Lithium is a much lighter element than sodium, as its molar mass is 6.941 (for sodium it is 22.989 [51,78] close parenthesis g/mol) and its ionic radius is 152 pm. The full width at half maximum of the 455 cm−1 vibrations suggests that these vibrations are partly derived from the sodium at this position.

Figure 8.

Figure 8

IR spectrum for the Kaustinen spodumene.

In the case of the study micas (fuchsite and lepidolite, Figure 9), comparisons were made with muscovite [79]. In both cases, the absorbance characteristic of stretching vibrations of the OH groups in the vicinity of 3625 and 3608 cm1 is visible (Figure 9). These are determined by vibrations between ions located in octahedral groups and their interaction with water [80,81]. These differences become apparent depending on the nature of the ions in the analyzed minerals (Li in lepidolite, Cr in fuchsite). There is also a slight increase in absorbance in the region of 1621 cm1, which is more pronounced for lepidolite. Another oscillation in the region of 970 cm1 and 960 cm1 is related to deformations produced through connection between aluminum and the OH group in these minerals [82]. In the region of 796–799 cm1, there are Si-O deformations in both mica, and those at 750 cm1 are characteristic of O-Al-O stretching vibrations in the tetrahedral position. Similarly, in lepidolite, a band in the 523 cm1 region was found that is characteristic of Al(Li)-O-Si vibrations. The last absorbance in the 464 cm1 and 441 cm1 is associated with vibrations in the Si-O-Si group [82].

Figure 9.

Figure 9

IR spectra for lepidolite (A) and fuchsite (B).

4.5. Single Crystals and XPS Analysis Results

4.5.1. Fuchsite

The studied fuchsite crystals, like all minerals in this group, contain chromium [82,83]. This is visible in the results of the diffraction measurements for the monocrystals and XPS. The X-ray data indicate that the studied fuchsite crystal contains 0.4 ions of this element per elemental cell of the crystal in the Cr-Al layer (Figure 7). It is worth noting the staggered position of both the Al3+ and Cr3+ ions at a distance of 0.12(1) Å (Figure 10 and Figure 11). This spread is due to the difference in the ionic radii of these two elements. The diffraction data show that only one position in the lattice, where the Al3+ ions are present, is occupied by additional Cr3+ ions, while the other position is 100% occupied by Al3+ ions (Figure 10). In addition, the layer has a free space filled, in this case, with water or an OH- group in the amount of 0.1 molecule/ion per elementary cell. In this case, the OH- group can compensate for the positive charge of the cations. In the Si-K layer, no admixture of other ions is observed at the detection level of this technique. All cell parameters and compositions are within the typical limits for this type of mineral. The thermal vibration ellipsoids observed in the experiment at 296 K had small thermal vibration amplitudes of Uiso 0.02–0.03 (Figure 11). This indicates strong interactions between ions in the lattice.

Figure 10.

Figure 10

XPS spectrum for fuchsite.

Figure 11.

Figure 11

Crystal structure of the fuchsite from the analyzed rocks, as received by the authors (a, b, c—the main structural axes).

4.5.2. Lepidolite

Diffraction studies of the lepidolite yielded its structure [84,85,86,87]. They confirmed that it is a mineral from the silicate cluster, classified as lithium micas with an admixture of Fe2+ or Mn2+ in one position. However, unequivocally determining which ion is in this position is impossible with this technique. Positively charged Li-K ions reside in the space between the negatively charged aluminosilicate layers. In addition, OH group or water molecules in the amount of 0.1 per elementary cell of the crystal can be found in this crystal net space (Figure 12). In an elementary cell, there are three such layers in the direction of b. A richer atomic composition is provided by the data obtained through XPS measurements. This technique is more sensitive to heavier elements and allows for the unambiguous determination of their type. In contrast, lithium ions, which are difficult to determine via XPS, are visible in the monocrystalline structure. The ratio of K/Li ions is 2:1 in the structure. A close fit of the X-ray data with the model indicates that the lattice occupancy of Al3+ ions is 90 ± 5%. This indicates that aluminum shares this position with lighter ions, e.g., Mg and Na. However, (Figure 10), in this case, it is necessary to properly balance the charges in the lattice. Also, the occupancy of the Li position is less than 100%, which, in this case, may indicate the partial substitution of this position with water molecules. The low values of the Qizo parameters (0.02–0.03) for atoms at 296 K indicate strong interactions between atoms (Figure 13).

Figure 12.

Figure 12

XPS spectra obtained for lepidolite from the studied rocks.

Figure 13.

Figure 13

Crystal structure of lepidolite from the studied lithologies (a, b, c—the main structural axes).

4.5.3. Spodumene

This is another studied mineral from the silicate cluster containing lithium [88,89,90,91]. In this case, the structural studies of the crystals indicated that the stoichiometric contents of Li and Al in the crystal lattice are within the error margin. Attempts to fit a crystal lattice model with a free occupancy parameter for Li indicated that the modeled electron density at this site is slightly higher than 1, at 1.06 (Figure 14). This may indicate a small content of a heavier element at this site, e.g., sodium, as suggested by the XPS and FTIR measurements. In the studied monocrystals, other ions were not visible in the crystal lattice (Figure 12). In the spodumene, silicate ions connect adjacent layers, so there is not enough space for additional ions between them, which explains the composition of this mineral. The compact lattice structure also contributes to strong interactions between atoms, which, in turn, manifests itself in the lowest Qizo values of all the minerals presented (0.006–0.017) and its highest relative hardness (Figure 15).

Figure 14.

Figure 14

XPS spectra were obtained for spodumene from the studied rocks.

Figure 15.

Figure 15

Crystal structure of spodumene (a, b, c—the main structural axes).

5. Discussion

The minerals included in rocks found in northern Scandinavia (within Norway, Finland, and Russia) [92,93,94,95,96,97] were studied. These are exposed in many places in the area under discussion. Due to their mineralization, they may be significant in terms of raw material development, although the relatively small size of these pegmatite veins makes their profitability highly dependent on raw material prices. The mineralization of these pegmatites is the result of the crystallization of residual melts, which contain many incompatible elements [55,98]. On the other hand, the presence of some elements is related to the chemistry of the host rocks. This is particularly evident in the case of fuchsite, in which the presence of chromium may be related to specific rock types. Such small occurrences of fuchsite have been found by the authors in vein rocks in the Monchepluton area (Russia). Lepidolite and spodumene, on the other hand, show small admixtures of sodium, manganese, and iron, which may also be related to the rocks near these pegmatites. This was confirmed by both micro-area studies and monocrystal and XPS analyses. The presence of water in the mica and even in the spodumene (found using FTIR) confirms the hydrothermal nature of the association between these minerals [99,100]. Their nature in the discussed rocks varies. Optical studies indicated that the spodumene in the analyzed pegmatites usually has hypidiomorphic crystals, which may indicate crystallization as an early silicate phase. The presence of small admixtures of sodium may indicate that the mineral originally formed at a great depth, where higher pressures prevail, and then tectonically dislocated with solutions to its present site of occurrence, where it was hydrothermally altered [53,54,57]. On the other hand, aggregates of fuchsite and lepidolite tend to be secondary, co-occurring with other micas and occupying a position in the interstices of existing minerals; moreover, lepidolite can probably be a secondary mineral, formed at the expense of spodumene, as evidenced by our observations of this mineral in pegmatites. It is noteworthy that in addition to these minerals, there are many accessory phases, such as apatite and zircon. Alongside these, opaque minerals are present in large numbers. The presence of tin minerals points to the granitoid association as the source material for the origin of the schists [101,102]. In the case of the LCT pegmatites found in the Kaustinen area, these include, in addition to the aforementioned cassiterite and barite, magnetite, ilmenite, and titanite, as well as galena, sphalerite, and chalcopyrite. The presence of these minerals may also be related to the granitoid products and the action of hydrothermal products. The mineralization of Kolmozero pegmatites is also associated with the action of hydrothermal formations. This is evidenced by the mutual relations of rock-forming minerals with the observed bixbite, clarkeite, and sillenite, which are also accompanied by magnetite. Columbite and tantalite were also found in the LCT pegmatites.

6. Conclusions

The studied minerals are from selected rocks that are exposed in northern Scandinavia. The studied mineralization indicates the hydrothermal nature of these components. The studied minerals, including spodumene, lepidolite, and fuchsite, were formed after residual crystallization. The small admixtures of sodium present in the spodumene may indicate that it was formed under high pressures and, together with the melt, reached its present location, where it was altered due to pressure from hydrothermal fluids. The occurring lepidolite crystallized at a later stage, at the expense of spodumene, as evidenced by the structure of this mineral in the rock and by association (the occurrence of relics of spodumene in the vicinity of lepidolite). Fuchsite, like lepidolite, crystallized in the final stage, co-occurring with muscovite and biotite. The presence of chromium ions in this fuchsite is probably due to the occurrence of chromium-containing rocks in the vicinity of the formation of intrusions from the residual melts in which the studied rocks crystallized. The presence of accessory and opaque minerals also attests to the granitoid association of the original solutions. The minerals present may be of economic importance. Thorough research may contribute to the discovery of new locations of this type of pegmatite in the discussed area.

Appendix A

Table A1.

Results of the SEM-EDS analysis of the mica minerals (wt.%).

Point * O F Na Mg Al Si K Ti Cr Fe Mineral
Kautokeino(2)_pt9 38.47 5.78 6.13 28.90 9.29 6.82 biotite
Kautokeino(3)_pt2 40.41 1.26 13.50 30.67 10.79 1.20 biotite
Kautokeino(3)_pt3 39.56 1.12 13.85 30.65 10.80 1.01 biotite
Kautokeino(3)_pt10 39.30 6.03 6.94 33.30 9.03 3.66 biotite
Kautokeino(3)_pt11 38.96 5.56 7.56 32.41 9.13 4.77 biotite
Kautokeino(4)_pt7 39.52 6.69 7.10 30.44 10.85 3.54 biotite
Kautokeino(4)_pt8 38.51 6.97 6.57 30.13 11.49 4.41 biotite
Kautokeino(4)_pt9 38.67 7.13 8.05 28.56 10.28 5.04 biotite
Kautokeino(4)_pt10 37.87 7.31 7.68 29.72 9.70 6.34 biotite
Kautokeino(4)_pt11 38.60 6.61 8.07 28.23 10.15 2.34 4.05 biotite
Kautokeino(4)_pt13 38.19 6.57 7.59 29.19 9.72 7.07 biotite
Kautokeino(2)_pt8 31.59 5.03 5.07 24.08 6.89 4.66 13.44 fuchsite
Kautokeino(3)_pt1 39.04 0.95 12.15 29.82 9.90 5.99 fuchsite
Kautokeino(3)_pt4 38.06 0.90 11.74 28.50 10.21 7.75 fuchsite
Kautokeino(3)_pt5 37.84 1.10 12.46 28.46 10.10 6.51 fuchsite
Kautokeino(3)_pt6 38.17 1.10 12.66 29.35 9.94 5.9 fuchsite
Kautokeino(3)_pt7 37.02 1.31 1.01 12.65 26.91 10.73 6.78 fuchsite
Kautokeino(3)_pt8 37.61 1.20 12.41 29.77 10.08 6.36 fuchsite
Kautokeino(3)_pt9 38.06 1.07 12.13 31.38 9.01 6 fuchsite
Kautokeino(3)_pt16 39.94 1.77 46.38 2.21 6.43 fuchsite
Kautokeino(4)_pt12 36.05 5.94 6.70 24.05 9.14 2.13 3.96 10.16 fuchsite
Kautokeino(4)_pt14 34.89 6.63 6.27 26.51 7.25 5.93 11.10 fuchsite
Kautokeino(4)_pt15 35.44 5.67 6.18 27.83 8.58 5.42 9.02 fuchsite
Kautokeino(4)_pt16 36.18 2.54 10.94 27.54 9.90 5.14 6.18 fuchsite
Kautokeino(5)_pt12 36.14 0.73 8.64 34.58 13.82 4.5 fuchsite
Kautokeino(6)_pt4 37.66 0.61 7.75 35.16 12.63 4.54 fuchsite
Kautokeino(3)_pt17 42.47 1.99 50.46 2.88 muscovite
Kautokeino(3)_pt18 42.54 1.85 51.38 2.56 muscovite
Kolmozero(1)_pt1 39.02 0.83 17.38 27.63 9.12 0.44 muscovite
Kolmozero(1)_pt2 37.31 2.10 9.68 34.90 11.99 muscovite
Kolmozero(3)_pt1 37.17 15.63 25.25 11.08 muscovite
Kolmozero(3)_pt2 38.20 0.83 17.39 23.47 11.12 muscovite
Kolmozero(3)_pt3 38.89 0.72 18.13 24.77 12.08 muscovite
Kolmozero(3)_pt4 39.11 0.98 18.57 24.77 11.22 muscovite
Kolmozero(3)_pt5 39.22 0.85 18.01 25.55 11.69 muscovite
Kolmozero(3)_pt6 38.21 0.73 19.43 26.56 10.50 muscovite
Kolmozero(3)_pt7 39.77 18.76 26.84 10.23 muscovite
Kolmozero(4)_pt2 38.25 17.17 26.68 11.62 muscovite
Kolmozero(4)_pt3 38.44 17.68 24.78 10.67 muscovite
Kolmozero(5)_pt4 37.23 9.39 32.79 13.13 muscovite
Kolmozero(8)_pt9 39.78 15.22 31.53 9.76 muscovite
Kolmozero(8)_pt10 39.89 16.61 31.13 9.80 muscovite
Kolmozero(8)_pt11 41.80 9.40 39.63 6.02 muscovite
Kaustinen(3)_pt1 39.27 13.18 29.66 8.86 muscovite
Kaustinen(3)_pt4 41.17 16.21 30.53 7.95 muscovite
Kaustinen(3)_pt5 40.52 16.38 29.32 9.09 muscovite
Kaustinen(3)_pt6 41.54 0.47 17.40 30.99 7.62 muscovite
Kaustinen(4)_pt2 39.23 13.48 29.10 8.63 muscovite
Kaustinen(4)_pt3 39.95 14.02 27.82 9.82 muscovite
Kaustinen(4)_pt4 40.15 13.17 30.72 9.08 muscovite
Kaustinen(4)_pt5 40.33 14.35 29.98 8.70 muscovite
Kaustinen2(2)_pt3 36.97 1.55 10.25 32.17 17.82 muscovite
Kaustinen2(2)_pt4 37.19 1.04 10.47 32.31 17.49 muscovite
Kolmozero(18)_pt1 40.37 18.81 28.01 11.61 muscovite
Kolmozero(18)_pt2 39.06 0.47 19.48 27.32 10.97 muscovite
Kolmozero(18)_pt3 39.58 19.91 26.77 11.55 muscovite
Kolmozero(18)_pt4 39.57 19.37 26.44 12.23 muscovite
Kolmozero(18)_pt5 39.48 20.47 26.04 11.26 muscovite
Kolmozero(18)_pt6 37.54 0.68 18.20 25.47 10.24 muscovite
Kolmozero(20)_pt5 40.13 15.57 31.96 8.82 muscovite
Kolmozero(20)_pt6 40.33 15.65 30.28 8.94 muscovite
Kolmozero(20)_pt8 39.69 0.18 15.94 30.06 10.06 muscovite
Kaustinen(10)_pt8 41.26 17.87 26.38 7.57 muscovite
Kaustinen(10)_pt9 41.38 16.28 25.38 7.66 2.67 muscovite
Kolmozero2(4)_pt1 32.04 2.29 0.29 12.96 23.21 7.85 lepidolite
Kolmozero2(4)_pt2 33.98 3.32 13.57 24.75 8.64 lepidolite
Kolmozero2(4)_pt3 34.25 3.14 0.37 13.64 25.03 8.52 lepidolite
Kolmozero2(4)_pt4 34.65 2.89 0.35 14.11 25.93 8.68 lepidolite
Kolmozero2(4)_pt5 34.63 2.93 0.59 0.12 14.42 26.26 8.58 lepidolite
Kolmozero2(4)_pt6 35.52 3.76 15.25 29.76 9.38 lepidolite
Kolmozero2(4)_pt7 35.47 3.34 0.49 15.17 29.82 10.43 lepidolite
Kolmozero2(4)_pt8 35.30 3.09 0.52 14.63 29.40 9.66 lepidolite
Kolmozero2(4)_pt9 33.58 2.99 0.48 14.51 27.44 9.17 lepidolite
Kolmozero2(4)_pt10 34.99 3.47 0.44 14.05 27.38 8.28 lepidolite
Kolmozero2(4)_pt11 33.49 0.22 0.62 10.57 31.00 12.48 lepidolite
Kolmozero2(4)_pt12 32.11 0.51 0.44 10.53 31.61 13.20 lepidolite
Kolmozero2(4)_pt13 34.31 0.51 0.30 10.81 31.96 12.31 lepidolite
Kolmozero2(4)_pt14 33.98 0.68 11.21 32.59 13.15 lepidolite
Kolmozero2(4)_pt15 35.65 3.42 14.99 29.24 9.89 lepidolite
Kolmozero2(5)_pt1 33.59 2.55 13.54 25.85 8.51 lepidolite
Kolmozero2(5)_pt2 34.15 3.54 13.23 26.37 9.10 lepidolite
Kolmozero2(5)_pt3 33.72 3.68 0.30 14.24 28.20 8.37 lepidolite
Kolmozero2(5)_pt4 34.71 3.62 14.57 27.89 9.68 lepidolite
Kolmozero2(5)_pt5 34.30 5.37 11.93 30.88 9.34 lepidolite
Kolmozero2(5)_pt6 34.42 0.92 11.49 32.68 13.07 lepidolite
Kolmozero2(5)_pt7 34.20 0.69 0.32 11.44 32.66 14.01 lepidolite
Kolmozero2(5)_pt8 34.69 3.76 15.66 29.86 10.63 lepidolite
Kolmozero2(5)_pt9 35.97 3.36 15.35 30.02 10.31 lepidolite
Kolmozero2(5)_pt10 36.15 3.60 15.83 30.36 10.08 lepidolite
Kolmozero2(5)_pt11 35.81 3.15 15.74 30.51 10.43 lepidolite
Kolmozero2(6)_pt4 41.35 0.52 0.83 15.98 33.98 3.64 lepidolite
Kolmozero2(2)_pt5 36.38 0.71 12.94 34.83 14.26 lepidolite
Kolmozero2(1)_pt7 37.96 0.34 12.15 35.65 12.84 lepidolite

* In this analysis, there is no possibility of lithium indication.

Table A2.

Results of the SEM-EDS of spodumene (wt.%).

Point * C O F Na Mg Al Si Mineral
Kaustinen(3)_pt14 2.67 44.24 15.82 37.26 spodumene
Kaustinen(3)_pt15 2.84 44.21 15.79 37.15 spodumene
Kaustinen(3)_pt16 2.47 45.12 15.86 36.55 spodumene
Kolmozero(2)_pt1 6.72 39.68 6.48 11.17 35.95 spodumene
Kolmozero(2)_pt2 5.75 40.09 6.67 11.53 35.96 spodumene
Kolmozero(2)_pt4 2.82 40.45 7.15 11.79 37.78 spodumene
Kolmozero(2)_pt5 3.49 39.73 7.17 11.74 37.86 spodumene
Kolmozero(3)_pt8 2.65 39.69 7.09 11.35 37.51 spodumene
Kolmozero(3)_pt9 3.76 39.19 7.51 11.72 36.94 spodumene
Kolmozero(3)_pt10 3.11 40.44 6.20 11.34 37.27 spodumene
Kolmozero(3)_pt11 3.59 42.46 1.52 14.92 36.26 spodumene
Kolmozero(3)_pt12 4.39 41.44 4.15 11.18 38.84 spodumene
Kolmozero(3)_pt13 5.01 40.19 1.22 9.79 37.67 spodumene
Kolmozero(5)_pt3 4.80 43.59 14.07 37.54 spodumene
Kolmozero(7)_pt4 7.68 42.37 0.66 14.02 35.27 spodumene
Kolmozero(7)_pt5 5.80 43.61 14.07 36.52 spodumene
Kolmozero(8)_pt1 14.42 40.36 12.57 32.66 spodumene
Kolmozero(8)_pt2 16.24 41.07 12.94 29.75 spodumene
Kolmozero(8)_pt6 6.92 39.78 1.19 52.11 spodumene
Kolmozero(8)_pt7 4.70 41.89 1.17 52.24 spodumene
Kolmozero(8)_pt8 2.64 42.38 1.13 53.84 spodumene
Kolmozero(8)_pt12 2.65 43.13 2.01 52.21 spodumene
Kolmozero(9)_pt1 17.23 41.85 12.10 28.81 spodumene
Kolmozero(9)_pt2 10.68 40.60 4.01 11.51 33.19 spodumene
Kolmozero(9)_pt3 9.61 42.79 4.71 42.89 spodumene
Kolmozero(9)_pt4 7.71 44.53 11.75 36.01 spodumene
Kolmozero(9)_pt5 55.02 33.59 2.18 9.21 spodumene
Kolmozero(11)_pt7 4.89 42.72 1.77 14.79 35.83 spodumene
Kolmozero(11)_pt8 4.16 40.72 6.32 11.18 37.62 spodumene
Kolmozero(11)_pt9 4.30 41.67 7.35 11.37 35.31 spodumene
Kolmozero(11)_pt10 3.30 41.02 7.36 11.50 36.82 spodumene
Kolmozero(11)_pt11 3.15 39.99 8.01 11.21 37.64 spodumene
Kolmozero(12)_pt15 6.47 39.50 7.58 10.99 35.46 spodumene
Kolmozero(12)_pt16 6.16 39.91 7.36 11.33 35.24 spodumene
Kolmozero(12)_pt17 5.89 39.88 7.46 10.24 36.53 spodumene
Kolmozero(13)_pt1 3.25 40.25 8.04 10.36 38.10 spodumene
Kolmozero(14)_pt12 9.92 41.91 13.10 35.07 spodumene
Kolmozero(14)_pt13 7.61 40.92 0.55 2.33 48.58 spodumene
Kolmozero(14)_pt14 7.08 41.82 1.82 49.28 spodumene
Kolmozero(16)_pt1 16.26 40.72 13.29 29.73 spodumene
Kolmozero(16)_pt2 22.45 38.80 10.95 27.79 spodumene
Kolmozero(16)_pt3 14.29 42.10 13.22 30.39 spodumene
Kolmozero(16)_pt4 15.08 40.91 12.61 31.40 spodumene
Kolmozero(16)_pt5 14.35 39.36 12.14 27.78 spodumene
Kolmozero(16)_pt6 16.22 41.32 13.21 29.25 spodumene
Kolmozero(16)_pt7 48.29 33.01 4.66 11.81 spodumene
Kaustinen(2)_pt1 3.10 44.54 14.12 38.25 spodumene
Kaustinen(2)_pt2 2.78 44.26 15.39 37.57 spodumene
Kaustinen(2)_pt3 2.73 43.36 14.12 35.14 spodumene
Kaustinen(2)_pt4 3.25 45.14 13.73 37.88 spodumene
Kaustinen(2)_pt5 2.40 45.10 14.38 38.11 spodumene
Kaustinen(2)_pt6 1.98 42.98 4.05 50.99 spodumene
Kaustinen(1)_pt4 15.22 39.54 0.75 44.49 spodumene
Kaustinen(1)_pt5 16.39 39.16 41.13 spodumene
Kaustinen(1)_pt6 16.95 39.84 43.22 spodumene
Kaustinen(1)_pt7 19.24 38.76 0.53 41.47 spodumene
Kaustinen(1)_pt8 14.67 40.34 0.63 44.37 spodumene
Kaustinen(1)_pt9 12.67 40.84 46.48 spodumene
Kaustinen(3)_pt2 10.36 41.85 1.67 43.23 spodumene
Kaustinen(3)_pt3 12.06 41.64 1.69 44.61 spodumene
Kaustinen(3)_pt7 2.89 44.46 12.91 39.75 spodumene
Kaustinen(3)_pt8 3.14 43.49 12.69 40.68 spodumene
Kaustinen(3)_pt10 3.82 45.32 15.39 35.47 spodumene
Kaustinen(6)_pt6 2.24 44.68 2.72 50.35 spodumene
Kaustinen(7)_pt1 2.34 44.62 0.88 14.73 37.43 spodumene
Kaustinen(7)_pt2 2.45 44.46 0.84 15.01 37.25 spodumene
Kaustinen(7)_pt3 2.63 43.62 0.73 14.15 38.87 spodumene
Kaustinen(7)_pt4 3.73 46.01 0.69 13.10 36.48 spodumene
Kaustinen(7)_pt8 2.81 43.03 1.70 52.46 spodumene
Kaustinen(7)_pt9 3.89 41.11 5.03 44.12 spodumene
Kolmozero(17)_pt1 16.85 41.72 1.70 11.72 28.01 spodumene
Kolmozero(17)_pt2 17.95 43.16 11.50 27.39 spodumene
Kolmozero(17)_pt3 13.63 39.68 13.97 30.33 spodumene
Kolmozero(17)_pt4 7.19 41.22 15.74 35.84 spodumene
Kolmozero(17)_pt5 4.63 44.85 0.56 14.39 35.58 spodumene
Kolmozero(17)_pt6 4.69 41.82 0.98 15.42 37.09 spodumene
Kolmozero(17)_pt7 2.60 44.11 0.58 16.02 36.70 spodumene
Kolmozero(17)_pt8 2.61 43.70 16.19 37.50 spodumene
Kolmozero(18)_pt15 4.18 43.12 15.75 36.95 spodumene
Kolmozero(18)_pt16 2.24 44.51 16.80 36.44 spodumene
Kolmozero(19)_pt3 7.15 42.68 9.72 28.44 spodumene
Kolmozero(19)_pt4 2.59 44.00 2.27 51.14 spodumene
Kolmozero(19)_pt5 5.55 43.75 12.28 38.41 spodumene
Kolmozero(19)_pt6 5.57 42.40 0.89 13.59 37.54 spodumene
Kolmozero(19)_pt8 2.42 44.24 14.48 38.86 spodumene
Kolmozero(19)_pt9 5.11 42.75 0.60 14.68 36.87 spodumene
Kolmozero(20)_pt9 4.91 40.01 0.62 15.57 29.61 spodumene
Kolmozero(20)_pt10 5.44 43.93 13.23 36.00 spodumene
Kolmozero(20)_pt11 3.99 44.34 13.36 36.58 spodumene
Kolmozero(20)_pt12 4.33 43.88 0.79 13.11 36.20 spodumene
Kaustinen(10)_pt2 6.60 44.88 14.61 33.90 spodumene
Kaustinen(10)_pt3 4.51 45.00 15.49 35.00 spodumene
Kaustinen(10)_pt4 4.84 45.31 15.71 34.14 spodumene
Kaustinen(10)_pt5 5.32 44.41 15.05 35.22 spodumene
Kaustinen(10)_pt6 5.26 44.87 15.56 34.32 spodumene
Kaustinen(10)_pt7 4.64 44.56 16.47 34.32 spodumene
Kaustinen(13)_pt2 6.00 43.27 0.91 11.53 34.39 spodumene
Kaustinen(13)_pt3 5.63 44.74 0.97 12.24 36.42 spodumene
Kaustinen(13)_pt8 4.09 42.63 0.99 1.67 50.63 spodumene

* In this analysis there is no possibility of Lithium indicated.

Table A3.

Fractional atomic coordinates (×104) and equivalent isotropic displacement parameters (Å2 × 103) for fuchsite. Ueq is defined as 1/3 of the trace of the orthogonalized UIJ tensor.

Atom x y z U(eq)
K1 5000 4023.4(14) 7500 26.6(4)
Cr1 2370(20) 5812(8) 5015(5) 6(3)
Al2 2577(9) 5839(4) 4992(2) 13.2(16)
Si2 9645.9(19) 5705.7(11) 6358.7(5) 12.0(4)
Si1 4518.5(19) 7416.3(10) 6358.9(5) 11.8(4)
O2 3888(5) 7483(2) 5535.9(13) 14.9(7)
O4 9591(5) 5591(3) 5537.9(13) 14.7(6)
O6 9245(6) 4067(3) 6685.3(13) 17.8(7)
O1 5445(6) 5637(3) 4491.4(13) 16.4(6)
O5 12.457(5) 6332(3) 6690.0(13) 18.0(7)
O3 7455(5) 6852(3) 6587.4(13) 19.7(7)
O7 7500 7500 5000 7(13)

Table A4.

Anisotropic displacement parameters (Å2 × 103) for fuchsite. The anisotropic displacement factor exponent takes the form: −2π2[h2a * 2U11 + 2hka * b * U12+…].

Atom U11 U22 U33 U23 U13 U12
K1 27.8(8) 26.1(8) 25.7(7) 0 2.3(5) 0
Si2 13.5(7) 8.8(6) 13.6(6) −0.2(3) 1.3(4) −0.2(3)
Si1 13.2(7) 9.9(6) 12.2(6) 0.4(3) 0.5(4) 0.0(3)
O2 17.0(16) 11.9(13) 15.6(14) −1.9(8) 0.3(11) −1.5(9)
O4 15.5(14) 11.9(12) 16.1(14) 0.3(10) −0.5(9) −2.1(10)
O6 26.3(16) 12.5(14) 15.0(13) −0.9(9) 4.0(11) −1.6(10)
O1 19.8(15) 15.2(13) 14.4(13) 2.8(10) 2.9(10) 2.3(10)
O5 21.3(15) 16.4(14) 16.1(13) 0.8(10) 0.5(11) −4.8(11)
O3 19.3(15) 20.3(15) 18.9(13) −4.3(10) −0.7(10) 4.4(11)

Table A5.

Bond lengths for fuchsite.

Atom Atom Length/Å Atom Atom Length/Å
K1 Si1 1 3.7400(10) Cr1 O1 10 1.943(10)
K1 Si1 2 3.7400(10) Cr1 O1 2.010(11)
K1 O6 3 2.881(3) Al2 Al2 10 2.946(9)
K1 O6 4 3.269(3) Al2 O2 1.928(5)
K1 O6 5 3.269(3) Al2 O2 9 1.962(5)
K1 O6 2.881(3) Al2 O4 10 1.960(5)
K1 O5 4 2.885(3) Al2 O4 5 2.004(6)
K1 O5 6 3.261(3) Al2 O1 1.893(5)
K1 O5 7 3.261(3) Al2 O1 10 1.924(5)
K1 O5 5 2.885(3) Si2 O4 1.646(3)
K1 O3 6 2.912(3) Si2 O6 1.643(3)
K1 O3 7 2.912(3) Si2 O5 1.648(3)
Cr1 Cr1 8 2.87(2) Si2 O3 1.642(3)
Cr1 O2 1.960(9) Si1 O2 1.650(3)
Cr1 O2 9 1.970(9) Si1 O6 11 1.643(2)
Cr1 O4 5 1.882(11) Si1 O5 5 1.644(3)
Cr1 O4 10 1.911(9) Si1 O3 1.635(3)

1 1/2-X,-1/2 + Y,3/2-Z; 2 1/2 + X,-1/2 + Y,+Z; 3 1-X,+Y,3/2-Z; 4 2-X,+Y,3/2-Z; 5 -1 + X,+Y,+Z; 6 -1/2 + X,-1/2 + Y,+Z; 7 3/2-X,-1/2 + Y,3/2-Z; 8 -X,1-Y,1-Z; 9 1/2-X,3/2-Y,1-Z; 10 1-X,1-Y,1-Z; 11 -1/2 + X,1/2 + Y,+Z.

Si1 1 K1 Si1 2 134.23(4) O2 Al2 O4 10 165.5(3)
O6 3 K1 Si1 2 24.63(5) O2 8 Al2 O4 5 95.7(2)
O6 4 K1 Si1 1 72.96(5) O4 10 Al2 Al2 10 96.5(2)
O6 5 K1 Si1 1 107.60(5) O4 5 Al2 Al2 10 130.5(3)
O6 K1 Si1 1 24.63(5) O4 10 Al2 O2 8 92.7(2)
O6 K1 Si1 2 156.87(6) O4 10 Al2 O4 5 77.6(2)
O6 3 K1 Si1 1 156.87(6) O1 Al2 Al2 10 39.88(14)
O6 5 K1 Si1 2 72.96(5) O1 10 Al2 Al2 10 39.10(13)
O6 4 K1 Si1 2 107.60(5) O1 Al2 O2 96.9(2)
O6 3 K1 O6 178.45(11) O1 Al2 O2 8 94.2(2)
O6 K1 O6 5 115.84(8) O1 10 Al2 O2 95.3(2)
O6 3 K1 O6 4 115.84(8) O1 10 Al2 O2 8 170.4(3)
O6 3 K1 O6 5 64.13(8) O1 10 Al2 O4 5 91.9(2)
O6 K1 O6 4 64.14(8) O1 Al2 O4 10 95.3(2)
O6 4 K1 O6 5 178.63(9) O1 Al2 O4 5 168.0(2)
O6 3 K1 O5 5 88.48(7) O1 10 Al2 O4 10 94.7(2)
O6 K1 O5 6 130.96(7) O1 Al2 O1 10 79.0(2)
O6 3 K1 O5 7 130.96(8) K1 11 Si2 K1 87.18(2)
O6 3 K1 O5 6 50.56(7) K1 11 Si2 K1 12 88.01(2)
O6 K1 O5 7 50.56(6) K1 12 Si2 K1 87.08(2)
O6 3 K1 O5 4 90.40(8) O4 Si2 K1 12 130.69(10)
O6 K1 O5 5 90.40(8) O4 Si2 K1 11 121.42(10)
O6 K1 O5 4 88.48(8) O4 Si2 K1 128.79(10)
O6 K1 O3 7 88.89(7) O4 Si2 O5 110.47(14)
O6 3 K1 O3 6 88.89(7) O6 Si2 K1 44.48(10)
O6 3 K1 O3 7 92.16(8) O6 Si2 K1 12 118.54(10)
O6 K1 O3 6 92.16(8) O6 Si2 K1 11 60.47(11)
O5 4 K1 Si1 1 110.10(5) O6 Si2 O4 110.57(14)
O5 5 K1 Si1 1 102.68(5) O6 Si2 O5 107.07(15)
O5 5 K1 Si1 2 110.10(5) O5 Si2 K1 12 59.61(10)
O5 7 K1 Si1 2 108.51(6) O5 Si2 K1 119.26(10)
O5 4 K1 Si1 2 102.68(6) O5 Si2 K1 11 46.85(10)
O5 6 K1 Si1 2 26.03(5) O3 Si2 K1 65.35(11)
O5 7 K1 Si1 1 26.03(5) O3 Si2 K1 11 125.61(10)
O5 6 K1 Si1 1 108.51(6) O3 Si2 K1 12 47.15(9)
O5 6 K1 O6 4 98.47(7) O3 Si2 O4 112.10(14)
O5 5 K1 O6 5 50.47(7) O3 Si2 O6 109.83(15)
O5 7 K1 O6 4 82.56(6) O3 Si2 O5 106.61(14)
O5 6 K1 O6 5 82.56(6) K112 Si1 K1 86.95(2)
O5 7 K1 O6 5 98.47(7) K1 13 Si1 K1 87.36(2)
O5 4 K1 O6 5 128.25(7) K1 13 Si1 K1 12 87.98(2)
O5 5 K1 O6 4 128.25(8) O2 Si1 K1 13 121.52(10)
O5 4 K1 O6 4 50.47(7) O2 Si1 K1 12 130.93(10)
O5 5 K1 O5 7 116.24(8) O2 Si1 K1 128.47(9)
O5 5 K1 O5 6 129.78(2) O6 13 Si1 K1 13 46.95(10)
O5 4 K1 O5 7 129.78(2) O6 13 Si1 K1 12 59.88(11)
O5 4 K1 O5 5 87.22(11) O6 13 Si1 K1 119.68(10)
O5 4 K1 O5 6 116.24(8) O6 13 Si1 O2 110.39(13)
O5 7 K1 O5 6 83.32(9) O6 13 Si1 O5 5 107.19(15)
O5 5 K1 O3 7 88.88(8) O5 5 Si1 K1 44.35(10)
O5 4 K1 O36 88.88(8) O5 5 Si1 K1 13 60.49(10)
O5 4 K1 O3 7 175.28(8) O5 5 Si1 K1 12 118.17(10)
O5 5 K1 O3 6 175.28(8) O5 5 Si1 O2 110.66(13)
O3 6 K1 Si1 2 68.20(6) O3 Si1 K1 13 125.45(10)
O3 7 K1 Si1 1 68.20(6) O3 Si1 K1 12 47.06(10)
O3 7 K1 Si1 2 81.17(6) O3 Si1 K1 65.07(11)
O3 6 K1 Si1 1 81.17(6) O3 Si1 O2 112.21(14)
O3 7 K1 O6 5 49.98(7) O3 Si1 O6 13 106.78(15)
O3 6 K1 O6 4 49.98(7) O3 Si1 O5 5 109.42(14)
O3 7 K1 O6 4 131.24(7) Cr1 O2 Cr1 8 102.2(3)
O3 6 K1 O6 5 131.24(7) Cr1 O2 Al2 8 101.2(4)
O3 6 K1 O5 7 68.39(7) Si1 O2 Cr1 122.3(3)
O3 7 K1 O5 7 50.22(7) Si1 O2 Cr1 8 127.6(3)
O3 6 K1 O5 6 50.22(7) Si1 O2 Al2 124.06(18)
O3 7 K1 O5 6 68.39(8) Si1 O2 Al2 8 126.55(19)
O3 7 K1 O3 6 95.13(11) Cr1 11 O4 Cr1 10 98.3(4)
O2 8 Cr1 Cr1 9 98.8(6) Cr1 11 O4 Al2 11 0.8(4)
O2 Cr1 Cr1 9 135.0(7) Cr1 10 O4 Al2 11 99.0(4)
O2 Cr1 O2 8 77.8(3) Cr1 10 O4 Al2 10 3.4(4)
O2 8 Cr1 O1 90.4(4) Cr1 11 O4 Al2 10 101.6(4)
O2 Cr1 O1 92.2(4) Si2 O4 Cr1 10 125.1(3)
O4 5 Cr1 Cr1 9 41.3(3) Si2 O4 Cr1 11 127.8(3)
O4 10 Cr1 Cr1 9 40.5(2) Si2 O4 Al2 10 122.33(19)
O4 10 Cr1 O2 170.2(6) Si2 O4 Al2 11 127.0(2)
O4 10 Cr1 O2 8 93.9(5) K1 O6 K1 11 115.84(8)
O4 5 Cr1 O2 8 99.5(5) Si2 O6 K1 11 93.59(12)
O4 5 Cr1 O2 94.4(5) Si2 O6 K1 111.96(13)
O4 5 Cr1 O4 10 81.7(4) Si1 1 O6 K1 108.42(13)
O4 10 Cr1 O1 93.0(4) Si1 1 O6 K111 94.36(12)
O4 5 Cr1 O1 169.1(5) Si1 1 O6 Si2 129.97(17)
O4 10 Cr1 O1 10 95.7(4) Cr1 10 O1 Cr1 104.3(4)
O4 5 Cr1 O1 10 95.1(4) K1 11 O5 K1 12 116.24(8)
O1 10 Cr1 Cr1 9 97.1(4) Si2 O5 K1 12 94.54(12)
O1 Cr1 Cr1 9 132.8(6) Si2 O5 K1 11 108.52(12)
O1 10 Cr1 O2 93.6(5) Si1 11 O5 K1 11 112.18(13)
O1 10 Cr1 O2 8 163.5(6) Si1 11 O5 K1 12 93.48(11)
O1 10 Cr1 O1 75.7(4) Si1 11 O5 Si2 129.33(16)
O2 8 Al2 Al2 10 133.8(3) Si2 O3 K1 12 108.42(12)
O2 Al2 Al2 10 97.9(3) Si1 O3 K1 12 108.66(13)
O2 Al2 O2 8 78.70(18) Si1 O3 Si2 140.99(17)
O2 Al2 O4 5 91.6(2)
1 1/2 + X,-1/2 + Y,+Z; 2 1/2-X,-1/2 + Y,3/2-Z; 3 1-X,+Y,3/2-Z; 4 2-X,+Y,3/2-Z; 5 -1 + X,+Y,+Z; 6 3/2-X,-1/2 + Y,3/2-Z; 7 -1/2 + X,-1/2 + Y,+Z; 8 1/2-X,3/2-Y,1-Z; 9 -X,1-Y,1-Z; 10 1-X,1-Y,1-Z; 11 1 + X,+Y,+Z; 12 1/2 + X,1/2 + Y,+Z; 13 -1/2 + X,1/2 + Y,+Z.

Table A6.

Torsion angles for fuchsite.

A B C D Angle/˚ A B C D Angle/˚
K1 1 Si2 O4 Cr1 1 −41.6(4) O4 Si2 O6 K1 1 115.30(12)
K1 Si2 O4 Cr1 1 −156.3(3) O4 Si2 O6 K1 −124.95(13)
K1 2 Si2 O4 Cr1 1 76.5(4) O4 Si2 O6 Si1 4 16.6(3)
K1 2 Si2 O4 Cr1 3 −143.2(4) O4 Si2 O5 K1 2 126.00(11)
K1 1 Si2 O4 Cr1 3 98.6(4) O4 Si2 O5 K1 1 −114.38(13)
K1 Si2 O4 Cr1 3 −16.0(4) O4 Si2 O5 Si1 1 27.7(3)
K1 1 Si2 O4 Al2 3 101.0(2) O4 Si2 O3 K1 2 −125.67(13)
K1 Si2 O4 Al2 3 −13.7(3) O4 Si2 O3 Si1 35.6(4)
K1 1 Si2 O4 Al2 1 −41.8(2) O6 Si2 O4 Cr1 3 31.5(4)
K1 2 Si2 O4 Al2 1 76.3(2) O6 Si2 O4 Cr1 1 −108.8(4)
K1 2 Si2 O4 Al2 3 −140.89(19) O6 Si2 O4 Al2 3 33.8(3)
K1 Si2 O4 Al2 1 −156.50(17) O6 Si2 O4 Al2 1 −109.0(2)
K1 Si2 O6 K1 1 −119.75(13) O6 Si2 O5 K1 2 −113.54(12)
K1 1 Si2 O6 K1 119.75(13) O6 Si2 O5 K1 1 6.08(16)
K1 2 Si2 O6 K1 50.46(15) O6 Si2 O5 Si1 1 148.2(2)
K1 2 Si2 O6 K1 1 −69.29(10) O6 Si2 O3 K1 2 111.00(14)
K1 1 Si2 O6 Si1 4 −98.7(3) O6 Si2 O3 Si1 −87.7(3)
K1 2 Si2 O6 Si1 4 −168.03(18) O6 5 Si1 O2 Cr1 6 −5.9(5)
K1 Si2 O6 Si1 4 141.5(3) O6 5 Si1 O2 Cr1 −149.3(4)
K1 Si2 O5 K1 2 −66.66(9) O6 5 Si1 O2 Al2 −152.9(2)
K1 2 Si2 O5 K1 1 119.62(12) O6 5 Si1 O2 Al2 6 −10.3(3)
K1 1 Si2 O5 K1 2 −119.62(12) O6 5 Si1 O3 K1 2 4.85(16)
K1 Si2 O5 K1 1 52.96(14) O6 5 Si1 O3 Si2 −156.4(3)
K1 1 Si2 O5 Si1 1 142.1(3) O1 3 Al2 O1 Al2 3 −0.002(0)
K1 Si2 O5 Si1 1 −164.93(16) O5 Si2 O4 Cr1 1 9.5(4)
K1 2 Si2 O5 Si1 1 −98.3(2) O5 Si2 O4 Cr1 3 149.8(4)
K1 1 Si2 O3 K1 2 43.71(16) O5 Si2 O4 Al2 1 9.3(3)
K1 Si2 O3 K1 2 110.44(11) O5 Si2 O4 Al2 3 152.1(2)
K1 1 Si2 O3 Si1 −155.0(2) O5 Si2 O6 K1 1 −5.10(14)
K1 2 Si2 O3 Si1 161.3(4) O5 Si2 O6 K1 114.65(14)
K1 Si2 O3 Si1 −88.3(3) O5 Si2 O6 Si1 4 −103.8(3)
K1 Si1 O2 Cr1 16.7(5) O5 Si2 O3 K1 2 −4.67(16)
K1 5 Si1 O2 Cr1 6 45.3(4) O5 Si2 O3 Si1 156.6(3)
K1 2 Si1 O2 Cr1 6 −73.2(4) O5 7 Si1 O2 Cr1 6 112.6(4)
K1 2 Si1 O2 Cr1 143.5(4) O5 7 Si1 O2 Cr1 −30.8(4)
K1 5 Si1 O2 Cr1 −98.1(4) O5 7 Si1 O2 Al2 −34.5(3)
K1 Si1 O2 Cr1 6 160.0(4) O5 7 Si1 O2 Al2 6 108.2(3)
K1 5 Si1 O2 Al2 −101.7(2) O5 7 Si1 O3 K1 2 −110.84(13)
K1 2 Si1 O2 Al2 6 −77.5(3) O5 7 Si1 O3 Si2 87.9(3)
K1 Si1 O2 Al26 155.7(2) O3 Si2 O4 Cr13 −91.5(4)
K1 Si1 O2 Al2 13.0(3) O3 Si2 O4 Cr1 1 128.3(3)
K1 2 Si1 O2 Al2 139.8(2) O3 Si2 O4 Al2 1 128.0(2)
K1 5 Si1 O2 Al2 6 41.0(3) O3 Si2 O4 Al2 3 −89.1(2)
K1 Si1 O3 K1 2 −110.63(11) O3 Si2 O6 K1 1 −120.48(12)
K1 5 Si1 O3 K1 2 −43.80(16) O3 Si2 O6 K1 −0.72(18)
K1 2 Si1 O3 Si2 −161.2(4) O3 Si2 O6 Si1 4 140.8(2)
K1 Si1 O3 Si2 88.1(3) O3 Si2 O5 K1 2 3.97(14)
K1 5 Si1 O3 Si2 155.0(2) O3 Si2 O5 K1 1 123.59(13)
O2 6 Al2 O1 Al2 3 173.1(3) O3 Si2 O5 Si1 1 −94.3(2)
O2 Al2 O1 Al2 3 94.0(2) O3 Si1 O2 Cr1 6 −124.9(4)
O2 Si1 O3 K1 2 125.92(12) O3 Si1 O2 Cr1 91.8(4)
O2 Si1 O3 Si2 −35.3(3) O3 Si1 O2 Al2 6 −129.2(3)
O4 7 Al2 O1 Al2 3 −41.1(13) O3 Si1 O2 Al2 88.1(3)
O4 3 Al2 O1 Al2 3 −93.8(2)

1 1 + X,+Y,+Z; 2 1/2 + X,1/2 + Y,+Z; 3 1-X,1-Y,1-Z; 4 1/2 + X,-1/2 + Y,+Z; 5 -1/2 + X,1/2 + Y,+Z; 6 1/2-X,3/2-Y,1-Z; 7 -1 + X,+Y,+Z.

Table A7.

Fractional atomic coordinates (×104) and equivalent isotropic displacement parameters (Å2 × 103) for lepidolite. Ueq is defined as 1/3 of the trace of the orthogonalized UIJ tensor.

Atom x y z U(eq)
Si1 4541(3) 7437(2) 6337.3(9) 15.6(6)
Si2 9635(4) 5734(2) 6336.5(9) 15.2(6)
Al1 2536(5) 9160(2) 4999.5(13) 24.9(7)
O7 4307(12) 9092(5) 6657(3) 25.1(13)
O2 2405(10) 6399(6) 6666(3) 24.5(12)
O3 7414(10) 6827(6) 6588(3) 26.7(13)
O4 3978(10) 7483(5) 5527(2) 20.5(11)
O5 9518(10) 5644(6) 5528(3) 22.1(12)
O6 5476(10) 5670(5) 4510(2) 19.7(11)
Li2 7500 7500 5000 38(5)
Fe1 5000 4060.8(18) 7500 20.3(8)
O1 4850(110) 3850(60) 7010(30) 0(11)

Table A8.

Anisotropic displacement parameters (Å2 × 103) for lepidolite. The Anisotropic displacement factor exponent takes the form: −2π2[h2a * 2U11 + 2hka * b * U12+…].

Atom U11 U22 U33 U23 U13 U12
Si1 14.0(10) 14.3(10) 18.0(10) −0.8(6) −0.7(7) −0.6(7)
Si2 15.6(11) 10.2(9) 19.5(11) −2.0(6) 0.2(8) −1.0(6)
Al1 24.9(13) 20.3(13) 29.1(14) −0.5(8) 0.1(10) −1.2(8)
O7 37(3) 13(3) 25(3) −2.2(18) 2(2) 0(2)
O2 22(3) 26(3) 25(3) −1(2) 1(2) −9(2)
O3 18(3) 33(3) 28(3) −8(2) −5(2) 11(2)
O4 22(2) 21(2) 18(3) −0.8(19) −1(2) 0(2)
O5 21(3) 23(3) 22(3) −4(2) 2(2) −4(2)
O6 26(3) 20(2) 13(2) 1.6(19) 2(2) −7(2)
Li2 36(11) 43(13) 36(11) 2(9) 7(9) 15(10)
Fe1 18.3(11) 20.2(11) 21.9(13) 0 0.0(7) 0

Table A9.

Bond lengths for lepidolite.

Atom Atom Length/Å Atom Atom Length/Å
Si1 O7 1.636(5) Al1 O4 3 1.946(5)
Si1 O2 1.641(5) Al1 O5 5 1.956(6)
Si1 O3 1.628(5) Al1 O5 6 1.944(6)
Si1 O4 1.632(5) Al1 O6 3 1.939(6)
Si2 O7 1 1.633(5) Al1 O6 6 1.943(6)
Si2 O2 2 1.641(5) Al1 Li2 2.986(2)
Si2 O3 1.637(5) Al1 Li2 6 3.014(2)
Si2 O5 1.627(5) Al1 Li2 7 3.019(2)
Al1 Al1 3 2.997(4) O4 Li2 2.205(5)
Al1 Al1 4 2.979(5) O5 Li2 2.196(5)
Al1 O4 1.957(5) O6 Li2 2.148(5)

1 1/2 + X,-1/2 + Y,+Z; 2 1 + X,+Y,+Z; 3 1/2-X,3/2-Y,1-Z; 4 1-X,2-Y,1-Z; 5 3/2-X,3/2-Y,1-Z; 6 -1/2 + X,1/2 + Y,+Z; 7 -1 + X,+Y,+Z.

Table A10.

Bond angles for lepidolite.

Atom Atom Atom Angle/˚ Atom Atom Atom Angle/˚
O7 Si1 O2 106.5(3) Si2 O5 Al1 1 123.4(3)
O3 Si1 O7 106.7(3) Si2 O5 Al1 7 125.7(3)
O3 Si1 O2 108.6(3) Si2 O5 Li2 114.7(3)
O3 Si1 O4 113.0(3) Al1 1 O5 Al1 7 99.6(2)
O4 Si1 O7 111.0(3) Al1 1 O5 Li2 93.2(2)
O4 Si1 O2 110.8(3) Al1 7 O5 Li2 91.8(2)
O7 1 Si2 O2 2 107.0(3) Al1 4 O6 Al1 1 103.3(2)
O7 1 Si2 O3 108.7(3) Al1 4 O6 Li2 95.1(2)
O3 Si2 O2 2 105.9(3) Al1 1 O6 Li2 94.8(2)
O5 Si2 O7 1 110.9(3) Al1 7 Li2 Al1 4 120.13(7)
O5 Si2 O2 2 111.7(3) Al1 7 Li2 Al1 180.0
O5 Si2 O3 112.4(3) Al1 1 Li2 Al1 4 60.60(8)
Al1 3 Al1 Al1 4 121.30(16) Al1 7 Li2 Al1 2 59.87(7)
Al1 3 Al1 Li2 60.70(8) Al1 7 Li2 Al1 3 120.47(8)
Al1 3 Al1 Li2 5 59.77(7) Al1 4 Li2 Al1 2 180.00(10)
Al1 3 Al1 Li2 6 179.17(13) Al1 Li2 Al1 2 120.13(7)
Al1 4 Al1 Li2 5 178.93(14) Al1 Li2 Al1 3 59.53(8)
Al1 4 Al1 Li2 6 59.53(8) Al1 Li2 Al1 1 120.47(8)
O4 4 Al1 Al1 3 133.8(2) Al1 3 Li2 Al1 2 60.60(8)
O4 Al1 Al1 3 96.20(19) Al1 1 Li2 Al1 3 180.0
O4 Al1 Al1 4 39.70(15) Al1 7 Li2 Al1 1 59.53(8)
O4 4 Al1 Al1 4 39.98(15) Al1 3 Li2 Al1 4 119.40(8)
O4 4 Al1 O4 79.7(2) Al1 Li2 Al1 4 59.87(7)
O4 4 Al1 O5 7 94.0(2) Al1 1 Li2 Al1 2 119.40(8)
O4 4 Al1 Li2 6 46.83(16) O4 Li2 Al1 7 139.07(14)
O4 Al1 Li2 47.57(16) O4 Li2 Al1 1 89.93(14)
O4 4 Al1 Li2 85.56(17) O4 7 Li2 Al1 3 89.93(14)
O4 Al1 Li2 5 140.81(18) O4 Li2 Al1 3 90.07(14)
O4 Al1 Li2 6 84.47(16) O4 7 Li2 Al1 7 40.93(14)
O4 4 Al1 Li2 5 139.49(18) O4 Li2 Al1 2 139.94(14)
O5 5 Al1 Al1 4 134.0(2) O47 Li2 Al1 2 40.06(14)
O5 7 Al1 Al1 4 95.80(19) O4 Li2 Al1 4 40.06(14)
O5 7 Al1 Al1 3 40.06(16) O47 Li2 Al1 139.07(14)
O5 5 Al1 Al1 3 40.35(16) O4 Li2 Al1 40.93(14)
O5 7 Al1 O4 94.9(2) O4 7 Li2 Al1 4 139.94(14)
O5 5 Al1 O4 94.6(3) O4 7 Li2 Al1 1 90.07(14)
O5 5 Al1 O4 4 171.7(3) O4 7 Li2 O4 180.0
O5 5 Al1 O5 7 80.4(2) O5 Li2 Al1 3 139.91(14)
O5 5 Al1 Li2 6 139.15(19) O5 7 Li2 Al1 2 89.76(14)
O5 5 Al1 Li2 86.12(18) O5 7 Li2 Al1 7 139.10(14)
O5 7 Al1 Li2 6 140.44(18) O5 7 Li2 Al1 40.90(14)
O5 7 Al1 Li2 5 85.13(17) O5 7 Li2 Al1 4 90.24(14)
O5 7 Al1 Li2 47.32(17) O5 Li2 Al1 1 40.09(14)
O5 5 Al1 Li2 5 46.68(17) O5 Li2 Al1 4 89.76(14)
O6 5 Al1 Al1 3 94.37(19) O5 Li2 Al1 139.10(14)
O6 4 Al1 Al1 3 134.2(2) O5 Li2 Al1 7 40.90(14)
O6 4 Al1 Al1 4 93.91(19) O5 Li2 Al1 2 90.24(14)
O6 5 Al1 Al1 4 134.0(2) O5 7 Li2 Al1 1 139.91(14)
O6 4 Al1 O4 4 91.9(2) O5 7 Li2 Al1 3 40.09(14)
O6 4 Al1 O4 94.0(2) O5 7 Li2 O4 81.83(19)
O6 5 Al1 O4 4 94.7(2) O5 7 Li2 O4 7 98.17(19)
O6 5 Al1 O4 169.2(3) O5 Li2 O4 98.17(19)
O6 5 Al1 O5 7 94.8(2) O5 Li2 O4 7 81.83(19)
O6 4 Al1 O5 5 94.5(2) O5 Li2 O5 7 180.0
O6 5 Al1 O5 5 91.9(2) O6 Li2 Al1 3 140.03(15)
O6 4 Al1 O5 7 170.0(2) O6 Li2 Al1 4 39.77(14)
O6 4 Al1 O6 5 76.7(2) O6 7 Li2 Al1 3 39.97(15)
O6 5 Al1 Li2 5 45.25(16) O6 Li2 Al1 7 90.00(15)
O6 4 Al1 Li2 6 45.14(15) O6 7 Li2 Al1 2 39.77(14)
O6 5 Al1 Li2 6 84.95(17) O6 7 Li2 Al1 4 140.23(14)
O6 4 Al1 Li2 5 85.14(16) O6 Li2 Al1 90.00(15)
O6 4 Al1 Li2 141.39(18) O6 Li2 Al1 2 140.23(14)
O6 5 Al1 Li2 141.87(19) O6 7 Li2 Al1 90.00(15)
Li2 Al1 Al1 4 60.60(8) O6 7 Li2 Al1 1 140.03(15)
Li2 Al1 Li2 6 120.13(7) O6 Li2 Al1 1 39.97(15)
Li2 5 Al1 Li2 6 119.40(8) O6 7 Li2 Al1 7 90.00(15)
Li2 Al1 Li2 5 120.47(8) O6 7 Li2 O4 7 79.81(19)
Si2 5 O7 Si1 131.2(4) O6 7 Li2 O4 100.19(18)
Si1 O2 Si2 6 130.4(3) O6 Li2 O4 79.81(19)
Si1 O3 Si2 139.7(3) O6 Li2 O4 7 100.19(18)
Si1 O4 Al1 125.9(3) O6 7 Li2 O5 7 80.03(19)
Si1 O4 Al14 123.4(3) O6 Li2 O5 80.03(19)
Si1 O4 Li2 113.9(3) O6 7 Li2 O5 99.97(19)
Al1 4 O4 Al1 100.3(2) O6 Li2 O5 7 99.97(19)
Al1 4 O4 Li2 93.1(2) O6 7 Li2 O6 180.0
Al1 O4 Li2 91.5(2)

1 1/2 + X,-1/2+Y,+Z; 2 1 + X,+Y,+Z; 3 1-X,2-Y,1-Z; 4 1/2-X,3/2-Y,1-Z; 5 -1/2 + X,1/2 + Y,+Z; 6 -1 + X,+Y,+Z; 7 3/2-X,3/2-Y,1-Z.

Table A11.

Torsion angles for lepidolite.

A B C D Angle/˚ A B C D Angle/˚
O7 Si1 O2 Si2 1 107.0(5) O2 6 Si2 O5 Al1 4 13.5(5)
O7 Si1 O3 Si2 −149.6(6) O2 6 Si2 O5 Al1 3 149.5(3)
O7 Si1 O4 Al1 2 −149.6(4) O2 6 Si2 O5 Li2 −98.4(3)
O7 Si1 O4 Al1 −11.7(5) O3 Si1 O7 Si2 5 99.0(5)
O7 Si1 O4 Li2 99.1(3) O3 Si1 O2 Si2 1 −138.5(4)
O7 3 Si2 O3 Si1 −95.5(6) O3 Si1 O4 Al1 2 90.6(4)
O7 3 Si2 O5 Al1 3 30.2(5) O3 Si1 O4 Al1 −131.5(4)
O7 3 Si2 O5 Al1 4 −105.8(4) O3 Si1 O4 Li2 −20.7(4)
O7 3 Si2 O5 Li2 142.3(3) O3 Si2 O5 Al1 3 −91.6(4)
O2 Si1 O7 Si2 5 −145.1(5) O3 Si2 O5 Al1 4 132.3(4)
O2 Si1 O3 Si2 96.0(6) O3 Si2 O5 Li2 20.5(4)
O2 Si1 O4 Al1 106.3(4) O4 Si1 O7 Si2 5 −24.5(6)
O2 Si1 O4 Al1 2 −31.5(4) O4 Si1 O2 Si2 1 −13.8(5)
O2 Si1 O4 Li2 −142.8(3) O4 Si1 O3 Si2 −27.4(7)
O2 6 Si2 O3 Si1 149.9(6) O5 Si2 O3 Si1 27.6(7)

1 -1 + X,+Y,+Z; 2 1/2-X,3/2-Y,1-Z; 3 1/2 + X,-1/2 + Y,+Z; 4 3/2-X,3/2-Y,1-Z; 5 -1/2 + X,1/2 + Y,+Z; 6 1 + X,+Y,+Z.

Table A12.

Fractional Atomic Coordinates (×104) and Equivalent Isotropic Displacement Parameters (Å2 × 103) for Spodumene. Ueq is defined as 1/3 of the trace of the orthogonalized UIJ tensor.

Atom x y z U(eq)
Si1 4619.7(9) 4066.4(5) 2058.8(5) 6.4(3)
Al1 2500 933.4(8) 0 6.2(3)
O1 5308(2) 4178.0(13) 3901.6(13) 7.6(3)
O3 4359(2) 2331.2(14) 1352.0(13) 10.6(3)
O2 2022(2) 5130.5(14) 1434.8(12) 10.3(3)
Li1 7500 2265(6) 5000 17.0(9)

Table A13.

Anisotropic displacement parameters (Å2 × 103) for spodumene. The anisotropic displacement factor exponent takes the form: −2π2[h2a * 2U11 + 2hka * b * U12+…].

Atom U11 U22 U33 U23 U13 U12
Si1 6.6(4) 6.9(4) 5.8(3) −0.67(14) 1.2(2) −0.20(15)
Al1 7.1(5) 6.0(4) 5.5(4) 0 1.3(3) 0
O1 8.6(6) 8.1(7) 6.3(6) −0.5(4) 2.1(5) −0.2(4)
O3 12.6(7) 8.5(7) 10.3(6) −2.3(4) 1.5(5) 0.1(5)
O2 10.1(7) 12.7(6) 8.0(7) 0.6(4) 1.8(5) 2.7(5)
Li1 19(2) 17(2) 15(2) 0 3.9(18) 0

Table A14.

Bond lengths for Spodumene.

Atom Atom Length/Å Atom Atom Length/Å
Si1 O1 1.6404(12) Al1 O1 6 1.9459(12)
Si1 O3 1.5863(12) Al1 O3 7 1.8219(12)
Si1 O21 1.6294(12) Al1 O3 1.8219(12)
Si1 O2 1.6215(12) Al1 Li1 5 3.079(5)
Si1 Li12 2.8688(19) Al1 Li1 3 3.017(2)
Si1 Li1 3.159(2) Al1 Li1 2 3.017(2)
Al1 O1 3 1.9459(12) O1 Li1 2.096(4)
Al1 O1 4 1.9970(12) O3 Li1 2 2.2767(14)
Al1 O1 5 1.9970(12) O2 Li1 8 2.262(4)

1 1/2 + X,1-Y,+Z; 2 3/2-X,1/2-Y,1/2-Z; 3 1/2-X,1/2-Y,1/2-Z; 4 1-X,-1/2 + Y,1/2-Z; 5 -1/2 + X,-1/2 + Y,-1/2 + Z; 6 +X,1/2-Y,-1/2 + Z; 7 1/2-X,+Y,-Z; 8 -1/2 + X,1/2 + Y,-1/2 + Z.

Table A15.

Bond angles for spodumene.

Atom Atom Atom Angle/˚ Atom Atom Atom Angle/˚
O1 Si1 Li1 37.00(8) Si1 1 Li1 Si1 81.615(18)
O1 Si1 Li1 1 131.24(6) Si1 1 Li1 Al1 1 67.695(17)
O3 Si1 O1 116.60(6) Si1 11 Li1 Al1 1 140.37(3)
O3 Si1 O2 2 104.13(7) Si1 1 Li1 Al1 8 112.94(9)
O3 Si1 O2 111.80(7) Si1 11 Li1 Al1 6 67.695(17)
O3 Si1 Li1 1 52.32(9) Si1 11 Li1 Al1 8 112.94(9)
O3 Si1 Li1 83.56(9) Si1 1 Li1 Al1 6 140.37(3)
O2 Si1 O1 108.04(6) Al1 1 Li1 Si1 90.84(9)
O2 2 Si1 O1 108.45(6) Al1 8 Li1 Si1 61.41(7)
O2 Si1 O2 2 107.36(4) Al1 6 Li1 Si1 60.38(5)
O2 2 Si1 Li1 1 51.92(9) Al1 1 Li1 Al1 8 59.92(8)
O2 Si1 Li1 1 120.16(6) Al1 1 Li1 Al1 6 119.83(15)
O2 Si1 Li1 140.39(5) Al1 6 Li1 Al1 8 59.92(8)
O2 2 Si1 Li1 103.38(5) O1 Li1 Si1 28.10(3)
Li1 1 Si1 Li1 98.386(18) O1 12 Li1 Si1 98.58(15)
O1 3 Al1 O1 4 96.97(5) O1 Li1 Si1 1 107.22(5)
O1 4 Al1 O1 5 84.90(7) O1 Li1 Si1 11 107.51(6)
O1 6 Al1 O1 5 96.97(5) O1 12 Li1 Si1 1 107.51(6)
O1 6 Al1 O1 4 78.91(5) O1 12 Li1 Si1 11 107.22(5)
O1 3 Al1 O1 5 78.91(5) O1 Li1 Al1 8 40.01(9)
O1 3 Al1 O1 6 174.49(7) O1 12 Li1 Al1 1 39.86(5)
O1 3 Al1 Li1 1 43.67(7) O1 12 Li1 Al1 6 89.99(13)
O1 4 Al1 Li1 4 42.45(3) O1 Li1 Al1 1 89.99(13)
O1 6 Al1 Li1 1 140.49(6) O1 12 Li1 Al1 8 40.01(9)
O1 3 Al1 Li1 6 140.49(6) O1 Li1 Al1 6 39.86(5)
O1 4 Al1 Li1 6 88.12(7) O1 Li1 O1 12 80.03(18)
O1 5 Al1 Li1 1 88.12(7) O1 12 Li1 O3 1 76.18(10)
O1 3 Al1 Li1 4 87.25(4) O1 Li1 O3 11 76.18(10)
O1 6 Al1 Li1 4 87.25(4) O1 12 Li1 O3 11 90.64(12)
O1 6 Al1 Li1 6 43.67(7) O1 Li1 O3 1 90.64(12)
O1 4 Al1 Li1 1 140.59(6) O1 12 Li1 O2 13 116.63(4)
O1 5 Al1 Li1 6 140.59(6) O1 Li1 O2 13 139.93(5)
O1 5 Al1 Li1 4 42.45(3) O1 12 Li1 O2 5 139.93(5)
O3 7 Al1 O1 4 88.42(5) O1 Li1 O2 5 116.63(4)
O3 Al1 O1 4 167.96(5) O3 1 Li1 Si1 1 33.47(4)
O3 Al1 O1 3 91.54(5) O3 11 Li1 Si1 1 161.83(16)
O3 7 Al1 O1 3 92.00(5) O3 11 Li1 Si1 11 33.47(4)
O3 Al1 O1 5 88.42(5) O3 1 Li1 Si1 74.82(6)
O3 7 Al1 O1 6 91.54(5) O3 11 Li1 Si1 96.87(8)
O3 7 Al1 O1 5 167.96(5) O3 1 Li1 Si1 11 161.83(16)
O3 Al1 O1 6 92.00(5) O3 11 Li1 Al1 6 37.04(5)
O3 Al1 O3 7 99.81(8) O3 1 Li1 Al1 8 81.45(12)
O3 Al1 Li1 4 130.10(4) O3 11 Li1 Al1 1 130.47(15)
O3 7 Al1 Li1 6 48.83(5) O3 1 Li1 Al1 1 37.04(5)
O3 Al1 Li1 1 48.83(5) O3 11 Li1 Al1 8 81.45(12)
O3 7 Al1 Li1 4 130.10(4) O3 1 Li1 Al16 130.47(15)
O3 7 Al1 Li1 1 90.72(7) O3 1 Li1 O3 11 162.9(2)
O3 Al1 Li1 6 90.72(7) O2 13 Li1 Si1 1 101.91(15)
Li1 1 Al1 Li1 6 119.83(15) O2 13 Li1 Si1 140.94(9)
Li1 6 Al1 Li1 4 120.08(8) O2 5 Li1 Si1 88.95(3)
Li1 1 Al1 Li1 4 120.08(8) O2 5 Li1 Si1 1 34.53(4)
Si1 O1 Al1 6 119.89(7) O2 5 Li1 Si1 11 101.91(15)
Si1 O1 Al1 8 122.01(7) O2 13 Li1 Si1 11 34.53(4)
Si1 O1 Li1 114.90(8) O2 13 Li1 Al1 6 101.20(4)
Al1 6 O1 Al1 8 101.09(5) O2 5 Li1 Al1 6 126.86(6)
Al1 8 O1 Li1 97.54(10) O2 5 Li1 Al1 8 142.39(8)
Al1 6 O1 Li1 96.47(6) O2 13 Li1 Al1 8 142.39(8)
Si1 O3 Al1 148.44(8) O2 13 Li1 Al1 1 126.86(6)
Si1 O3 Li1 1 94.21(13) O2 5 Li1 Al1 1 101.20(4)
Al1 O3 Li1 1 94.13(9) O2 13 Li1 O3 1 127.67(16)
Si1 O2 Si1 9 138.97(8) O2 5 Li1 O3 11 127.67(16)
Si1 9 O2 Li1 10 93.55(8) O2 13 Li1 O3 11 67.94(7)
Si1 O2 Li1 10 116.79(7) O2 5 Li1 O3 1 67.94(7)
Si1 1 Li1 Si1 11 134.13(17) O2 5 Li1 O2 13 75.23(16)
Si1 11 Li1 Si1 121.25(2)

1 3/2-X,1/2-Y,1/2-Z; 2 1/2 + X,1-Y,+Z; 3 +X,1/2-Y,-1/2 + Z; 4 -1/2 + X,-1/2+Y,-1/2 + Z; 5 1-X,-1/2 + Y,1/2-Z; 6 1/2-X,1/2-Y,1/2-Z; 7 1/2-X,+Y,-Z; 8 ½ + X,1/2 + Y,1/2+Z; 9 -1/2 + X,1-Y,+Z; 10 -1/2 + X,1/2 + Y,-1/2 + Z; 11 +X,1/2-Y,1/2 + Z; 12 3/2-X,+Y,1-Z; 13 1/2 + X,-1/2 + Y,1/2 + Z.

Table A16.

Torsion angles for spodumene.

A B C D Angle/˚ A B C D Angle/˚
O1 Si1 O3 Al1 132.06(14) O2 Si1 O1 Li1 156.07(9)
O1 Si1 O3 Li1 1 −123.01(7) O2 Si1 O3 Al1 7.07(17)
O1 Si1 O2 Si1 2 −16.87(14) O2 10 Si1 O3 Al1 −108.53(15)
O1 Si1 O2 Li1 3 116.44(10) O2 10 Si1 O3 Li1 1 −3.60(7)
O1 4 Al1 O3 Si1 114.97(15) O2 Si1 O3 Li1 1 112.00(7)
O1 5 Al1 O3 Si1 −166.17(15) O2 10 Si1 O2 Si1 2 −133.64(13)
O1 6 Al1 O3 Si1 −69.24(15) O2 10 Si1 O2 Li1 3 −0.34(12)
O1 7 Al1 O3 Si1 −109.9(3) Li1 1 Si1 O1 Al1 6 −146.96(11)
O1 4 Al1 O3 Li11 10.01(11) Li1 1 Si1 O1 Al1 8 84.66(14)
O1 6 Al1 O3 Li1 1 −174.20(10) Li1 Si1 O1 Al1 6 −114.20(12)
O1 7 Al1 O3 Li1 1 145.1(3) Li1 Si1 O1 Al1 8 117.42(12)
O1 5 Al1 O3 Li1 1 88.88(10) Li1 1 Si1 O1 Li1 −32.8(2)
O3 Si1 O1 Al1 8 146.63(7) Li1 Si1 O3 Al1 149.25(15)
O3 Si1 O1 Al1 6 −85.00(9) Li1 1 Si1 O3 Al1 −104.93(16)
O3 Si1 O1 Li1 29.20(12) Li1 Si1 O3 Li11 −105.82(6)
O3 Si1 O2 Si1 2 112.74(12) Li1 1 Si1 O2 Si1 2 170.80(13)
O3 Si1 O2 Li1 3 −113.96(10) Li1 Si1 O2 Si1 2 5.6(2)
O3 9 Al1 O3 Si1 22.67(12) Li1 Si1 O2 Li1 3 138.95(19)
O3 9 Al1 O3 Li1 1 −82.29(10) Li1 1 Si1 O2 Li1 3 −55.89(18)
O2 Si1 O1 Al1 8 −86.50(9) Li1 1 Al1 O3 Si1 104.96(18)
O2 10 Si1 O1 Al1 6 157.94(7) Li1 7 Al1 O3 Si1 −157.33(12)
O2 Si1 O1 Al1 6 41.87(9) Li1 6 Al1 O3 Si1 −25.58(15)
O2 10 Si1 O1 Al1 8 29.57(9) Li1 7 Al1 O3 Li1 1 97.71(10)
O2 10 Si1 O1 Li1 −87.86(10) Li1 6 Al1 O3 Li1 1 −130.53(14)

1 3/2-X,1/2-Y,1/2-Z; 2 -1/2 + X,1-Y,+Z; 3 -1/2 + X,1/2 + Y,-1/2 + Z; 4 +X,1/2-Y,-1/2 + Z; 5 1-X,-1/2 + Y,1/2-Z; 6 1/2-X,1/2-Y,1/2-Z; 7 -1/2 + X,-1/2 + Y,-1/2 + Z; 8 1/2 + X,1/2 + Y,1/2 + Z; 9 1/2-X,+Y,-Z; 10 1/2 + X,1-Y,+Z.

Author Contributions

Conceptualization, M.H. and D.M.K.; methodology, M.H., D.M.K. and U.M.; validation, M.H., D.M.K. and U.M.; formal analysis, M.H.; investigation, resources, M.H.; data curation, M.H. and D.M.K.; writing—original draft preparation, M.H.; writing—review and editing, D.M.K.; visualization, M.H. and D.M.K. All authors have read and agreed to the published version of the manuscript.

Conflicts of Interest

The authors declare no conflict of interest.

Funding Statement

We would like to thank EcoTech Complex in Lublin for providing the equipment for the X-ray diffraction measurements.

Footnotes

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.

References

  • 1.Fisher L.N. Master’s Thesis. Colorado School of Mines; Golden, CO, USA: 2019. [(accessed on 26 April 2023)]. Characterization of the Mineralized Albitite Bodies at Biggejavri, Kautokeino Greenstone Belt, Finnmark, Northern Norway; pp. 1–69. Available online: https://hdl.handle.net/11124/173977. [Google Scholar]
  • 2.Huber M., Kamiński D., Maciołek U. Columbite–Tantalite from Northern Scandinavia (Kaustinen, Kolmozero) Pegmatites: An Optical and Spectroscopic Properties. Crystals. 2023;13:612. doi: 10.3390/cryst13040612. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 3.Bayanova T.B., Kunakkuzin E.L., Serov P.A., Steshenko E., Borisenko E.S., Turkina O. The Oldest Grey Gneisses and Tonalite-Trondhjemite Granodiorites in the Fennoscandian Shield: ID-TIMS and SHRIMP Data. Open J. Geol. 2020;10:2. doi: 10.4236/ojg.2020.102007. [DOI] [Google Scholar]
  • 4.Lahtinen R., Garde A.A., Melezhik V.A. Paleoproterozoic evolution of Fennoscandia and Greenland. Episodes. 2008;31:20–28. doi: 10.18814/epiiugs/2008/v31i1/004. [DOI] [Google Scholar]
  • 5.Hölttä P., Balagansky V., Garde A.A., Mertanen S., Peltonen P., Slabunov A., Sorjonen-Ward P., Whitehouse M. Archean of Greenland and Fennoscandia. Episodes. 2008;31:13–19. doi: 10.18814/epiiugs/2008/v31i1/003. [DOI] [Google Scholar]
  • 6.Ahtola T., Kuusela J., Käpyaho A., Kontoniemi O. Overview of lithium pegmatite exploration in the Kaustinen area in 2003–2012. Geological Survey of Finland. Rep. Investig. 2015;220:28. [Google Scholar]
  • 7.Bibikova E.V., Bogdanova S.V., Postnikov A.V., Popova L.P., Kirnozova T.I., Fugzan M.M., Glushchenko V.V. Sarmatia–Volgo-Uralia Junction Zone: Isotopic–Geochronologic Characteristic of Supracrustal Rocks and Granitoids. Stratigr. Geol. Correl. 2009;17:561–573. doi: 10.1134/S086959380906001X. [DOI] [Google Scholar]
  • 8.Glebovitsky V.A. Early Precambrian of the Baltic Shield. Nauka; St Petersburg, Russia: 2005. p. 710. (In Russian) [Google Scholar]
  • 9.Pozhilienko V.I., Gavrilenko B.V., Zhirov C.V., Zhabin S.V. Geology of Mineral Areas of the Murmansk Region. Kola Scientific Center, Russian Academy of Sciences; Apatity, Russia: 2002. p. 360. (In Russian) [Google Scholar]
  • 10.Andersson J., Möller C., Johansson L. Zircon geochronology of migmatite gneisses along the Mylonite Zone (S Sweden): A major Sveconorwegian terrane boundary in the Baltic shield. Precambrian Res. 2002;114:121–147. doi: 10.1016/S0301-9268(01)00220-0. [DOI] [Google Scholar]
  • 11.Bridgewater D., Scott D.J., Balagansky V.V., Timmerman M.J., Marker M., Bushmin A., Alexeyev N.L., Daly J.S. Age and Provenance of Early Precambrian Metasidementary Rocks in the Lapland-Kola Belt, Russia: Evidence from Pb and Nd Isotopic Data. Terra Nova. 2001;13:32–37. doi: 10.1046/j.1365-3121.2001.00307.x. [DOI] [Google Scholar]
  • 12.Hölttä P., Heilimo E., Huhma H., Juopperi H., Kontinen A., Konnunaho H., Lauri L., Mikkola P., Paavola J., Sorjonen-Ward P. Archaean Complexes of the Karelia Province in Finland. Geol. Surv. Finl. Spec. Pap. 2012;54:9–20. [Google Scholar]
  • 13.Timmerman M.J., Daly S.J. Sm-Nd Evidence for Late Arhaean Crust Formation in the Lapland-Kola Mobile Belt, Kola Peninsula, Russia and Norway. Precambrian Res. 1995;72:97–107. doi: 10.1016/0301-9268(94)00045-S. [DOI] [Google Scholar]
  • 14.Huber M., Bayanova T.B., Serov P.A., Skupiński S. Archean Gneisses of the Murmansk, Oleniegorsk Region, NE Fennoscandia, in the Light of the Petrographic and Geochemical Analysis. Sciences Publisher; Lublin, Poland: 2018. p. 181. (In Polish) [Google Scholar]
  • 15.Halla J. The TTG-Amphibolite Terrains of Arctic Fennoscandia: Infinite Networks of Amphibolite Metatexite-Diatexite Transitions, Front. Earth Sci. Sec. Petrol. 2020;8:252. doi: 10.3389/feart.2020.00252. [DOI] [Google Scholar]
  • 16.Mokrushin A.V., Kudryashov N.M., Huber M. First discovery of sperrylite in Archaean Patchemvarek gabbro-anorthosite (Kola region, Russia); Proceedings of the Abstracts of the 12th International Platinum Symposium; Yekaterinburg, Russia. 11–14 August 2014; [(accessed on 26 April 2023)]. pp. 305–306. Available online: http://conf.uran.ru/12IPS/12%20IPS%20ABSTRACTS.pdf. [Google Scholar]
  • 17.Smol’kin V.F., Mokrushin A.V. Paleoproterozoic Layered Intrusions of the Monchegorsk Ore District: Geochemistry and U–Pb, Sm–Nd, Re–Os Isotope Analysis. Minerals. 2022;12:1432. doi: 10.3390/min12111432. [DOI] [Google Scholar]
  • 18.Petrovskaya L.S., Mitrofanov F.P., Bayanova T.B., Petrov V.P., Petrovski M.N. Neoarchean Enderbites-Granulite Complex of the Puloziero-Polnek-Tundra Region, Central Kola Block: Stages and the Thermodynamic Regime of Evolution. Kola Scientific Center, Russian Academy of Sciences; Apatity, Russia: 2010. p. 78. (In Russian) [Google Scholar]
  • 19.Petrovskaya L.S., Mitrofanov F.P., Bayanova T.B., Serov P.A. The Archean Pulozero–Polnek-Tundra Enderbite–Granulite Complex of the Central Kola Block: Stages and Formation Conditions (Kola Peninsula) Dokl. Akad. Nauk. 2007;416:370–373. doi: 10.1134/S1028334X07070252. [DOI] [Google Scholar]
  • 20.Hałas S., Huber M., Piestrzynski A. Petrology of gabbroides and isotope signature of sulfide mineralization from Fedorov-Pansky layered mafic intrusion, Kola peninsula, Russia. Geochronometria. 2009;33:19–22. doi: 10.2478/v10003-009-0004-6. [DOI] [Google Scholar]
  • 21.Huber M.A., Hałas S., Neradovsky Y.N., Bayanova T.B., Mokrushin A.W., Lata L. Stable isotope geochemistry of sulfides from intrusion in Monchegorsk, Northern part of baltic shield. Geochronometria. 2016;43:96–101. doi: 10.1515/geochr-2015-0034. [DOI] [Google Scholar]
  • 22.Huber M., Stępniewska K. Application of the Fractal Dimension Calculation Technique to Determine the Shape of Selected Monchepluton Intrusion Crystals (NE Fennoscandia) Minerals. 2021;11:1140. doi: 10.3390/min11101140. [DOI] [Google Scholar]
  • 23.Torske T., Bergh S. The Caravarri Formation of the Kautokeino Greenstone Belt, Finnmark, North Norway; a Palaeoproterozoic foreland basin succession. NG U-BULL. 2004;442:5–22. [Google Scholar]
  • 24.Morozova L.N. Rare-metal pegmatites of the Soldat-Myl’k pegmatite field: Geology, geochemistry of rare elements. IOP Publ. 2020;539:012162. doi: 10.1088/1755-1315/539/1/012162. [DOI] [Google Scholar]
  • 25.Morozova L.N., Sokolova E.N., Smirnov S.Z., Balagansky V.V., Bazai A.V. Spodumene from rare-metal pegmatites of the Kolmozero lithium world-class deposit on the Fennoscandian shield: Trace elements and crystal-rich fluid inclusions. Mineral. Mag. 2021;85:149–160. doi: 10.1180/mgm.2020.104. [DOI] [Google Scholar]
  • 26.Huber M., Kamiński D., Czernel G., Kozlov E. Optical and Spectroscopic Properties of Lorenzenite, Loparite, Perovskite, Titanite, Apatite, Carbonates from the Khibiny, Lovozero, Kovdor, and Afrikanda Alkaline Intrusion of Kola Peninsula (NE Fennoscandia) Crystals. 2022;12:224. doi: 10.3390/cryst12020224. [DOI] [Google Scholar]
  • 27.Bingen B., Solli A., Viola G., Torgersen E., Sandstad J.S., Whitehouse M.J., Nasuti A. Geochronology of the Palaeoproterozoic Kautokeino Greenstone Belt, Finnmark, Norway: Tectonic implications in a Fennoscandia context. Nor. J. Geol. 2015;95:365–396. doi: 10.17850/njg95-3-09. [DOI] [Google Scholar]
  • 28.Al-Ani T., Ahtola T. Mineralogy of Spodumene Pegmatites, Kaustinen, Western Finland. Volume 19. Southern Finland Office; Helsinki, Finland: 2008. [(accessed on 26 April 2023)]. pp. 1–48. Geological Survey of Finland Report. Available online: https://tupa.gtk.fi/raportti/arkisto/m19_2323_2008_61.pdf. [Google Scholar]
  • 29.Morozova L.N. The Kolmozero lithium deposit of rare metal pegmatites: New data on the rare element composition (Kola Peninsula) Lithosphere. 2018;18:82–98. doi: 10.24930/1681-9004-2018-18-1-082-098. [DOI] [Google Scholar]
  • 30.Evzerov V.Y. Glacier Deposits As Unique Formations in the Loose Cover of the Baltic Shield. Lithol. Miner. Resour. 2001;36:109–115. doi: 10.1023/A:1004818332336. [DOI] [Google Scholar]
  • 31.Korsakova O.P. Pleistocene marine deposits in the coastal areas of Kola Peninsula (Russia) Quat. Int. 2009;206:3–15. doi: 10.1016/j.quaint.2008.11.004. [DOI] [Google Scholar]
  • 32.Huber M., Rusek A., Menshakova M., Zhigunova G., Chmiel S., Iakovleva O. Possibilities of Sustainable Development including Improvement in Air Quality for the City of Murmansk-Examples of Best Practice from Scandinavia. Climate. 2022;10:15. doi: 10.3390/cli10020015. [DOI] [Google Scholar]
  • 33.Huber M., Iakovleva O. Tourism, Scientific, and Didactic Potential of the Ultrabasic-Alkaline Intrusion in Afrikanda with Perovskite Mineral (Kola Peninsula, N Russia) and of the Related Built Heritage. Heritage. 2021;4:3892–3907. doi: 10.3390/heritage4040213. [DOI] [Google Scholar]
  • 34.Huber M., Zhigunova G., Menshakova M., Iakovleva O., Karimova M. Geoheritage of the Monchegorsk Igneous Layered Paleoproterozoic Intrusion (Kola Peninsula, Arctic Russia): Evaluation and Geotourism Opportunities. Heritage. 2021;4:3583–3610. doi: 10.3390/heritage4040198. [DOI] [Google Scholar]
  • 35.Huber M., Zhigunova G., Menshakova M., Gainanova R., Iakovleva O. Geoheritage of the Kandalaksha region (Kola Peninsula, White Sea, Arctic Russia), Evaluation, and Geotourism Opportunities. Geoheritage. 2022;14:112. doi: 10.1007/s12371-022-00726-4. [DOI] [Google Scholar]
  • 36.Huber M., Iakovleva O., Zhigunova G., Menshakova M., Gainanova R. Can the Arctic be saved for the next generations? Study of examples and internships in Murmansk District. IOP Conf. Ser. Earth Environ. Sci. 2021;678:01203. doi: 10.1088/1755-1315/678/1/012031. [DOI] [Google Scholar]
  • 37.Smith E., Wang W. Diamond with Concentric Inclusions. Gems Gemol. 2017;53:2. [Google Scholar]
  • 38.Bowers D.G., Binding C.E. The optical properties of mineral suspended particles: A review and synthesis. Estuarine. Coast. Shelf Sci. 2006;67:219–230. doi: 10.1016/j.ecss.2005.11.010. [DOI] [Google Scholar]
  • 39.De Lima A.F., Souza S.O., Lalic M.V. Electronic and optical properties of spodumene gemstone: A theoretical study. Opt. Mater. 2008;30:1048–1051. doi: 10.1016/j.optmat.2007.05.009. [DOI] [Google Scholar]
  • 40.Faye G.H. The optical absorption spectra of certain transition metal ions in muscovite, lepidolite, and fuchsite. Can. J. Earth Sci. 1968;5:31–38. doi: 10.1139/e68-003. [DOI] [Google Scholar]
  • 41.Levinson A.A. Studies in the mica group; relationship between polymorphism and composition in the muscovite-lepidolite series. Am. Mineral. J. Earth Planet. Mater. 1953;38:88–107. [Google Scholar]
  • 42.Gu Y. Automated scanning electron microscope based mineral liberation analysis. J. Miner. Mater. Charact. Eng. 2003;2:33–41. [Google Scholar]
  • 43.Pirrie D., Power M.R., Rollinson G.K., Wiltshire P.E., Newberry J., Campbell H.E. Criminal and Environmental Soil Forensics. Springer; Berlin, Germany: 2009. Automated SEM-EDS (QEMSCAN®) mineral analysis in forensic soil investigations: Testing instrumental reproducibility; pp. 411–430. [Google Scholar]
  • 44.Rigaku . CRYSALIS Software System. Rigaku; Oxford, UK: 2016. [Google Scholar]
  • 45.Sheldrick G.M. A short history of SHELX. Acta Crystallogr. 2008;A64:112–122. doi: 10.1107/S0108767307043930. [DOI] [PubMed] [Google Scholar]
  • 46.Sheldrick G.M. SHELXT—Integrated space-group and crystal-structure determination. Acta Crystallogr. 2015;A71:3–8. doi: 10.1107/S2053273314026370. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 47.Sheldrick G.M. Crystal structure refinement with SHELXL. Acta Crystallogr. 2015;C71:3–8. doi: 10.1107/S2053229614024218. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 48.Dolomanov O.V., Bourhis L.J., Gildea R.J., Howard J.A.K., Puschmann H.J. A Complete Structure Solution, Refinement and Analysis Program. Appl. Cryst. 2009;42:339–341. doi: 10.1107/S0021889808042726. [DOI] [Google Scholar]
  • 49.Amarie S., Zaslansky P., Kajihara Y., Griesshaber E., Schmahl W.W., Keilmann F. Nano-FTIR chemical mapping of minerals in biological materials. Beilstein J. Nanotechnol. 2012;3:312–323. doi: 10.3762/bjnano.3.35. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 50.Pleshko N., Boskey A., Mendelsohn R. Novel infrared spectroscopic method for the determination of crystallinity of hydroxyapatite minerals. Biophys. J. 1991;60:786–793. doi: 10.1016/S0006-3495(91)82113-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 51.Biesinger M.C., Hart B.R., Polack R., Kobe B.A., Smart R.S.C. Analysis of mineral surface chemistry in flotation separation using imaging XPS. Miner. Eng. 2007;20:152–162. doi: 10.1016/j.mineng.2006.08.006. [DOI] [Google Scholar]
  • 52.Hochella M.F., Jr., Brown G.E., Jr. Aspects of silicate surface and bulk structure analysis using X-ray photoelectron spectroscopy (XPS) Geochim. Cosmochim. Acta. 1988;52:1641–1648. doi: 10.1016/0016-7037(88)90232-3. [DOI] [Google Scholar]
  • 53.Kudryashov N.M., Lyalina L.M., Apanasevich E.A. Age of Rare-Metal Pegmatites from the Vasin-Myl’k Deposit (Kola Region): Evidence from U–Pb Geochronology of Microlite. Dokl. Earth Sci. 2015;461:321–3250. doi: 10.1134/S1028334X15040042. [DOI] [Google Scholar]
  • 54.Kudryashov N.M., Udoratina O.V., Coble M.A., Steshenko E.N. Geochronological and Geochemical Study of Zircon from Tourmaline-Muscovite Granites of the Archaean Kolmozero–Voronya Greenstone Belt: Insights into Sources of the Rare-Metal Pegmatites. Minerals. 2020;10:760. doi: 10.3390/min10090760. [DOI] [Google Scholar]
  • 55.Černý P., London D., Novák M. Granitic Pegmatites as Refl ections of Their Sources. Elements. 2012;8:289–294. doi: 10.2113/gselements.8.4.289. [DOI] [Google Scholar]
  • 56.Linnen R.L., Lichtervelde M.V., Černý P. Granitic Pegmatites as Sources of Strategic Metals. Elements. 2012;8:275–280. doi: 10.2113/gselements.8.4.275. [DOI] [Google Scholar]
  • 57.Alviola R., Mänttäri I., Mäkitie H., Vaasjoki M. Svecofennian rare-element granitic pegmatites of the Ostrobothnia region western Finland: Their metamorphic environment and time of intrusion. In: Mäkitie H., editor. Svecofennian Granitic Pegmatites (1.86–1.79 Ga) and Quartz Monzonite (1.87 Ga), and Their Metamorphic Environment in the Seinäjoki Region, Western Finland. Volume 30. Special Paper; Geological Survey of Finland; Espoo, Finland: 2001. pp. 9–29. [Google Scholar]
  • 58.Vaasjoki M., Korsman K., Koistinen T. Precambrian geology of Finland: Key to the evolution of the Fennoscandian Shield. Dev. Precambrian Geol. 2005;14:1–17. [Google Scholar]
  • 59.Mäkitie H., Kärkkäinen N., Lahti S.I., Alviola R. Compositional variation of granitic pegmatites in relation to regional metamorphism in the Seinäjoki region, Western Finland. Geol. Surv. Finl. Spec. Pap. 2001;30:31–59. [Google Scholar]
  • 60.Käpyaho A., Sarapää O., Kaunismäki J., Lohva J., Ahtola T., Johansson B., Huhta P. Research Report on the Li-Pegmatite Studies Carried out in the Years 2004 and 2005 in the Municipality of Kaustinen in the Catchment area Matoneva (Mining registration number 7882/1) Geological Research Center; Charleston, SC, USA: 2007. Archive Report M06/2323/2007/10/78. (In Finnish) [Google Scholar]
  • 61.Ahtola T., Kuusela J., Koistinen E., Seppänen H., Hatakka T., Lohva J. Report of Investigations on the Leviäkangas Lithium Pegmatite Deposit in Kaustinen, Western Finland. Geological Survey of Finland; Espoo, Finland: 2010. Archive Report M19/2323/2010/32. [Google Scholar]
  • 62.Kuusela J., Ahtola T., Koistinen E., Seppänen H., Hatakka T., Lohva J. Report of Investigations on the Rapasaaret Lithium Pegmatite Deposit In Kaustinen Kokkola, Western Finland. Geological Survey of Finland; Espoo, Finland: 2011. Archive Report 42/2011. [Google Scholar]
  • 63.Martikainen A. Master’s Thesis. University of Helsinki; Helsinki, Finland: 2012. Kaustisen–Ullavan Regional Geochemical Features and Source Granitoids of the Lithium Pegmatites of Kaustinen-Ullava; p. 77. (in Finnish) [Google Scholar]
  • 64.Hanski E., Huhma H., Vuollo J. SIMS zircon ages and Nd isotope systematics of the 2.2 Ga mafic intrusions in northern and eastern Finland. Bull. Geol. Soc. Finl. 2010;82:31–62. doi: 10.17741/bgsf/82.1.002. [DOI] [Google Scholar]
  • 65.Solli A. Precambrian Stratigraphy in the Masi Area, Southwestern Finnmark, Norway. Norges geol. Unders. 1983;380:97–105. [Google Scholar]
  • 66.Henderson I.H., Viola G., Nasuti A. A new tectonic model for the Palaeoproterozoic Kautokeino Greenstone Belt, northern Norway, based on high-resolution airborne magnetic data and field structural analysis and implications for mineral potential. Nor. J. Geol. 2015;95:339–363. doi: 10.17850/njg95-3-05. [DOI] [Google Scholar]
  • 67.Steiner B.M. Tools and workflows for grassroots Li–Cs–Ta (LCT) pegmatite exploration. Minerals. 2019;9:499. doi: 10.3390/min9080499. [DOI] [Google Scholar]
  • 68.Vrevskii A.B. Age and sources of the anorthosites of the Neoarchean Kolmozero-Voron’ya greenstone belt (Fennoscandian Shield) Petrology. 2016;24:527–542. doi: 10.1134/S0869591116060060. [DOI] [Google Scholar]
  • 69.Thompson A.B. Calculation of muscovite-paragonite-alkali feldspar phase relations. Contrib. Mineral. Petrol. 1974;44:173–194. doi: 10.1007/BF00413165. [DOI] [Google Scholar]
  • 70.Ambrosio M.R., Azzone R.G. The Influence of Crystal and Melt Compositions On the Ree+y Partitioning Between Clinopyroxene and Basanitic/tephritic Melts of Cretaceous Alkaline Magmatism On the Southeastern Part of the South American Platform, Southeast Brazil. Can. Mineral. 2018;56:303–329. doi: 10.3749/canmin.1700024. [DOI] [Google Scholar]
  • 71.Deer W.A., Howie R.A., Zussman J. An Introduction to the Rock-Forming Minerals. 2nd ed. Pearson; Harlow, UK: 1992. [Google Scholar]
  • 72.Schliestedt M. Ph.D. Thesis. Technische Universität Braunschweig; Braunschweig, Germany: 1980. Phasengleichgewichte in Hochdruckgesteinen von Sifnos, Griechenland. [Google Scholar]
  • 73.Tappert M.C., Rivard B., Giles D., Tappert R., Mauger A. The mineral chemistry, near-infrared, and mid-infrared reflectance spectroscopy of phengite from the Olympic Dam IOCG deposit, South Australia. Ore Geol. Rev. 2013;53:26–38. doi: 10.1016/j.oregeorev.2012.12.006. [DOI] [Google Scholar]
  • 74.Liu W., Zhang S., Wang W., Zhang J., Yan W., Deng J., Feng Q., Huang Y. The effects of Ca (II) and Mg (II) ions on the flotation of spodumene using NaOL. Miner. Eng. 2015;79:40–46. doi: 10.1016/j.mineng.2015.05.008. [DOI] [Google Scholar]
  • 75.Ion Radius. [(accessed on 20 February 2023)]. Available online: http://www.chemmix.edu.pl/artnet/print.php?s1=03&s2=004&s3=000.
  • 76.Bloise A., Pingitore V., Miriello D., Apollaro C., Armentano D., Barrese E., Oliva A. Flux growth and characterization of Ti-and Ni-doped enstatite single crystals. J. Cryst. Growth. 2011;329:86–91. doi: 10.1016/j.jcrysgro.2011.06.052. [DOI] [Google Scholar]
  • 77.Bronzite IR spectra: Bronzite R040093, RRUFF Database: Raman, X-ray, Infrared, and Chemistry. [(accessed on 20 February 2023)]. Available online: https://rruff.info/bronzite/R040093.
  • 78.Zhang Y., Shi G. Origin of Blue-Water Jadeite Jades from Myanmar and Guatemala: Differentiation by Non-Destructive Spectroscopic Techniques. Crystals. 2022;12:1448. doi: 10.3390/cryst12101448. [DOI] [Google Scholar]
  • 79.Muscovite IR Spectra. [(accessed on 20 February 2023)]. Available online: https://rruff.info/Muscovite/R040108.
  • 80.Vieceli N., Nogueira C.A., Pereira M.F., Dias A.P.S., Durão F.O., Guimarães C., Margarido F. Effects of mechanical activation on lithium extraction from a lepidolite ore concentrate. Miner. Eng. 2017;102:1–14. doi: 10.1016/j.mineng.2016.12.001. [DOI] [Google Scholar]
  • 81.Juchem P.L., de Brum T.M.M., Fischer A.C., Balzaretti N.M., Augustin A.H. Fuchsite quartzite as an imitation of emerald. J. Gemmol. -Lond. 2006;30:207. doi: 10.15506/JoG.2006.30.3.207. [DOI] [Google Scholar]
  • 82.Navas A.S., Reddy B.J., Nieto F. Spectroscopic study of chromium, iron, OH, fluid and mineral inclusions in uvarovite and fuchsite. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2004;60:2261–2268. doi: 10.1016/j.saa.2003.11.024. [DOI] [PubMed] [Google Scholar]
  • 83.Takasawa K., Sakae T., Tateyama H. Nickeliferous fuchsite in the quartz-magnesite rock from the Setogawa Group. Japan. Clay Sci. 1976;5:57–65. [Google Scholar]
  • 84.Sartori F., Franzini M., Merlino S. Crystal structure of a 2M2 lepidolite. Acta Crystallogr. Sect. B: Struct. Crystallogr. Cryst. Chem. 1973;29:573–578. doi: 10.1107/S0567740873002931. [DOI] [Google Scholar]
  • 85.Sartori F. The crystal structure of a 2 M 1 lepidolite. Tschermaks Mineral. Und Petrogr. Mitteilungen. 1977;24:23–37. doi: 10.1007/BF01081743. [DOI] [Google Scholar]
  • 86.Brown B.E. The crystal structure of a 3lepidolite. Am. Mineral. 1978;63:332–336. [Google Scholar]
  • 87.Takeda H., Haga N., Sadanaga R. Structural investigation of polymorphic transition between 2M2-, 1M-lepidolite and 2M1 muscovite. Mineral. J. 1971;6:203–215. doi: 10.2465/minerj1953.6.203. [DOI] [Google Scholar]
  • 88.He G.C., Xiang H.M., Jiang W., Kang Q., Chen J.H. First-principles theory on electronic structure and floatability of spodumene. Rare Met. 2014;33:742–748. doi: 10.1007/s12598-014-0317-0. [DOI] [Google Scholar]
  • 89.Moon K.S., Fuerstenau D.W. Surface crystal chemistry in selective flotation of spodumene (LiAl [SiO3] 2) from other aluminosilicates. Int. J. Miner. Process. 2003;72:11–24. doi: 10.1016/S0301-7516(03)00084-X. [DOI] [Google Scholar]
  • 90.Prewitt C.T., Burnham C.W. The crystal structure of jadeite, NaAlSi2O6. Am. Mineral. J. Earth Planet. Mater. 1966;51:956–975. [Google Scholar]
  • 91.Nestola F., Tribaudino M., Boffa Ballaran T., Liebske C., Bruno M. The crystal structure of pyroxenes along the jadeite–hedenbergite and jadeite–aegirine joins. Am. Mineral. 2007;92:1492–1501. doi: 10.2138/am.2007.2540. [DOI] [Google Scholar]
  • 92.Pripachkin P.V., Kudryashov N.M., Rundkvist T.V., Morozova L.N. Lithium in pegmatites of the Fennoscandian Shield and operation prospects for the Kolmozero deposit on the Kola Peninsula (Russia) Appl. Earth Sci. 2022;131:179–192. doi: 10.1080/25726838.2022.2089966. [DOI] [Google Scholar]
  • 93.Ghisler M. Fuchsite and chrome-epidote from Fiskenæsset. Rapp. Grønlands Geol. Undersøgelse. 1976;73:67–69. doi: 10.34194/rapggu.v73.7423. [DOI] [Google Scholar]
  • 94.Gordienko V.V., Gordienko V.V., Sergeev A.S., Levskii L.K., Lokhov K.I., Kapitonov I.N., Sergeev S.A. First data in favor of the crystallization model of lithium isotope fractionation in the pegmatitic process. Dokl. Earth Sci. 2007;413:441. doi: 10.1134/S1028334X07030270. [DOI] [Google Scholar]
  • 95.Pekov I.V., Kononkova N.N. Rubidium mineralization in rare-element granitic pegmatites of the Voron’i tundras, Kola Peninsula, Russia. Geochem. Int. 2010;48:695–713. doi: 10.1134/S0016702910070062. [DOI] [Google Scholar]
  • 96.Mueller M., Peltonen P., Eilu P., Goldfarb R., Hanski E. The Mustajärvi orogenic gold occurrence, Central Lapland Greenstone Belt, Finland: A telluride-dominant mineral system. Miner. Depos. 2020;55:1625–1646. doi: 10.1007/s00126-020-00990-w. [DOI] [Google Scholar]
  • 97.Ettner D.C., Bjørlykke A., Andersen T. A fluid inclusion and stable isotope study of the Proterozoic Bidjovagge Au-Cu deposit, Finnmark, northern Norway. Miner. Depos. 1994;29:16–29. doi: 10.1007/BF03326393. [DOI] [Google Scholar]
  • 98.Bradley D.C., McCauley A. A Preliminary Deposit Model for Lithium-Cesium-Tantalum (LCT) Pegmatites. US Department of the Interior, US Geological Survey; Reston, VA, USA: 2013. [DOI] [Google Scholar]
  • 99.El-Enen M.A., Okrusch M., Will T.M. Metapelitic assemblages in the Umm Zariq schists, central western Kid belt, Sinai Peninsula, Egypt. Neues Jahrb. Mineralogie. Abh. 2003;178:277–306. doi: 10.1127/0077-7757/2003/0178-0277. [DOI] [Google Scholar]
  • 100.Maxwell P., Mora M. Lithium and Chile: Looking back and looking forward. Miner. Econ. 2020;33:57–71. doi: 10.1007/s13563-019-00181-8. [DOI] [Google Scholar]
  • 101.Beskin S.M., Marin Y.B. Granite systems with rare-metal pegmatites. Geol. Ore Depos. 2020;62:554–563. doi: 10.1134/S107570152007003X. [DOI] [Google Scholar]
  • 102.Kudryashov N.M., Petrovsky M.N., Mokrushin A.V., Elizarov D.V. Neoarchean sanukitoid magmatism in the Kola region: Geological, petrochemical, geochronological, and isotopic-geochemical data. Petrology. 2013;21:351–374. doi: 10.1134/S0869591113030041. [DOI] [Google Scholar]

Articles from Materials are provided here courtesy of Multidisciplinary Digital Publishing Institute (MDPI)

RESOURCES