Abstract
心肌缺血和心肌梗死后致死性心律失常、心力衰竭和心脏性猝死严重威胁人类健康。近年来研究资料显示,脊髓电刺激可平衡自主神经活性,抑制损伤心肌结构重构,改善缺血心肌的血流量,有效降低心肌缺血和心肌梗死后心律失常、心力衰竭和心脏性猝死的发生率,但其具体机制尚未完全阐明。脊髓电刺激改善心功能的机制可能是抑制神经重构,也可能是改善结构重构和电重构。本文就脊髓电刺激在心肌缺血和心肌梗死中的作用及其机制的研究进展进行综述。
Abstract
Fatal arrhythmias, heart failure, and sudden cardiac death after myocardial ischemia/infarction are serious threats to human health. In recent years, studies have shown that spinal cord stimulation (SCS) can balance autonomic activity, inhibit myocardial structural remodeling, improve blood flow to ischemic myocardium, effectively reduce the incidence of arrhythmia, heart failure and sudden cardiac death after myocardial ischemia/infarction, but its specific mechanism has not yet been fully elucidated. The effect of SCS on cardiac function may be achieved by inhibiting neural remodeling, or by ameliorating structural remodeling and electrical remodeling. This article reviews the progress on the role and mechanism of SCS in myocardial ischemia/infarction.
Keywords: Electric stimulation, Spinal cord, Arrhythmias, Myocardial ischemia, Myocardial infarction, Autonomic nervous system/physiopathology, Review
冠状动脉粥样硬化性心脏病是危害人类健康最主要的疾病之一。心肌缺血和心肌梗死后自主神经功能紊乱会进一步导致心力衰竭、恶性心律失常和心脏性猝死等疾病的发生和发展。平衡自主神经活性及抑制神经重构成为心肌缺血和心肌梗死患者提高远期疗效的重要方法。虽然目前患者药物治疗效果较为满意,联合心脏再同步治疗和植入型心律转复除颤器等器械治疗亦可以大大减少猝死等事件的发生,但积极探索新的干预方法仍是大势所趋。脊髓电刺激(spinal cord stimulation, SCS)是一种重要的神经调节方法,可以调节交感神经及副交感神经活性,改善缺血心肌的血流量,降低心肌缺血和心肌梗死后心脏事件的发生率 [ 1- 2] 。本文通过整理心肌缺血和心肌梗死后神经重构的相关研究,总结SCS改善心肌缺血和心肌梗死后心力衰竭和室性心律失常的研究现状及机制,提出SCS存在的问题及其可能的原因,为心肌缺血和心肌梗死后自主神经调节的进一步研究提供思路。
心肌缺血和心肌梗死可以导致心肌梗死区及梗死周围区神经生长和交感神经过度支配。心脏交感神经活性增加,伴随副交感神经活性降低,两者共同促进心力衰竭、恶性心律失常和心脏性猝死等疾病的发生。
心肌缺血和心肌梗死早期,局部区域交感神经过度支配是启动神经重构的第一步。Chen等 [ 3] 对犬心肌梗死模型进行研究发现,心肌梗死周围神经纤维受损坏死,出现交感神经再生和心肌交感神经不均匀分布,两者共同导致心肌的电生理改变,导致室性心动过速、心室颤动和心脏性猝死等疾病的发生。Nguyen等 [ 4] 对兔心肌梗死模型进行研究,分别于心肌梗死后1周和1个月获取实验兔心脏和双侧星状神经节及血清,结果发现,心肌梗死后1周和1个月,模型动物血清中神经生长因子水平均高于空白对照组,双侧星状神经节中生长相关蛋白43、突触素、酪氨酸羟化酶、胆碱乙酰基转移酶的表达水平较空白对照组均升高,表明心肌梗死后双侧星状神经节中肾上腺素能神经和胆碱能神经均增加。Zhou等 [ 5] 进一步针对其可能的作用机制多位点、多时间段进行探索后发现,心肌梗死后即刻导致梗死区域心肌组织神经生长因子的释放,然后出现生长相关蛋白43表达水平增高,两者逆向轴突运输至双侧星状神经节,触发非梗死区域及左室游离壁的神经生长。其中梗死区域神经生长因子和生长相关蛋白43的表达水平快速且持续增高,是心肌梗死后神经生长的最主要机制。
一些临床研究也发现损伤心肌存在神经重构现象。早在2000年,Cao等 [ 6] 在53例严重器质性心脏病患者心肌研究时发现,与无心血管病史人群比较,前者心肌缺血损伤区交感神经的增长明显增多,发生心律失常位点的心肌组织区域交感神经纤维密度更大,证明严重器质性心脏病致心肌受损后交感神经再生并重新无规律分布可能导致心力衰竭、室性心动过速等恶性心律失常和心脏性猝死的发生 [ 3, 6- 8] 。
目前,针对心肌缺血和心肌梗死后神经重构的基础研究多集中于神经生长因子-酪氨酸蛋白激酶A通路的下游。酪氨酸蛋白激酶A受体是神经生长因子的高亲和力受体。Pellegrino等 [ 9] 对信号传导及转录激活因子3(STAT3)敲除小鼠的颈上神经节研究发现,相比于正常小鼠,STAT3敲除小鼠颈上神经节细胞的轴突生长抑制,神经生长因子与颈上神经节表面的酪氨酸蛋白激酶A受体结合,通过激活细胞外调节蛋白激酶(ERK1/2),催化STAT3分子中S727位的丝氨酸磷酸化,激活STAT3及下游信号分子从而促进神经生长。使用ERK1/2抑制剂U0126后,神经生长因子干预不影响磷酸化STAT3的表达和交感神经节轴突的生长。有研究发现内皮素1可以调节神经生长因子的表达。Ieda等 [ 10] 发现内皮素1使心肌细胞内的神经生长因子表达增加;Lee等 [ 11] 将大鼠急性心肌梗死模型分为三组,分别给予阿曲生坦(ET A受体抑制剂)、A-192621(ET B受体抑制剂)和安慰剂处理4周,结果发现内皮素1与ET A受体结合,通过激活磷脂酰肌醇3激酶(PI3K)/蛋白激酶B(Akt)/糖原合成酶激酶3β(GSK-3β)/活性氧通路上调心肌梗死后神经生长因子的表达,提示ET A受体抑制剂可能是心肌梗死后抑制神经重构的治疗药物。此外,在年幼动物体内,神经营养因子3和神经调节蛋白1也可以与受体酪氨酸蛋白激酶A结合促进神经生长 [ 12] 。
因此,有效抑制心肌缺血和心肌梗死后神经生长可能为控制恶性心血管事件诸如心力衰竭、恶性心律失常、心脏性猝死等疾病的发生提供新的治疗策略。
心力衰竭是心肌缺血和心肌梗死后最常见的并发症之一 [ 13] ,而SCS可有效降低心肌缺血和心肌梗死后心力衰竭的发生率。Liu等 [ 14] 对心肌梗死豚鼠进行快速心室起搏构建心肌梗死后心力衰竭模型,并于T1~T2脊髓节段进行SCS干预,超声心动图显示SCS干预可以改善模型动物左室射血分数, 降低心肌耗氧量。Qiu等 [ 15] 通过大鼠缺血再灌注损伤模型发现,提前5 d对缺血再灌注损伤大鼠进行SCS干预,可以提高模型动物左室射血分数,降低梗死面积并减少心肌酶的释放。Liao等 [ 16] 将SCS装置植入成年豚鼠T1~T3脊髓节段,然后建立心肌梗死模型,通过快速心室起搏4周进一步建立心力衰竭模型,分别给予间歇SCS干预和持续SCS干预, 10周后动物模型心肌梗死区域及其周围交感神经的支配均明显降低,左室射血分数提高,心肌去甲肾上腺素溢出率降低。
室性心律失常是心肌缺血和心肌梗死后另一常见的并发症,是导致心脏性猝死最主要的原因。SCS可以降低心肌缺血和心肌梗死后室性心律失常的发生率,降低猝死的发生。Odenstedt等 [ 17] 研究猪缺血再灌注损伤模型发现,SCS可以降低非持续性和持续性室性心动过速的发生率,减轻心肌缺血及损伤程度,但对梗死区域的作用不显著。Issa等 [ 18] 对犬心肌梗死后心力衰竭模型研究发现,对T1~T2脊髓节段进行SCS处理后,室性心动过速和心室颤动的发生率可大幅度降低。此外,SCS干预后窦性心律减慢、收缩压下降,具有抗交感神经活性的作用。Lopshire等 [ 19] 对犬心肌梗死后心力衰竭模型研究发现,SCS干预10周后左室射血分数明显改善,自发非持续性室性心律失常和缺血性室性心律失常的平均发生率均降低。
虽然SCS对心血管疾病的保护作用已逐渐明确,但其改善心功能的具体机制目前还不是很清楚。现阶段对其机制的研究主要集中于以下几个方面。
SCS是将刺激电极置于椎管的硬膜外间隙,电脉冲发生器以适当频率发出微量电波刺激相应节段的脊髓神经,阻断疼痛信号的传导,从而改善慢性疼痛。SCS的应用基于1965年Melzack和Wall [ 20] 提出的闸门控制理论;1967年Shealy [ 21] 首次报道在脊髓后索植入电极,使用SCS治疗慢性顽固性疼痛的病例;之后逐渐发现SCS对脑缺血、心肌缺血等的作用 [ 22- 25] 。Norrsell等 [ 26] 对10例植入脊髓电刺激器治疗顽固性心绞痛的患者进行研究发现,患者血清去甲肾上腺素溢出率比刺激前减少18%,而心肌组织的去甲肾上腺素溢出率在刺激过程中并没有发生改变。由此可见,SCS治疗可以降低体内总交感神经的活性。多数动物研究也证明SCS可以有效抑制损伤心肌的神经重构过程 [ 27- 29] 。Foreman等 [ 28] 在犬短暂性心肌缺血模型实验中发现,一过性心肌缺血及再灌注早期,心脏自主神经活性较正常犬分别升高46%和68%,而SCS干预可以抑制两者的神经活性,提示SCS不仅可以抑制心脏自主神经元的增殖活性,还可以抑制缺血心肌对已有交感神经元的激活效应。Jacques等 [ 29] 在犬T1~T4脊髓节段经硬膜外腔植入SCS装置后发现,犬心房肌迷走神经活性增加,且该作用依赖于中枢神经和星状神经节的完整性。
但是, 有少数研究结果与上述不同。Naar等 [ 30] 对13例来自DEFEAT-HF研究 [ 31] 的心力衰竭患者进行交叉研究,SCS介入干预T2~T4脊髓节段,持续刺激6周后发现10例患者的左室射血分数明显增加,但并未发现其对心脏交感神经活性的影响。进一步研究心力衰竭相关的生物标志物,结果除了超敏肌钙蛋白T外,其他炎症因子及细胞因子如C反应蛋白、IL-1和TNF-α等均无明显变化。此外,10例患者静脉血去甲肾上腺素、肾素和醛固酮水平也未见明显变化 [ 32] 。可能的原因如下:首先,临床上大多数心力衰竭患者均有长达数年的慢性器质性心脏病变,心肌持续存在结构重构、电重构和神经重构,而动物实验一般为建模成功后数月甚至数天,两者在病程持续时间上不同;其次,大多数心力衰竭患者年龄在60岁左右,神经纤维和心肌细胞增殖能力较适龄动物弱。
自主神经系统是脊椎动物的末梢神经系统,由躯体神经分化、发展逐渐形成功能独立的神经系统。自主神经系统主要由传出神经组成,其中交感神经的节前神经纤维下行至星状神经节处换元,节后神经纤维继续下行分布于靶器官。近年来,大量研究发现SCS干预可以调节星状神经节和心脏固有神经的突触传递效率。Smith等 [ 33] 采用标准细胞内微电极技术刺激神经节突触,记录相应的下行神经纤维兴奋性突触后电位数量,发现长期持续性高频SCS干预较急性SCS干预心脏神经丛出现更多的兴奋性突触后电位。这些兴奋性突触后电位可被阿托品阻断, 显示SCS可以提高副交感神经活性,维持病理状态下交感和副交感活性的平衡。Wang等 [ 34] 在犬急性心肌梗死前1 h进行SCS干预,采用刺激左侧星状神经节后记录血压升高值的方法检测神经节功能,结果发现,急性心肌梗死后左侧星状神经节功能增强,而SCS干预可有效弱化这种效应。一些相关研究也支持该论点 [ 16, 33- 35] 。
SCS抑制损伤心肌电重构和结构重构可能是其保护心功能的另一机制。Wang等 [ 36] 在快速心房起搏所致犬心房颤动模型中发现,SCS干预可使心房肌细胞有效不应期明显延长,有效不应期离散度降低,心房颤动易感性降低。进一步研究发现,模型动物经SCS干预后2型小电导钙激活钾通道蛋白表达水平显著增强,推测SCS可以通过改善心肌电重构降低心房颤动的易感性。有研究发现,SCS可以抑制心肌细胞的凋亡、纤维化以及缺血心肌的结构重构。Qiu等 [ 15] 对大鼠缺血再灌注损伤模型研究发现,提前5 d对缺血再灌注损伤大鼠进行SCS治疗后,心肌凋亡蛋白bax和caspase-3表达水平显著降低,抗凋亡蛋白bcl-2表达水平显著升高,bcl-2/bax比值明显升高。
此外,SCS可以减少损伤心肌处神经纤维对疼痛信号的传导 [ 37] 。一些动物实验研究结果显示,SCS可以降低疼痛的敏感性,提高疼痛的阈值。Wang等 [ 36] 研究发现, 左侧星状神经节中即刻早期基因 c-fos和神经生长因子的表达量降低,提示SCS不仅可以改变自主神经系统功能,而且会降低心脏对伤害性刺激感受的敏感性,即提高对疼痛感知的阈值。Tilley等 [ 38] 对大鼠周围神经损伤模型的研究显示,SCS干预可降低IL-1b和IL-6的表达水平,减轻机体的炎症反应;此外,氨基丁酸B受体和钠钾ATP酶等的表达降低,可能与较大电流在背根神经节以及脊髓中呈线性减少有关。
综上所述,SCS干预可以改善心肌缺血和心肌梗死后心肌的神经重构,降低心脏交感神经活性,并提高迷走神经活性,延缓心功能恶化的速度,减轻恶化的程度。此外,SCS还可以改善损伤心肌的结构重构和电生理特性,提高疼痛的感受阈值。这可能也是SCS改善心肌缺血和心肌梗死后心功能的又一机制。但是,SCS的刺激电极直接作用于何种神经,通过何种机制影响交感神经和副交感神经目前还不明确。
SCS等神经调节疗法是心血管疾病尤其是顽固性心绞痛、心肌缺血和心肌梗死等疾病的新兴治疗方式,目前在动物实验和临床研究中已取得初步成效,但仍有一些问题有待解决。第一,SCS治疗方案涉及的相关问题,如电极的精确定位及置放后的有效固定、动物和人体应用中相关参数的设定、电刺激的最佳持续时间、长时间皮下固定的创口破损和感染问题等。第二,尽管大多数研究证实SCS能改善心肌缺血和心肌梗死后心功能,降低室性心律失常、心力衰竭和心脏性猝死的发生率,但具体机制的研究仍处于初步阶段,有待进一步探索。首先,SCS是否通过炎症、凋亡等机制或某些转录因子干预心脏的自主神经重构?表观遗传学(甲基化修饰、乙酰化修饰等)或非编码RNA(如环状RNA、微RNA、长链非编码RNA)是否也参与调节作用?这些都是值得深入探讨的问题。其次,SCS对心脏自主神经产生的某些影响究竟是通过刺激何种神经纤维,又是通过何种神经通路将该影响传递到靶器官?在光遗传学不断发展的背景下,这也是需要深思和研究的课题。最后,SCS干预后相关神经中枢的变化也有待探究。
SCS具有安全性和可调节性等优点,虽然其在心肌缺血和心肌梗死中的作用已经比较明确,但其如何改善心肌缺血和心肌梗死后心功能的电生理机制和分子机制尚未清楚。随着对相关作用机制的深入研究,SCS介入治疗在心血管疾病中将会扮演更为重要的角色,其研究和应用前景将更加广阔。
Funding Statement
国家重点研发计划(2016YFC1301003)
References
- 1.SWISSA M, ZHOU S, GONZALEZ-GOMEZ I, et al. Long-term subthreshold electrical stimulation of the left stellate ganglion and a canine model of sudden cardiac death. J Am Coll Cardiol. 2004;43(5):858–864. doi: 10.1016/j.jacc.2003.07.053. [SWISSA M, ZHOU S, GONZALEZ-GOMEZ I, et al. Long-term subthreshold electrical stimulation of the left stellate ganglion and a canine model of sudden cardiac death[J]. J Am Coll Cardiol, 2004, 43(5):858-864.] [DOI] [PubMed] [Google Scholar]
- 2.HOWARD-QUIJANO K, TAKAMIYA T, DALE E A, et al. Spinal cord stimulation reduces ventricular arrhythmias during acute ischemia by attenuation of regional myocardial excitability. Am J Physiol Heart Circ Physiol. 2017;313(2):H421–H431. doi: 10.1152/ajpheart.00129.2017. [HOWARD-QUIJANO K, TAKAMIYA T, DALE E A, et al. Spinal cord stimulation reduces ventricular arrhythmias during acute ischemia by attenuation of regional myocardial excitability[J]. Am J Physiol Heart Circ Physiol, 2017, 313(2):H421-H431.] [DOI] [PMC free article] [PubMed] [Google Scholar]
- 3.CHEN P S, CHEN L S, CAO J M, et al. Sympathetic nerve sprouting, electrical remodeling and the mechanisms of sudden cardiac death. Cardiovasc Res. 2001;50(2):409–416. doi: 10.1016/S0008-6363(00)00308-4. [CHEN P S, CHEN L S, CAO J M, et al. Sympathetic nerve sprouting, electrical remodeling and the mechanisms of sudden cardiac death[J]. Cardiovasc Res, 2001, 50(2):409-416.] [DOI] [PubMed] [Google Scholar]
- 4.NGUYEN B L, LI H, FISHBEIN M C, et al. Acute myocardial infarction induces bilateral stellate ganglia neural remodeling in rabbits. Cardiovasc Pathol. 2012;21(3):143–148. doi: 10.1016/j.carpath.2011.08.001. [NGUYEN B L, LI H, FISHBEIN M C, et al. Acute myocardial infarction induces bilateral stellate ganglia neural remodeling in rabbits[J]. Cardiovasc Pathol, 2012, 21(3):143-148.] [DOI] [PMC free article] [PubMed] [Google Scholar]
- 5.ZHOU S, CHEN L S, MIYAUCHI Y, et al. Mechanisms of cardiac nerve sprouting after myocardial infarction in dogs. Circ Res. 2004;95(1):76–83. doi: 10.1161/01.RES.0000133678.22968.e3. [ZHOU S, CHEN L S, MIYAUCHI Y, et al. Mechanisms of cardiac nerve sprouting after myocardial infarction in dogs[J]. Circ Res, 2004, 95(1):76-83.] [DOI] [PubMed] [Google Scholar]
- 6.CAO J M, FISHBEIN M C, HAN J B, et al. Relationship between regional cardiac hyperinnervation and ventricular arrhythmia. Circulation. 2000;101(16):1960–1969. doi: 10.1161/01.CIR.101.16.1960. [CAO J M, FISHBEIN M C, HAN J B, et al. Relationship between regional cardiac hyperinnervation and ventricular arrhythmia[J]. Circulation, 2000, 101(16):1960-1969.] [DOI] [PubMed] [Google Scholar]
- 7.HARDWICK J C, RYAN S E, BEAUMONT E, et al. Dynamic remodeling of the guinea pig intrinsic cardiac plexus induced by chronic myocardial infarction. Auton Neurosci. 2014;181:4–12. doi: 10.1016/j.autneu.2013.10.008. [HARDWICK J C, RYAN S E, BEAUMONT E, et al. Dynamic remodeling of the guinea pig intrinsic cardiac plexus induced by chronic myocardial infarction[J]. Auton Neurosci, 2014, 181:4-12.] [DOI] [PMC free article] [PubMed] [Google Scholar]
- 8.FALLEN E L, COATES G, NAHMIAS C, et al. Recovery rates of regional sympathetic reinnervation and myocardial blood flow after acute myocardial infarction. Am Heart J. 1999;137(5):863–869. doi: 10.1016/S0002-8703(99)70410-2. [FALLEN E L, COATES G, NAHMIAS C, et al. Recovery rates of regional sympathetic reinnervation and myocardial blood flow after acute myocardial infarction[J]. Am Heart J, 1999, 137(5):863-869.] [DOI] [PubMed] [Google Scholar]
- 9.PELLEGRINO M J, HABECKER B A. STAT3 integrates cytokine and neurotrophin signals to promote sympathetic axon regeneration. Mol Cell Neurosci. 2013;56:272–282. doi: 10.1016/j.mcn.2013.06.005. [PELLEGRINO M J, HABECKER B A. STAT3 integrates cytokine and neurotrophin signals to promote sympathetic axon regeneration[J]. Mol Cell Neurosci, 2013, 56:272-282.] [DOI] [PMC free article] [PubMed] [Google Scholar]
- 10.IEDA M, FUKUDA K, HISAKA Y, et al. Endothelin-1 regulates cardiac sympathetic innervation in the rodent heart by controlling nerve growth factor expression. J Clin Invest. 2004;113(6):876–884. doi: 10.1172/JCI200419480. [IEDA M, FUKUDA K, HISAKA Y, et al. Endothelin-1 regulates cardiac sympathetic innervation in the rodent heart by controlling nerve growth factor expression[J]. J Clin Invest, 2004, 113(6):876-884.] [DOI] [PMC free article] [PubMed] [Google Scholar]
- 11.LEE T M, CHANG N C, LIN S Z. Inhibition of infarction-induced sympathetic innervation with endothelin receptor antagonism via a PI3K/GSK-3beta-dependent pathway. Lab Invest. 2017;97(3):243–255. doi: 10.1038/labinvest.2016.138. [LEE T M, CHANG N C, LIN S Z. Inhibition of infarction-induced sympathetic innervation with endothelin receptor antagonism via a PI3K/GSK-3beta-dependent pathway[J]. Lab Invest, 2017, 97(3):243-255.] [DOI] [PubMed] [Google Scholar]
- 12.LAI X, ZHONG L, FU H X, et al. Effects of neuregulin-1 on autonomic nervous system remodeling post-myocardial infarction in a rat model. Neural Regen Res. 2017;12(11):1905–1910. doi: 10.4103/1673-5374.219054. [LAI X, ZHONG L, FU H X, et al. Effects of neuregulin-1 on autonomic nervous system remodeling post-myocardial infarction in a rat model[J]. Neural Regen Res, 2017, 12(11):1905-1910.] [DOI] [PMC free article] [PubMed] [Google Scholar]
- 13.LIEW R, CHIAM P T. Risk stratification for sudden cardiac death after acute myocardial infarction. Ann Acad Med Singapore. 2010;39(3):237–246. [LIEW R, CHIAM P T. Risk stratification for sudden cardiac death after acute myocardial infarction[J]. Ann Acad Med Singapore, 2010, 39(3):237-246.] [PubMed] [Google Scholar]
- 14.LIU Y, YUE W S, LIAO S Y, et al. Thoracic spinal cord stimulation improves cardiac contractile function and myocardial oxygen consumption in a porcine model of ischemic heart failure. J Cardiovasc Electrophysiol. 2012;23(5):534–540. doi: 10.1111/jce.2012.23.issue-5. [LIU Y, YUE W S, LIAO S Y, et al. Thoracic spinal cord stimulation improves cardiac contractile function and myocardial oxygen consumption in a porcine model of ischemic heart failure[J]. J Cardiovasc Electrophysiol, 2012, 23(5):534-540.] [DOI] [PubMed] [Google Scholar]
- 15.QIU Y, LI T, LI H, et al. Continuous spinal cord stimulation reduced cardiac ischaemia/reperfusion injury in a rat model. Heart Lung Circ. 2012;21(9):564–571. doi: 10.1016/j.hlc.2012.05.007. [QIU Y, LI T, LI H, et al. Continuous spinal cord stimulation reduced cardiac ischaemia/reperfusion injury in a rat model[J]. Heart Lung Circ, 2012, 21(9):564-571.] [DOI] [PubMed] [Google Scholar]
- 16.LIAO S Y, LIU Y, ZUO M, et al. Remodelling of cardiac sympathetic re-innervation with thoracic spinal cord stimulation improves left ventricular function in a porcine model of heart failure. Europace. 2015;17(12):1875–1883. doi: 10.1093/europace/euu409. [LIAO S Y, LIU Y, ZUO M, et al. Remodelling of cardiac sympathetic re-innervation with thoracic spinal cord stimulation improves left ventricular function in a porcine model of heart failure[J]. Europace, 2015, 17(12):1875-1883.] [DOI] [PubMed] [Google Scholar]
- 17.ODENSTEDT J, LINDEROTH B, BERGFELDT L, et al. Spinal cord stimulation effects on myocardial ischemia, infarct size, ventricular arrhythmia, and noninvasive electrophysiology in a porcine ischemia-reperfusion model. Heart Rhythm. 2011;8(6):892–898. doi: 10.1016/j.hrthm.2011.01.029. [ODENSTEDT J, LINDEROTH B, BERGFELDT L, et al. Spinal cord stimulation effects on myocardial ischemia, infarct size, ventricular arrhythmia, and noninvasive electrophysiology in a porcine ischemia-reperfusion model[J]. Heart Rhythm, 2011, 8(6):892-898.] [DOI] [PubMed] [Google Scholar]
- 18.ISSA Z F, ZHOU X, UJHELYI M R, et al. Thoracic spinal cord stimulation reduces the risk of ischemic ventricular arrhythmias in a postinfarction heart failure canine model. Circulation. 2005;111(24):3217–3220. doi: 10.1161/CIRCULATIONAHA.104.507897. [ISSA Z F, ZHOU X, UJHELYI M R, et al. Thoracic spinal cord stimulation reduces the risk of ischemic ventricular arrhythmias in a postinfarction heart failure canine model[J]. Circulation, 2005, 111(24):3217-3220.] [DOI] [PubMed] [Google Scholar]
- 19.LOPSHIRE J C, ZHOU X, DUSA C, et al. Spinal cord stimulation improves ventricular function and reduces ventricular arrhythmias in a canine postinfarction heart failure model. Circulation. 2009;120(4):286–294. doi: 10.1161/CIRCULATIONAHA.108.812412. [LOPSHIRE J C, ZHOU X, DUSA C, et al. Spinal cord stimulation improves ventricular function and reduces ventricular arrhythmias in a canine postinfarction heart failure model[J]. Circulation, 2009, 120(4):286-294.] [DOI] [PubMed] [Google Scholar]
- 20.MELZACK R, WALL P D. Pain mechanisms:a new theory. Science. 1965;150(3699):971–979. doi: 10.1126/science.150.3699.971. [MELZACK R, WALL P D. Pain mechanisms:a new theory[J]. Science, 1965, 150(3699):971-979.] [DOI] [PubMed] [Google Scholar]
- 21.SHEALY C N, MORTIMER J T, RESWICK J B. Electrical inhibition of pain by stimulation of the dorsal columns:preliminary clinical report. http://www.ncbi.nlm.nih.gov/pubmed/4952225. Anesth Analg. 1967;46(4):489–491. [SHEALY C N, MORTIMER J T, RESWICK J B. Electrical inhibition of pain by stimulation of the dorsal columns:preliminary clinical report[J]. Anesth Analg, 1967, 46(4):489-491.] [PubMed] [Google Scholar]
- 22.SAGHER O, HUANG D L. Effects of cervical spinal cord stimulation on cerebral blood flow in the rat. http://www.ncbi.nlm.nih.gov/pubmed/10879761. J Neurosurg. 2000;93(1 Suppl):71–76. doi: 10.3171/spi.2000.93.1.0071. [SAGHER O, HUANG D L. Effects of cervical spinal cord stimulation on cerebral blood flow in the rat[J]. J Neurosurg, 2000, 93(1 Suppl):71-76.] [DOI] [PubMed] [Google Scholar]
- 23.SAGHER O, HUANG D L, KEEP R F. Spinal cord stimulation reducing infarct volume in a model of focal cerebral ischemia in rats. J Neurosurg. 2003;99(1):131–137. doi: 10.3171/jns.2003.99.1.0131. [SAGHER O, HUANG D L, KEEP R F. Spinal cord stimulation reducing infarct volume in a model of focal cerebral ischemia in rats[J]. J Neurosurg, 2003, 99(1):131-137.] [DOI] [PubMed] [Google Scholar]
- 24.LEE J Y, HUANG D L, KEEP R, et al. Effect of electrical stimulation of the cervical spinal cord on blood flow following subarachnoid hemorrhage. J Neurosurg. 2008;109(6):1148–1154. doi: 10.3171/JNS.2008.109.12.1148. [LEE J Y, HUANG D L, KEEP R, et al. Effect of electrical stimulation of the cervical spinal cord on blood flow following subarachnoid hemorrhage[J]. J Neurosurg, 2008, 109(6):1148-1154.] [DOI] [PubMed] [Google Scholar]
- 25.HOSOBUCHI Y. Electrical stimulation of the cervical spinal cord increases cerebral blood flow in humans. http://www.ncbi.nlm.nih.gov/pubmed/3879799. Appl Neurophysiol. 1985;48(1-6):372–376. doi: 10.1159/000101161. [HOSOBUCHI Y. Electrical stimulation of the cervical spinal cord increases cerebral blood flow in humans[J]. Appl Neurophysiol, 1985, 48(1-6):372-376.] [DOI] [PubMed] [Google Scholar]
- 26.NORRSELL H, ELIASSON T, MANNHEIMER C, et al. Effects of pacing-induced myocardial stress and spinal cord stimulation on whole body and cardiac norepinephrine spillover. Eur Heart J. 1997;18(12):1890–1896. doi: 10.1093/oxfordjournals.eurheartj.a015197. [NORRSELL H, ELIASSON T, MANNHEIMER C, et al. Effects of pacing-induced myocardial stress and spinal cord stimulation on whole body and cardiac norepinephrine spillover[J]. Eur Heart J, 1997, 18(12):1890-1896.] [DOI] [PubMed] [Google Scholar]
- 27.MANNHEIMER C, ELIASSON T, ANDERSSON B, et al. Effects of spinal cord stimulation in angina pectoris induced by pacing and possible mechanisms of action. BMJ. 1993;307(6902):477–480. doi: 10.1136/bmj.307.6902.477. [MANNHEIMER C, ELIASSON T, ANDERSSON B, et al. Effects of spinal cord stimulation in angina pectoris induced by pacing and possible mechanisms of action[J]. BMJ, 1993, 307(6902):477-480.] [DOI] [PMC free article] [PubMed] [Google Scholar]
- 28.FOREMAN R D, LINDEROTH B, ARDELL J L, et al. Modulation of intrinsic cardiac neurons by spinal cord stimulation:implications for its therapeutic use in angina pectoris. Cardiovasc Res. 2000;47(2):367–375. doi: 10.1016/S0008-6363(00)00095-X. [FOREMAN R D, LINDEROTH B, ARDELL J L, et al. Modulation of intrinsic cardiac neurons by spinal cord stimulation:implications for its therapeutic use in angina pectoris[J]. Cardiovasc Res, 2000, 47(2):367-375.] [DOI] [PubMed] [Google Scholar]
- 29.JACQUES F, CARDINAL R, YIN Y, et al. Spinal cord stimulation causes potentiation of right vagus nerve effects on atrial chronotropic function and repolarization in canines. J Cardiovasc Electrophysiol. 2011;22(4):440–447. doi: 10.1111/j.1540-8167.2010.01915.x. [JACQUES F, CARDINAL R, YIN Y, et al. Spinal cord stimulation causes potentiation of right vagus nerve effects on atrial chronotropic function and repolarization in canines[J]. J Cardiovasc Electrophysiol, 2011, 22(4):440-447.] [DOI] [PubMed] [Google Scholar]
- 30.NAAR J, JAYE D, LINDE C, et al. Effects of spinal cord stimulation on cardiac sympathetic nerve activity in patients with heart failure. Pacing Clin Electrophysiol. 2017;40(5):504–513. doi: 10.1111/pace.2017.40.issue-5. [NAAR J, JAYE D, LINDE C, et al. Effects of spinal cord stimulation on cardiac sympathetic nerve activity in patients with heart failure[J]. Pacing Clin Electrophysiol, 2017, 40(5):504-513.] [DOI] [PubMed] [Google Scholar]
- 31.ZIPES D P, NEUZIL P, THERES H, et al. Determining the feasibility of spinal cord neuromodulation for the treatment of chronic systolic heart failure:the DEFEAT-HF study. JACC Heart Fail. 2016;4(2):129–136. doi: 10.1016/j.jchf.2015.10.006. [ZIPES D P, NEUZIL P, THERES H, et al. Determining the feasibility of spinal cord neuromodulation for the treatment of chronic systolic heart failure:the DEFEAT-HF study[J]. JACC Heart Fail, 2016, 4(2):129-136.] [DOI] [PubMed] [Google Scholar]
- 32.NAAR J, JAYE D, LINDE C, et al. Spinal cord stimulation in heart failure:effect on disease-associated biomarkers. Eur J Heart Fail. 2017;19(2):283–286. doi: 10.1002/ejhf.2017.19.issue-2. [NAAR J, JAYE D, LINDE C, et al. Spinal cord stimulation in heart failure:effect on disease-associated biomarkers[J]. Eur J Heart Fail, 2017, 19(2):283-286.] [DOI] [PubMed] [Google Scholar]
- 33.SMITH F M, VERMEULEN M, CARDINAL R. Long-term spinal cord stimulation modifies canine intrinsic cardiac neuronal properties and ganglionic transmission during high-frequency repetitive activation. https://www.researchgate.net/publication/305213682_Long-term_spinal_cord_stimulation_modifies_canine_intrinsic_cardiac_neuronal_properties_and_ganglionic_transmission_during_high-frequency_repetitive_activation/fulltext/578504fb08aec5c2e4e10f75/305213682_Long-term_spinal_cord_stimulation_modifies_canine_intrinsic_cardiac_neuronal_properties_and_ganglionic_transmission_during_high-frequency_repetitive_activation.pdf. Physiol Rep. 2016;4(13) doi: 10.14814/phy2.12855. [SMITH F M, VERMEULEN M, CARDINAL R. Long-term spinal cord stimulation modifies canine intrinsic cardiac neuronal properties and ganglionic transmission during high-frequency repetitive activation[J]. Physiol Rep, 2016, 4(13).] [DOI] [PMC free article] [PubMed] [Google Scholar]
- 34.WANG S, ZHOU X, HUANG B, et al. Spinal cord stimulation protects against ventricular arrhythmias by suppressing left stellate ganglion neural activity in an acute myocardial infarction canine model. Heart Rhythm. 2015;12(7):1628–1635. doi: 10.1016/j.hrthm.2015.03.023. [WANG S, ZHOU X, HUANG B, et al. Spinal cord stimulation protects against ventricular arrhythmias by suppressing left stellate ganglion neural activity in an acute myocardial infarction canine model[J]. Heart Rhythm, 2015, 12(7):1628-1635.] [DOI] [PubMed] [Google Scholar]
- 35.YU L, HUANG B, HE W, et al. Spinal cord stimulation suppresses focal rapid firing-induced atrial fibrillation by inhibiting atrial ganglionated plexus activity. J Cardiovasc Pharmacol. 2014;64(6):554–559. doi: 10.1097/FJC.0000000000000154. [YU L, HUANG B, HE W, et al. Spinal cord stimulation suppresses focal rapid firing-induced atrial fibrillation by inhibiting atrial ganglionated plexus activity[J]. J Cardiovasc Pharmacol, 2014, 64(6):554-559.] [DOI] [PubMed] [Google Scholar]
- 36.WANG S, ZHOU X, HUANG B, et al. Spinal cord stimulation suppresses atrial fibrillation by inhibiting autonomic remodeling. Heart Rhythm. 2016;13(1):274–281. doi: 10.1016/j.hrthm.2015.08.018. [WANG S, ZHOU X, HUANG B, et al. Spinal cord stimulation suppresses atrial fibrillation by inhibiting autonomic remodeling[J]. Heart Rhythm, 2016, 13(1):274-281.] [DOI] [PubMed] [Google Scholar]
- 37.RAJENDRAN P S, NAKAMURA K, AJIJOLA O A, et al. Myocardial infarction induces structural and functional remodelling of the intrinsic cardiac nervous system. J Physiol. 2016;594(2):321–341. doi: 10.1113/JP271165. [RAJENDRAN P S, NAKAMURA K, AJIJOLA O A, et al. Myocardial infarction induces structural and functional remodelling of the intrinsic cardiac nervous system[J]. J Physiol, 2016, 594(2):321-341.] [DOI] [PMC free article] [PubMed] [Google Scholar]
- 38.TILLEY D M, CEDEÑO D L, KELLEY C A, et al. Changes in dorsal root ganglion gene expression in response to spinal cord stimulation. Reg Anesth Pain Med. 2017;42(2):246–251. doi: 10.1097/AAP.0000000000000550. [TILLEY D M, CEDEÑO D L, KELLEY C A, et al. Changes in dorsal root ganglion gene expression in response to spinal cord stimulation[J]. Reg Anesth Pain Med, 2017, 42(2):246-251.] [DOI] [PubMed] [Google Scholar]