Skip to main content
Journal of Zhejiang University (Medical Sciences) logoLink to Journal of Zhejiang University (Medical Sciences)
. 2018 Jun 25;47(3):219–226. [Article in Chinese] doi: 10.3785/j.issn.1008-9292.2018.06.01

高苯丙氨酸血症表型与基因型研究进展

Research progress on phenotype and genotype of hyperphenylalaninemia

Ting CHEN 1, Zhengyan ZHAO 2, Pingping JIANG 3, Qiang SHU 1,*
PMCID: PMC10393690  PMID: 30226320

Abstract

Hyperphenylalaninemia(HPA), an autosomal recessive disease, is the most common inborn error of amino acid metabolism, caused by the deficiency of phenylalanine hydroxylase(PAH) or tetrahydrobiopterin(BH4) which induced by mutations of genes. The accumulation of the clinical database and genetic information will enhance the development of novel personalized medicine and to provide more accurate and timely diagnostic and therapeutic approaches for HPA. This paper summarizes the correlations between HPA metabolism and PAH, BH4, pathogenic genes and their distributions in HPA, as well as the phenotypes and genotypes of HPA, so as to provide reference for personalized medicine for HPA.

Keywords: Phenylketonurias/genetics, Phenylalanine hydroxylase, Biopterin/metabolism, Phenotype, Genotype, Review


高苯丙氨酸血症(hyperphenylalaninemia,HPA)是最常见的先天性、常染色体隐性遗传的氨基酸代谢病,是指患者血苯丙氨酸浓度在120 μmol/L(2 mg/dL)以上及血苯丙氨酸浓度与酪氨酸浓度比值在2.0以上。HPA由苯丙氨酸羟化酶(phenylalanine hydroxylase, PAH)或辅酶四氢生物蝶呤(tetrahydrobiopterin, BH4)缺乏所致。根据2014年《高苯丙氨酸血症的诊治共识》 [ 1] ,临床上将HPA分为两大类:PAH缺乏症和BH4缺乏症。其中,PAH缺乏症可根据血苯丙氨酸浓度进一步分为经典型苯丙酮尿症、轻度苯丙酮尿症和轻度HPA。BH4代谢需要五种酶,缺乏任意一种即导致BH4缺乏症,其中6-丙酮酰四氢蝶呤合成酶(6-pyruvoyl tetrahydropterinsynthase,PTPS)缺乏症最常见,其次为二氢蝶啶还原酶(dihydropteridine reductase,DHPR)缺乏症。我国大部分地区HPA中BH4缺乏症的发生率为10%~15% [ 2] 。随着我国出生缺陷筛查普及,HPA已成为我国遗传代谢病防治的典型。随着临床数据的积累和基因检测体系的完善,HPA的诊断有望逐步从生化诊断转变为基因诊断,为及时、准确的治疗提供依据。本文对近年来HPA表型与基因型研究进展进行总结,为HPA的个性化治疗提供参考。

苯丙氨酸的正常代谢需要PAH和BH4共同参与( 图 1)。PAH是苯丙氨酸羟化为酪氨酸的限速酶,在肝脏中代谢苯丙氨酸,受 PAH基因调控。人PAH在细胞质中以二聚体或活性四聚体形式存在,两者间的平衡依赖于细胞内酸碱度。PAH的结构改变和基因突变会影响自身的酶活性。PAH蛋白分为三个功能区域:调控域(regulatory domain)、催化域(catalytic domain)和寡聚域(oligomerization domain) [ 3] 。通常来说,底物苯丙氨酸与四聚体PAH调控域相结合,可以激活PAH,同时调控域Ser16的磷酸化能强化两者的结合 [ 4] 。BH4与PAH催化域相结合,可以稳定PAH的三维结构,防止蛋白水解和错误折叠 [ 5]

graphic file with name zjdxxbyxb-47-3-219-1.jpg

BH4不仅是PAH的辅酶,也是酪氨酸羟化酶(tyrosine hydroxylase, TH)和色氨酸羟化酶(tryptophane hydroxylase, TPH)的辅酶,其合成代谢中任何一种合成酶或还原酶缺乏均可导致BH4缺乏,从而降低PAH、TH和TPH的活性,进一步影响脑内神经递质(如多巴胺、5-羟色胺)的合成,导致患者出现严重的神经系统症状 [ 6] 。BH4的合成需鸟苷三磷酸环化水解酶(GTP cyclohydrolase,GTPCH)、PTPS和墨蝶呤还原酶(sepiapterin reductase,SR)参与;其代谢产物通过蝶呤- 4α-甲醇胺脱水酶(pterin- 4α-carbinolamine dehydratase,PCD)和DHPR再生为BH4 [ 7]

PAH缺乏症和BH4缺乏症的致病基因分别是PAH和BH4合成代谢中的相关基因。PAH缺乏症和BH4缺乏症在我国的分布具有一定的地域特征。来自上海、徐州、广西和南京等地区筛查数据的统计分析结果显示 [ 8- 11] ,800多例HPA患者中PAH缺乏症占91.8%,BH4缺乏症占8.2%;而PAH缺乏症患者中73.7%是苯丙酮尿症患者,26.3%为轻度HPA患者。Zhu等 [ 12] 报道346例PAH缺乏症患者中,经典型苯丙酮尿症172例(49.7%),轻度苯丙酮尿症156例(45.1%),轻度HPA 18例(5.2%)。

1953年Jervis [ 13] 发现PAH的功能缺陷是苯丙酮尿症的特征性表现。20世纪80年代,人 PAH 基因的互补DNA逐渐被克隆和验证 [ 14- 15] 。1986年DiLella等 [ 16] 通过PCR扩增和放射性同位素标记的寡核苷酸特异性杂交在丹麦人群中发现了PAH致病的第一个突变体c.1315+1G>A;之后不久又确定了第二种突变c.1222C>T(p.R408W) [ 17] 。1992年Konecki等 [ 18] 克隆了 PAH全基因。目前 PAH基因数据库(PAHvdb,)共记录有1024余种突变,外显子3、6、7和11上的突变所占的比例较高,分别为10.1%、14.3%、12.6%和9.5%,突变类型包括58.0%错义突变,8.0%无义突变(包括片段缺失引起蛋白翻译终止),13.2%剪接突变,14.0%由插入或缺失引起移码突变,3.8%同义突变( 图 2)。共835个突变位点位于PAH蛋白结构上,其中72.1%的突变发生在催化域,21.6%的突变位于调控域,6.3%的突变位于寡聚域 [ 19]

graphic file with name zjdxxbyxb-47-3-219-2.jpg

Li等 [ 20] 用二代测序技术对我国796例苯丙酮尿症患者进行了检测,结果发现了 PAH基因上的194个位点突变,其中76.33%突变位点位于外显子上;Liu等 [ 21] 在655例苯丙酮尿症患者中发现174种 PAH基因突变,包括22个新突变。目前,PAHvdb中记录了200多个在中国人群中发现的 PAH基因突变,其中82.5%突变位于外显子上,主要分布于外显子3、6、7、11上(占总突变47.5%),与 图 2分布基本相符;其他内含子突变仅31个,5′非翻译区端突变4个。我国PAH缺乏症患者的基因突变主要有:p.R243Q、p.R241C、p.Y204C、p.Y356*、p.R111*、p.R413P、p.R408Q、c.442-1G>A和p.V399V等,其中p.R241C在中国台湾人群中较为常见 [ 20- 22]

BH4缺乏症由 PTSQDPRGCH1PCBD1SPR基因调控。数据显示,全球1118例BH4缺乏症患者中,PTPS、DHPR、SR、GTPCH和PCD缺陷患者的比例分别约为62%、27%、5%、3%和3% [ 23] 。亚洲人群的BH4缺乏症主要是PTPS缺陷,中东和土耳其人群主要是DHPR缺陷 [ 23] GCH1SPR基因的大多数突变体与肌张力障碍相关,为多巴反应型(Dopa-responsive) [ 7]

我国人群中BH4缺乏症的主要致病基因为 PTSQDPR。Liu等 [ 24] 报道约86%的BH4缺乏症患者属于PTPS缺陷。Ye等 [ 25] 分析了256例BH4缺乏症患者,发现其中240例为PTPS缺陷,6例为DHPR缺陷;在143例患者的基因分析中,分别发现了33个 PTS突变位点,5个 QDPR突变位点和1个 GCH1突变位点。中国人群 PTS基因常见的突变位点有:p.N52S、p.P87S、p.D96N、p.K91R、c.84-291A>G/p.Y27Rfs*17、p.T106M、p.V56M、p.T67M、p.L127F和c.118-121del/p.F40Gfs*17等 [ 26- 30] 。中国南方患者常见的突变为p.N52S,北方患者常见的突变为p.D96N和p.K91R,而p.P87S和c.84-291A>G在南北方各占一半 [ 24, 29] 。迄今已有353例中国BH4缺乏症患者记录在BIODEFdb()中。

近年,Anikster等 [ 31] 通过全外显子测序,在6例非亲缘关系的HPA患者中鉴定了新基因 DNAJC12 (NM_021800.2)上的纯合致病缺失和突变:c.298-968_503-2603del、c.215G>C/p.R72P和c.158-2A>T,突变导致患者PAH酶活性降低。van Spronsen等 [ 32] 在5例HPA患者中发现了三个新位点:c.85delC/p.Q29Kfs*38、c.596G>T/p.*199Lext*42和c.214C>T/p.R72*,再次验证了 DNAJC12是HPA的新致病基因。 DNAJC12可以与PAH、酪氨酸羟化酶和色氨酸羟化酶2产生相互作用,从而导致HPA和神经递质缺乏症 [ 31]

PAH缺乏症基因型与表型的相关性是多层次的。根据BIOPKUdb数据库() [ 33] 的统计分析,PAH缺乏症患者中54.8%为经典型苯丙酮尿症,27.4%为轻度苯丙酮尿症,17.8%为轻度HPA,其中76%的苯丙酮尿症患者基因型为复合杂合突变 [ 34] 。PAH缺乏症的基因型在不同人群中分布不同,代谢表型也存在较大差异。据报道,东欧国家PAH缺乏症的基因型中c.1222C>T(p.R408W)突变体十分常见,其主要表型是经典型苯丙酮尿症;而在欧洲南部,大部分PAH缺乏症的基因型为具有大量酶活性残留的轻度亚型,如c.782G>A(p.R261Q),因此轻度苯丙酮尿症更常见 [ 35]

另外,一些 PAH基因突变通过影响其蛋白氨基酸序列、蛋白结构或稳定性水平,决定残留的PAH活性,因此 PAH基因突变与酶活性、BH4反应性有一定相关性。

基因突变影响残留PAH酶的活性。已知97个残留PAH酶活性的突变中 [ 19] ,c.202A>G(p.R68G)不影响PAH酶活性,c.569T>C(p.V190A)和c.1247C>A(p.P416Q)分别增加残留PAH酶活性至110%和111%。欧洲常见经典型苯丙酮尿症的突变位点c.1222C>T(p.R408W)、c.1066-11G>A和c.842C>T(p.P281L)对应的残留酶活性均小于10%,而c.1241A>G(p.Y414C)和c.782G>A(p.R261Q)对应的酶活性分别为正常的57%和44%。但有些突变在体外的残留酶活性有重大差异,如p.I65T和p.Y414C。基因型的残留酶活性并不是两个位点体外残留酶活性的简单加减,如复合杂合基因型c.[1222C>T]:[1241A>G]、c.[1066-11G>A]:[1241A>G]的残留PAH酶活性为正常的30%左右。目前,国际上可根据计算基因型相对应的等位基因表型值来预测患者的临床表型,此种方法对基因型为纯合子或半合子的患者临床表型预测的准确率可达90%以上,但对基因型是复合杂合突变预测的准确率仅有77.9% [ 36] 。基因型、酶活性和临床表型有一定关联:基因型c.[1169A>G]:[1169A>G]的残留酶活性为65%,携带者基本是轻度HPA患者;但也有例外,如基因型c.[754C>T]:[754C>T]的残留酶活性为1%,携带者可能为经典型苯丙酮尿症、轻度苯丙酮尿症或轻度HPA患者 [ 33] 。中国PAH缺乏症人群中常见的基因位点,如c.721C>T(p.R241C)、c.728G>A(p.R243Q)和c.1223G>A(p.R408Q),其残留酶活性分别为25%、14%和46%,这三个突变体在我国经典型苯丙酮尿症、轻度苯丙酮尿症和轻度HPA患者中均有分布。

BH4的反应性现象最初由Kure等 [ 37] 在日本苯丙酮尿症患者中发现,并分别在1730例和557例PAH缺乏症患者的临床资料中证实 [ 38- 39] ,从此开启了使用BH4治疗BH4反应性PAH缺乏症的新篇章。轻度HPA和将近78.8%的轻度苯丙酮尿症患者呈BH4反应性,而经典型苯丙酮尿症患者中仅约34.2%患者呈BH4反应性 [ 7] ,可见BH4反应性在一定程度上是表型依赖的。不同国家经典型苯丙酮尿症患者对BH4的反应性有所不同。Matalon等 [ 40] 研究显示,美国约50%经典型苯丙酮尿症患者对BH4有反应性;澳大利亚新南威尔士地区经典型苯丙酮尿症患者仅有7%对BH4有反应性 [ 41] ;而邹卉等 [ 42] 研究表明,我国经典型苯丙酮尿症患者约18.1%为BH4反应性。Trunzo等 [ 43] 报道低残留酶活性突变体对应的表型往往严重且没有BH4反应性,如位点p.L249P,仅有7%的PAH酶活性,患者表型为经典型苯丙酮尿症且没有BH4反应性;而高残留酶活性突变体,如位点p.T380M,有28%的PAH酶活性,97%的患者的表型是轻度HPA,且83%的患者呈BH4反应性。在对中国PAH缺乏症患者的BH4反应性研究中,叶军等 [ 44] 发现中国苯丙酮尿症患者BH4反应性中最常见p.R241C突变类型;Tao等 [ 45] 对我国165例苯丙酮尿症患者进行了BH4反应性研究,发现24.24%呈BH4反应性,尤其是携带p.R241C的患者,另外p.L98V和c.353-2A>T也与BH4反应性相关。Zhu等 [ 12] 在94例中国PAH缺乏症患者中发现48例(51%)为BH4反应性,多数是轻度苯丙酮尿症和轻度HPA患者。迄今,已明确50个突变位点与BH4反应性相关,常见位点如:c.782G>A(p.R261Q)、c.1241A>G(p.Y414C)、c.1066-11G>A、c.143T>C(p.L48S)等。国内外同行在BH4治疗苯丙酮尿症患者研究中均发现轻度苯丙酮尿症和轻度HPA患者对BH4的反应性较高,治疗效果明显 [ 46- 47] 。基因型可以部分预测BH4反应性,但单独用基因型来预测个体的BH4反应性仍需谨慎。

BH4缺乏症根据临床表现可以分为三种类型:①中枢型(严重型):以脑脊液中神经递质代谢产物浓度低和严重的神经系统症状为特征;②周围型(温和型):脑脊液中神经递质代谢产物的水平正常;③短暂型:表现为一过性的新生儿HPA [ 48] 。BH4缺乏症的严重程度受多种酶活性影响。目前共有495个BH4缺乏症的相关突变记录在BH4缺乏症及儿童神经递质缺乏症基因数据库(PNDdb,)中 [ 49] ,其中 PTSQDPRPCDB1基因突变会导致HAP,而 GCH1SPR基因突变主要是导致多巴反应性肌张力障碍和神经递质缺乏症。

我国BH4缺乏症患者主要为PTPS缺乏症,约占96%,其次是DHPR缺乏症患者,约占2.4% [ 25] 。对四川、郑州、上海等地区筛查数据的统计分析结果显示,PTPS缺陷症患者中基因型为复杂杂合型的占82.4%,纯合型占16.2% [ 50- 53] 。但在伊朗地区,PTPS缺乏症患者基因型为纯合型的比例高达94.7%,而复杂杂合型仅占5.3% [ 54] 。Liu等 [ 55] 的研究表明,携带有c.166G>A突变的基因型例如c.[166G>A:73C>G]、c.[317C>T:166G>A]可能与温和型PTPS缺乏症有关,而携带有c.73C>G、c.155A>G、c.226C>T、c.259C>T、c.286G>A突变的基因型例如c.[155A>G:155A>G]、c.[259C>T:155A>G]、c.[259C>T:169_171delGTG]则与严重型PTPS缺乏症相关。 DHPR基因有83种基因突变,其主要的发病人群位于中东和土耳其。在我国,DHPR缺乏症患者基因型为复杂杂合型的比例约为86% [ 24] 。目前共有16例中国患者记录在BIODEF数据库()中,所有患者皆为中枢型BH4缺乏症。

HPA是我国遗传代谢病防控的典型,是研究基因型与表型关联的理想疾病模型,但其表型高度异质性的致病机制依然十分复杂。目前已经有超过100种突变通过生物化学研究确定了 PAH致病作用,有利于更好地了解突变和PAH缺乏症之间的生物化学关系。但由于PAH常以四聚体的形式存在,且大多数PAH缺乏症患者带有不同突变的复合杂合子,两个不同突变的蛋白相互作用可能会导致与其作为单独的纯合突变时不同的BH4反应和不同的蛋白正向或负向作用,甚至会导致单体的错误折叠,从而使表型更严重。血脑屏障与中性大分子氨基酸也增加了表型的复杂性。基因信息与表型数据的结合将有助于医生更快地诊断疾病类型,制订个性化诊疗方案,HPA的防治也将取得更大进步。

Funding Statement

国家重点研发计划(2017YFC1001703);浙江省医药卫生重大科技项目(WKJ-ZJ-1704);浙江省卫生高层次人才培养工程(2016-6)

References

  • 1.中华医学会儿科学分会内分泌遗传代谢学组, 中华预防医学会出生缺陷预防与控制专业委员会新生儿筛查学组 高苯丙氨酸血症的诊治共识. 中华儿科杂志. 2014;52(6):420–425. doi: 10.3760/cma.j.issn.0578-1310.2014.06.005. [中华医学会儿科学分会内分泌遗传代谢学组, 中华预防医学会出生缺陷预防与控制专业委员会新生儿筛查学组.高苯丙氨酸血症的诊治共识[J].中华儿科杂志, 2014, 52(6):420-425.] [DOI] [Google Scholar]
  • 2.叶 军, 邱 文娟, 韩 连书, et al. 新生儿筛查诊断的223例高苯丙氨酸血症的诊治及随访. 中华预防医学杂志. 2007;41(3):189–192. doi: 10.3760/j:issn:0253-9624.2007.03.009. [叶军, 邱文娟, 韩连书, 等.新生儿筛查诊断的223例高苯丙氨酸血症的诊治及随访[J].中华预防医学杂志, 2007, 41(3):189-192.] [DOI] [PubMed] [Google Scholar]
  • 3.KOBE B, JENNINGS I G, HOUSE C M, et al. Structural basis of autoregulation of phenylalanine hydroxylase. Nat Struct Biol. 1999;6(5):442–448. doi: 10.1038/8247. [KOBE B, JENNINGS I G, HOUSE C M, et al. Structural basis of autoregulation of phenylalanine hydroxylase[J]. Nat Struct Biol, 1999, 6(5):442-448.] [DOI] [PubMed] [Google Scholar]
  • 4.ARTURO E C, GUPTA K, HÉROUX A, et al. First structure of full-length mammalian phenylalanine hydroxylase reveals the architecture of an autoinhibited tetramer. Proc Natl Acad Sci U S A. 2016;113(9):2394–2399. doi: 10.1073/pnas.1516967113. [ARTURO E C, GUPTA K, HÉROUX A, et al. First structure of full-length mammalian phenylalanine hydroxylase reveals the architecture of an autoinhibited tetramer[J]. Proc Natl Acad Sci U S A, 2016, 113(9):2394-2399.] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 5.GERSTING S W, KEMTER K F, STAUDIGL M, et al. Loss of function in phenylketonuria is caused by impaired molecular motions and conformational instability. Am J Hum Genet. 2008;83(1):5–17. doi: 10.1016/j.ajhg.2008.05.013. [GERSTING S W, KEMTER K F, STAUDIGL M, et al. Loss of function in phenylketonuria is caused by impaired molecular motions and conformational instability[J]. Am J Hum Genet, 2008, 83(1):5-17.] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 6.BLAU N, SHEN N, CARDUCCI C. Molecular genetics and diagnosis of phenylketonuria:state of the art. Expert Rev Mol Diagn. 2014;14(6):655–671. doi: 10.1586/14737159.2014.923760. [BLAU N, SHEN N, CARDUCCI C. Molecular genetics and diagnosis of phenylketonuria:state of the art[J]. Expert Rev Mol Diagn, 2014, 14(6):655-671.] [DOI] [PubMed] [Google Scholar]
  • 7.WERNER E R, BLAU N, THÖNY B. Tetrahydrobiopterin:biochemistry and pathophysiology. http://d.old.wanfangdata.com.cn/Periodical/zhek200505004. Biochem J. 2011;438(3):397–414. doi: 10.1042/BJ20110293. [WERNER E R, BLAU N, THÖNY B. Tetrahydrobiopterin:biochemistry and pathophysiology[J]. Biochem J, 2011, 438(3):397-414.] [DOI] [PubMed] [Google Scholar]
  • 8.叶 军, 邱 文娟, 韩 连书, et al. 398例新生儿各型高苯丙氨酸血症的研究及26年诊治经验. 中华围产医学杂志. 2008;11(6):382–387. doi: 10.3760/cma.j.issn.1007-9408.2008.06.006. [叶军, 邱文娟, 韩连书, 等.398例新生儿各型高苯丙氨酸血症的研究及26年诊治经验[J].中华围产医学杂志, 2008, 11(6):382-387.] [DOI] [Google Scholar]
  • 9.王 秀利, 禇 英, 顾 茂胜, et al. 2003年至2015年徐州市新生儿高苯丙氨酸血症筛查及治疗效果. 中华围产医学杂志. 2016;19(8):596–602. doi: 10.3760/cma.j.issn.1007-9408.2016.08.009. [王秀利, 禇英, 顾茂胜, 等.2003年至2015年徐州市新生儿高苯丙氨酸血症筛查及治疗效果[J].中华围产医学杂志, 2016, 19(8):596-602.] [DOI] [Google Scholar]
  • 10.范 歆, 陈 少科, 林 彩娟, et al. 广西地区高苯丙氨酸血症发病情况分析. 广西医科大学学报. 2012;29(4):579–581. doi: 10.3969/j.issn.1005-930X.2012.04.034. [范歆, 陈少科, 林彩娟, 等.广西地区高苯丙氨酸血症发病情况分析[J].广西医科大学学报, 2012, 29(4):579-581.] [DOI] [Google Scholar]
  • 11.孙 云, 蒋 涛, 张 菁菁, et al. 南京地区新生儿高苯丙氨酸血症筛查27年回顾. 中华围产医学杂志. 2013;16(6):357–361. doi: 10.3760/cma.j.issn.1007-9408.2013.06.009. [孙云, 蒋涛, 张菁菁, 等.南京地区新生儿高苯丙氨酸血症筛查27年回顾[J].中华围产医学杂志, 2013, 16(6):357-361.] [DOI] [Google Scholar]
  • 12.ZHU T, YE J, HAN L, et al. The predictive value of genetic analyses in the diagnosis of tetrahydrobiopterin(BH4)-responsiveness in Chinese phenylalanine hydroxylase deficiency patients. Sci Rep. 2017;7(1):6762. doi: 10.1038/s41598-017-06462-y. [ZHU T, YE J, HAN L, et al.The predictive value of genetic analyses in the diagnosis of tetrahydrobiopterin(BH4)-responsiveness in Chinese phenylalanine hydroxylase deficiency patients[J]. Sci Rep, 2017, 7(1):6762.] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 13.JERVIS G A. Phenylpyruvic oligophrenia deficiency of phenylalanine-oxidizing system. http://www.ncbi.nlm.nih.gov/pubmed/13047448. Proc Soc Exp Biol Med. 1953;82(3):514–515. [JERVIS G A.Phenylpyruvic oligophrenia deficiency of phenylalanine-oxidizing system[J]. Proc Soc Exp Biol Med, 1953, 82(3):514-515.] [PubMed] [Google Scholar]
  • 14.WOO S L, LIDSKY A S, GVTTLER F, et al. Cloned human phenylalanine hydroxylase gene allows prenatal diagnosis and carrier detection of classical phenylketonuria. Nature. 1983;306(5939):151–155. doi: 10.1038/306151a0. [WOO S L, LIDSKY A S, GVTTLER F, et al. Cloned human phenylalanine hydroxylase gene allows prenatal diagnosis and carrier detection of classical phenylketonuria[J]. Nature, 1983, 306(5939):151-155.] [DOI] [PubMed] [Google Scholar]
  • 15.ROBSON K J, BEATTIE W, JAMES R J, et al. Sequence comparison of rat liver phenylalanine hydroxylase and its cDNA clones. Biochemistry. 1984;23(24):5671–5675. doi: 10.1021/bi00319a001. [ROBSON K J, BEATTIE W, JAMES R J, et al. Sequence comparison of rat liver phenylalanine hydroxylase and its cDNA clones[J]. Biochemistry, 1984, 23(24):5671-5675.] [DOI] [PubMed] [Google Scholar]
  • 16.DILELLA A G, MARVIT J, LIDSKY A S, et al. Tight linkage between a splicing mutation and a specific DNA haplotype in phenylketonuria. Nature. 1986;322(6082):799–803. doi: 10.1038/322799a0. [DILELLA A G, MARVIT J, LIDSKY A S, et al. Tight linkage between a splicing mutation and a specific DNA haplotype in phenylketonuria[J]. Nature, 1986, 322(6082):799-803.] [DOI] [PubMed] [Google Scholar]
  • 17.DILELLA A G, MARVIT J, BRAYTON K, et al. An amino-acid substitution involved in phenylketonuria is in linkage disequilibrium with DNA haplotype 2. Nature. 1987;327(6120):333–336. doi: 10.1038/327333a0. [DILELLA A G, MARVIT J, BRAYTON K, et al. An amino-acid substitution involved in phenylketonuria is in linkage disequilibrium with DNA haplotype 2[J]. Nature, 1987, 327(6120):333-336.] [DOI] [PubMed] [Google Scholar]
  • 18.KONECKI D S, WANG Y, TREFZ F K, et al. Structural characterization of the 5' regions of the human phenylalanine hydroxylase gene. Biochemistry. 1992;31(35):8363–8368. doi: 10.1021/bi00150a033. [KONECKI D S, WANG Y, TREFZ F K, et al. Structural characterization of the 5' regions of the human phenylalanine hydroxylase gene[J]. Biochemistry, 1992, 31(35):8363-8368.] [DOI] [PubMed] [Google Scholar]
  • 19.PAHvdb[DB/OL].[2018-02-20] .http://www.biopku.org/home/pah.asp
  • 20.LI N, JIA H, LIU Z, et al. Molecular characterisation of phenylketonuria in a Chinese mainland population using next-generation sequencing. Sci Rep. 2015;5:15769. doi: 10.1038/srep15769. [LI N, JIA H, LIU Z, et al. Molecular characterisation of phenylketonuria in a Chinese mainland population using next-generation sequencing[J]. Sci Rep, 2015, 5:15769.] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 21.LIU N, HUANG Q, LI Q, et al. Spectrum of PAH gene variants among a population of Han Chinese patients with phenylketonuria from northern China. BMC Med Genet. 2017;18(1):108. doi: 10.1186/s12881-017-0467-7. [LIU N, HUANG Q, LI Q, et al. Spectrum of PAH gene variants among a population of Han Chinese patients with phenylketonuria from northern China[J]. BMC Med Genet, 2017, 18(1):108.] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 22.CHIEN Y H, CHIANG S C, HUANG A, et al. Mutation spectrum in Taiwanese patients with phenylalanine hydroxylase deficiency and a founder effect for the R241C mutation. http://d.old.wanfangdata.com.cn/NSTLQK/10.1002-humu.9215/ Hum Mutat. 2004;23(2):206. doi: 10.1002/humu.9215. [CHIEN Y H, CHIANG S C, HUANG A, et al. Mutation spectrum in Taiwanese patients with phenylalanine hydroxylase deficiency and a founder effect for the R241C mutation[J]. Hum Mutat, 2004, 23(2):206.] [DOI] [PubMed] [Google Scholar]
  • 23.BIODEFdb[DB/OL].[2018-02-20] .http://www.biopku.org/home/biodef.asp
  • 24.LIU T T, CHIANG S H, WU S J, et al. Tetrahydrobiopterin-deficient hyperphenylalaninemia in the Chinese. Clin Chim Acta. 2001;313(1-2):157–169. doi: 10.1016/S0009-8981(01)00669-6. [LIU T T, CHIANG S H, WU S J, et al. Tetrahydrobiopterin-deficient hyperphenylalaninemia in the Chinese[J]. Clin Chim Acta, 2001, 313(1-2):157-169.] [DOI] [PubMed] [Google Scholar]
  • 25.YE J, YANG Y, YU W, et al. Demographics, diagnosis and treatment of 256 patients with tetrahydrobiopterin deficiency in mainland China:results of a retrospective, multicentre study. J Inherit Metab Dis. 2013;36(5):893–901. doi: 10.1007/s10545-012-9550-6. [YE J, YANG Y, YU W, et al. Demographics, diagnosis and treatment of 256 patients with tetrahydrobiopterin deficiency in mainland China:results of a retrospective, multicentre study[J]. J Inherit Metab Dis, 2013, 36(5):893-901] [DOI] [PubMed] [Google Scholar]
  • 26.HIEN Y H, CHIANG S C, HUANG A, et al. Treatment and outcome of Taiwanese patients with 6-pyruvoyltetrahydropterin synthase gene mutations. J Inherit Metab Dis. 2001;24(8):815–823. doi: 10.1023/A:1013984022994. [HIEN Y H, CHIANG S C, HUANG A, et al. Treatment and outcome of Taiwanese patients with 6-pyruvoyltetrahydropterin synthase gene mutations[J]. J Inherit Metab Dis, 2001, 24(8):815-823.] [DOI] [PubMed] [Google Scholar]
  • 27.LIU T T, CHANG Y H, CHIANG S H, et al. Identification of three novel 6-pyruvoyl-tetrahydropterin synthase gene mutations(226C > T, IVS3+1G > A, 116-119delTGTT) in Chinese hyperphenylalaninemia caused by tetrahydrobiopterin synthesis deficiency. http://europepmc.org/abstract/MED/11517215. Hum Mutat. 2001;18(1):83. doi: 10.1002/humu.1153. [LIU T T, CHANG Y H, CHIANG S H, et al. Identification of three novel 6-pyruvoyl-tetrahydropterin synthase gene mutations(226C > T, IVS3+1G > A, 116-119delTGTT) in Chinese hyperphenylalaninemia caused by tetrahydrobiopterin synthesis deficiency[J]. Hum Mutat, 2001, 18(1):83.] [DOI] [PubMed] [Google Scholar]
  • 28.HAN B, ZOU H, HAN B, et al. Diagnosis, treatment and follow-up of patients with tetrahydrobiopterin deficiency in Shandong province, China. Brain Dev. 2015;37(6):592–598. doi: 10.1016/j.braindev.2014.09.008. [HAN B, ZOU H, HAN B, et al. Diagnosis, treatment and follow-up of patients with tetrahydrobiopterin deficiency in Shandong province, China[J]. Brain Dev, 2015, 37(6):592-598.] [DOI] [PubMed] [Google Scholar]
  • 29.叶 军. 高苯丙氨酸血症的诊治及研究进展. 临床儿科杂志. 2010;28(2):197–200. doi: 10.3969/j.issn.1000-3606.2010.02.026. [叶军.高苯丙氨酸血症的诊治及研究进展[J].临床儿科杂志, 2010, 28(2):197-200.] [DOI] [Google Scholar]
  • 30.CHIU Y H, CHANG Y C, CHANG Y H, et al. Mutation spectrum of and founder effects affecting the PTS gene in East Asian populations. J Hum Genet. 2012;57(2):145–152. doi: 10.1038/jhg.2011.146. [CHIU Y H, CHANG Y C, CHANG Y H, et al. Mutation spectrum of and founder effects affecting the PTS gene in East Asian populations[J]. J Hum Genet, 2012, 57(2):145-152.] [DOI] [PubMed] [Google Scholar]
  • 31.ANIKSTER Y, HAACK T B, VILBOUX T, et al. Biallelic mutations in DNAJC12 cause hyperphenylalaninemia, dystonia, and intellectual disability. Am J Hum Genet. 2017;100(2):257–266. doi: 10.1016/j.ajhg.2017.01.002. [ANIKSTER Y, HAACK T B, VILBOUX T, et al. Biallelic mutations in DNAJC12 cause hyperphenylalaninemia, dystonia, and intellectual disability[J]. Am J Hum Genet, 2017, 100(2):257-266.] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 32.VAN SPRONSEN F J, HIMMELREICH N, RÜFENACHT V, et al. Heterogeneous clinical spectrum of DNAJC12-deficient hyperphenylalaninemia:from attention deficit to severe dystonia and intellectual disability. J Med Genet. 2017 doi: 10.1136/jmedgenet-2017-104875. [VAN SPRONSEN F J, HIMMELREICH N, RÜFENACHT V, et al. Heterogeneous clinical spectrum of DNAJC12-deficient hyperphenylalaninemia:from attention deficit to severe dystonia and intellectual disability[J]. J Med Genet, 2017.] [DOI] [PubMed] [Google Scholar]
  • 33.BIOPKUdb[DB/OL].[2018-02-20] .http://www.biopku.org/home/biopku.asp
  • 34.SCRIVERC R. The PAH gene, phenylketonuria, and a paradigm shift. Hum Mutat. 2007;28(9):831–845. doi: 10.1002/(ISSN)1098-1004. [SCRIVERC R. The PAH gene, phenylketonuria, and a paradigm shift[J]. Hum Mutat, 2007, 28(9):831-845.] [DOI] [PubMed] [Google Scholar]
  • 35.BLAU N. Genetics of phenylketonuria:then and now. Human Mutation. 2016;37(6):508–515. doi: 10.1002/humu.22980. [BLAU N. Genetics of phenylketonuria:then and now[J]. Human Mutation, 2016, 37(6):508-515.] [DOI] [PubMed] [Google Scholar]
  • 36.WETTSTEIN S, UNDERHAUG J, PEREZ B, et al. Linking genotypes database with locus-specific database and genotype-phenotype correlation in phenylketonuria. Eur J Hum Genet. 2015;23(3):302–309. doi: 10.1038/ejhg.2014.114. [WETTSTEIN S, UNDERHAUG J, PEREZ B, et al. Linking genotypes database with locus-specific database and genotype-phenotype correlation in phenylketonuria[J]. Eur J Hum Genet, 2015, 23(3):302-309.] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 37.KURE S, HOU D C, OHURA T, et al. Tetrahydrobiopterin-responsive phenylalanine hydroxylase deficiency. J Pediatr. 1999;135(3):375–378. doi: 10.1016/S0022-3476(99)70138-1. [KURE S, HOU D C, OHURA T, et al. Tetrahydrobiopterin-responsive phenylalanine hydroxylase deficiency[J]. J Pediatr, 1999, 135(3):375-378.] [DOI] [PubMed] [Google Scholar]
  • 38.BERNEGGER C, BLAU N. High frequency of tetrahydrobiopterin-responsiveness among hyperphenylalaninemias:a study of 1, 919 patients observed from 1988 to 2002. Mol Genet Metab. 2002;77(4):304–313. doi: 10.1016/S1096-7192(02)00171-3. [BERNEGGER C, BLAU N.High frequency of tetrahydrobiopterin-responsiveness among hyperphenylalaninemias:a study of 1, 919 patients observed from 1988 to 2002[J]. Mol Genet Metab, 2002, 77(4):304-313.] [DOI] [PubMed] [Google Scholar]
  • 39.FIEGE B, BLAU N. Assessment of tetrahydrobiopterin (BH4) responsiveness in phenylketonuria. J Pediatr. 2007;150(6):627–630. doi: 10.1016/j.jpeds.2007.02.017. [FIEGE B, BLAU N. Assessment of tetrahydrobiopterin (BH4) responsiveness in phenylketonuria[J]. J Pediatr, 2007, 150(6):627-630.] [DOI] [PubMed] [Google Scholar]
  • 40.MATALON R, MICHALS-MATALON K, KOCH R, et al. Response of patients with phenylketonuria in the US to tetrahydrobiopterin. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=JJ028655159. Mol Genet Metab. 2005;86(Suppl 1):S17–S21. doi: 10.1016/j.ymgme.2005.06.024. [MATALON R, MICHALS-MATALON K, KOCH R, et al. Response of patients with phenylketonuria in the US to tetrahydrobiopterin[J]. Mol Genet Metab, 2005, 86 Suppl 1:S17-S21.] [DOI] [PubMed] [Google Scholar]
  • 41.MITCHELL J J, WILCKEN B, ALEXANDER I, et al. Tetrahydrobiopterin-responsive phenylketonuria:the New South Wales experience. http://d.old.wanfangdata.com.cn/NSTLQK/NSTL_QKJJ028655157/ Mol Genet Metab. 2005;86(Suppl 1):S81–85. doi: 10.1016/j.ymgme.2005.06.008. [MITCHELL J J, WILCKEN B, ALEXANDER I, et al. Tetrahydrobiopterin-responsive phenylketonuria:the New South Wales experience[J]. Mol Genet Metab, 2005, 86 Suppl 1:S81-85.] [DOI] [PubMed] [Google Scholar]
  • 42.邹 卉, 韩 炳娟, 卜 晓萍, et al. 山东省高苯丙氨酸血症分型及治疗效果评价与基因分析. http://d.old.wanfangdata.com.cn/Periodical/zgetbjzz201203006. 中国儿童保健杂志. 2012;20(3):208–210. [邹卉, 韩炳娟, 卜晓萍, 等.山东省高苯丙氨酸血症分型及治疗效果评价与基因分析[J].中国儿童保健杂志, 2012, 20(3):208-210.] [Google Scholar]
  • 43.TRUNZO R, SANTACROCE R, SHEN N, et al. In vitro residual activity of phenylalanine hydroxylase variants and correlation with metabolic phenotypes in PKU . Gene. 2016;594(1):138–143. doi: 10.1016/j.gene.2016.09.015. [TRUNZO R, SANTACROCE R, SHEN N, et al. In vitro residual activity of phenylalanine hydroxylase variants and correlation with metabolic phenotypes in PKU[J]. Gene, 2016, 594(1):138-143. ] [DOI] [PubMed] [Google Scholar]
  • 44.叶 军, 邱 文娟, 韩 连书, et al. 四氢生物蝶呤反应性苯丙氨酸羟化酶缺乏症的临床和基因检测. 中国实用儿科杂志. 2005;20(12):718–720. doi: 10.3969/j.issn.1005-2224.2005.12.009. [叶军, 邱文娟, 韩连书, 等.四氢生物蝶呤反应性苯丙氨酸羟化酶缺乏症的临床和基因检测[J].中国实用儿科杂志, 2005, 20(12):718-720.] [DOI] [Google Scholar]
  • 45.TAO J, LI N, JIA H, et al. Correlation between genotype and the tetrahydrobiopterin-responsive phenotype in Chinese patients with phenylketonuria. Pediatr Res. 2015;78(6):691–699. doi: 10.1038/pr.2015.167. [TAO J, LI N, JIA H, et al. Correlation between genotype and the tetrahydrobiopterin-responsive phenotype in Chinese patients with phenylketonuria[J]. Pediatr Res, 2015, 78(6):691-699.] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 46.SHINTAKU H, KURE S, OHURA T, et al. Long-term treatment and diagnosis of tetrahydrobiopterin-responsive hyperphenylalaninemia with a mutant phenylalanine hydroxylase gene. Pediatr Res. 2004;55(3):425–430. doi: 10.1203/01.PDR.0000111283.91564.7E. [SHINTAKU H, KURE S, OHURA T, et al. Long-term treatment and diagnosis of tetrahydrobiopterin-responsive hyperphenylalaninemia with a mutant phenylalanine hydroxylase gene[J]. Pediatr Res, 2004, 55(3):425-430.] [DOI] [PubMed] [Google Scholar]
  • 47.杨 凌, 张 知新, 叶 军, et al. 四氢生物蝶呤反应性苯丙氨酸羟化酶缺乏症在我国南北地区差异的临床初步研究. 中华医学遗传学杂志. 2007;24(3):310–313. doi: 10.3760/j.issn:1003-9406.2007.03.016. [杨凌, 张知新, 叶军, 等.四氢生物蝶呤反应性苯丙氨酸羟化酶缺乏症在我国南北地区差异的临床初步研究[J].中华医学遗传学杂志, 2007, 24(3):310-313.] [DOI] [Google Scholar]
  • 48.沈 明, 喻 唯民, 杨 凌, et al. 四氢生物蝶呤缺乏症的临床研究. 中日友好医院学报. 2002;16(1):8–10. doi: 10.3969/j.issn.1001-0025.2002.01.002. [沈明, 喻唯民, 杨凌, 等.四氢生物蝶呤缺乏症的临床研究[J].中日友好医院学报, 2002, 16(1):8-10.] [DOI] [Google Scholar]
  • 49.PNDdb[DB/OL].[2018-02-20] .http://www.biopku.org/home/pnddb.asp
  • 50.刘 宁, 赵 德华, 李 晓乐, et al. PTPS基因检测在6丙酮酰四氢蝶呤合成酶缺乏症出生后诊断和产前诊断中的应用. 中华妇产科杂志. 2016;51(12):890–894. doi: 10.3760/cma.j.issn.0529-567x.2016.12.003. [刘宁, 赵德华, 李晓乐, 等.PTPS基因检测在6丙酮酰四氢蝶呤合成酶缺乏症出生后诊断和产前诊断中的应用[J].中华妇产科杂志, 2016, 51(12):890-894.] [DOI] [Google Scholar]
  • 51.LI N, YU P, RAO B, et al. Molecular genetics of tetrahydrobiopterin deficiency in Chinese patients. J Pediatr Endocrinol Metab. 2018;31(8):911–916. doi: 10.1515/jpem-2018-0037. [LI N, YU P, RAO B, et al. Molecular genetics of tetrahydrobiopterin deficiency in Chinese patients[J]. J Pediatr Endocrinol Metab, 2018, 31(8):911-916.] [DOI] [PubMed] [Google Scholar]
  • 52.叶军, 陈瑞冠.6-丙酮酰四氢蝶呤合成酶(PTPS)缺乏病9例分析[C]// 第一届全国新生儿疾病筛查学术交流会论文集.贵阳: 中华预防医学会儿童保健分会新生儿筛查学组, 2007: 51.
  • 53.叶 军, 刘 晓青, 黄 晓东, et al. 中国南方四氢生物蝶呤缺乏症筛查、临床及基因突变的系列研究. 中华医学遗传学杂志. 2001;18(2):92–95. doi: 10.3760/j.issn:1003-9406.2001.02.003. [叶军, 刘晓青, 黄晓东, 等.中国南方四氢生物蝶呤缺乏症筛查、临床及基因突变的系列研究[J].中华医学遗传学杂志, 2001, 18(2):92-95.] [DOI] [Google Scholar]
  • 54.KHATAMI S, DEHNABEH S R, ZEINALI S, et al. Four years of diagnostic challenges with tetrahydrobiopterin deficiencies in iranian patients. https://www.ncbi.nlm.nih.gov/pubmed/27246466. JIMD Rep. 2017;32:7–14. doi: 10.1007/8904_2016_572. [KHATAMI S, DEHNABEH S R, ZEINALI S, et al. Four years of diagnostic challenges with tetrahydrobiopterin deficiencies in iranian patients[J]. JIMD Rep, 2017, 32:7-14.] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 55.LIU T T, HSIAO K J, LU S F, et al. Mutation analysis of the 6-pyruvoyl-tetrahydropterin synthase gene in Chinese hyperphenylalaninemia caused by tetrahydrobiopterin synthesis deficiency. Hum Mutat. 1998;11(1):76–83. doi: 10.1002/(ISSN)1098-1004. [LIU T T, HSIAO K J, LU S F, et al. Mutation analysis of the 6-pyruvoyl-tetrahydropterin synthase gene in Chinese hyperphenylalaninemia caused by tetrahydrobiopterin synthesis deficiency[J]. Hum Mutat, 1998, 11(1):76-83.] [DOI] [PubMed] [Google Scholar]

Articles from Journal of Zhejiang University (Medical Sciences) are provided here courtesy of Zhejiang University Press

RESOURCES