Skip to main content
British Journal of Industrial Medicine logoLink to British Journal of Industrial Medicine
. 1992 Sep;49(9):645–647. doi: 10.1136/oem.49.9.645

Influence of the degree of exposure to lead on relations between alcohol consumption and the biological indices of lead exposure: epidemiological study in a lead acid battery factory.

C Cezard 1, C Demarquilly 1, M Boniface 1, J M Haguenoer 1
PMCID: PMC1039309  PMID: 1390270

Abstract

Alcohol has been shown to interact with lead to influence haem biosynthesis. The aim of this study was to define the dependence of this interaction on the degree of exposure to lead. Exposure to alcohol was estimated by measurement of alcohol concentrations in a sample of urine collected during the morning (AlcUM) (0.82 (SD 4.36) mmol/l) and in a sample collected during the afternoon (AlcUA) (1.15 (SD 3.49) mmol/l). The biological monitoring of exposure to lead included measurements of blood lead (Pb-B) (1.82 (SD 0.72) mumol/l), urinary delta-aminolaevulinic acid (ALAU) (35.33 (SD 28.00) mumol/l; d = 1.015), and erythrocyte zinc-protoporphyrin (ZPP) (112.90 (SD 83.71) nmol/mmol Hb) concentrations. The study of the influence of the degree of occupational exposure to lead on relations between alcohol consumption and effects of the exposure to lead led to the consideration of two different groups--namely, mildly and strongly exposed subjects. In the first group, individual biological susceptibility seemed to play a preponderant part. In the second, the pool of lead present in the body seemed to be sufficiently important to mask the effects of individual susceptibility.

Full text

PDF
645

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Allain P., Mauras Y. Microméthode de dosage du plomb et du cadmium dans le sang et l'urine par absorption atomique au four graphite. Clin Chim Acta. 1979 Jan 1;91(1):41–46. doi: 10.1016/0009-8981(79)90468-6. [DOI] [PubMed] [Google Scholar]
  2. Bortoli A., Fazzin G., Marin V., Trabuio G., Zotti S. Relationships between blood lead concentration and aminolevulinic acid dehydratase in alcoholics and workers industrially exposed to lead. Arch Environ Health. 1986 Jul-Aug;41(4):251–260. doi: 10.1080/00039896.1986.9938341. [DOI] [PubMed] [Google Scholar]
  3. Bortoli A., Mattiello G., Zotti S., Bonvicini P., Trabuio G., Fazzin G. Blood-lead levels in patients with chronic liver diseases. Int Arch Occup Environ Health. 1983;52(1):49–57. doi: 10.1007/BF00380607. [DOI] [PubMed] [Google Scholar]
  4. Cardani A., Farina G. Influenza del consumo di bevande alcoliche sulle alterazioni della biosintesi dell'eme indotte dal piombo. Studio su 337 dipendenti di una fabbrica di accumulatori. Med Lav. 1972 Jan-Feb;63(1):22–28. [PubMed] [Google Scholar]
  5. Cortona G., Alessio L. Condizioni di ipersuscettibilità in soggetti professionalmente esposti a piombo inorganico. Med Lav. 1978 Jan-Feb;69(1):50–58. [PubMed] [Google Scholar]
  6. Dally S., Danan M., Buisine A., Hispard E., Girre C., Fournier P. E. Elévation de la plombémie au cours de l'alcoolisme. Relation avec la pression artérielle. Presse Med. 1986 Jun 28;15(26):1227–1229. [PubMed] [Google Scholar]
  7. Grabecki J., Haduch T., Urbanowicz H. Die einfachen Bestimmungsmethoden der delta-Aminolävulinsäure im Harn. Int Arch Arbeitsmed. 1967;23(3):226–240. [PubMed] [Google Scholar]
  8. Grandjean P., Olsen N. B., Hollnagel H. Influence of smoking and alcohol consumption on blood lead levels. Int Arch Occup Environ Health. 1981;48(4):391–397. doi: 10.1007/BF00378687. [DOI] [PubMed] [Google Scholar]
  9. Grasmick C., Huel G., Moreau T., Sarmini H. The combined effect of tobacco and alcohol consumption on the level of lead and cadmium in blood. Sci Total Environ. 1985 Mar 1;41(3):207–217. doi: 10.1016/0048-9697(85)90142-1. [DOI] [PubMed] [Google Scholar]
  10. Meredith P. A., Moore M. R. The in vivo effects of zinc on erythrocyte delta-aminolaevulinic acid dehydratase in man. Int Arch Occup Environ Health. 1980 Feb;45(2):163–168. doi: 10.1007/BF01274135. [DOI] [PubMed] [Google Scholar]
  11. Moore M. R., Meredith P. A. The effect of carbon monoxide upon erythrocyte delta-aminolevulinicacid dehydratase activity. Arch Environ Health. 1979 May-Jun;34(3):158–161. doi: 10.1080/00039896.1979.10667388. [DOI] [PubMed] [Google Scholar]
  12. Schmidt C. Lead determination in blood by atomic absorption spectroscopy. Am Ind Hyg Assoc J. 1979 Dec;40(12):1085–1090. doi: 10.1080/15298667991430730. [DOI] [PubMed] [Google Scholar]
  13. Secchi G. C., Cambiaghi G., Monti M. A., Savoja M. T. Alterazioni del metabolismo porfirinico da cause non professionali. Med Lav. 1978 Jan-Feb;69(1):59–73. [PubMed] [Google Scholar]
  14. Telisman S., Kersanc A., Prpić-Majić D. The relevance of arguments for excluding ALAD from the recommended biological limit values in occupational exposure to inorganic lead (WHO 1980). Int Arch Occup Environ Health. 1982;50(4):397–412. doi: 10.1007/BF00377836. [DOI] [PubMed] [Google Scholar]
  15. Watanabe T., Fujita H., Koizumi A., Chiba K., Miyasaka M., Ikeda M. Baseline level of blood lead concentration among Japanese farmers. Arch Environ Health. 1985 May-Jun;40(3):170–176. doi: 10.1080/00039896.1985.10545912. [DOI] [PubMed] [Google Scholar]

Articles from British Journal of Industrial Medicine are provided here courtesy of BMJ Publishing Group

RESOURCES