Skip to main content
Journal of Zhejiang University (Medical Sciences) logoLink to Journal of Zhejiang University (Medical Sciences)
. 2018 Jun 25;47(3):227–238. [Article in Chinese] doi: 10.3785/j.issn.1008-9292.2018.06.02

遗传和表观遗传机制在先天性心脏病中的研究进展

Research progress on genetic and epigenetic mechanisms in congenital heart disease

Guangfeng TIAN 1, Hui GAO 1, Shasha HU 1, Qiang SHU 1,*
PMCID: PMC10393702  PMID: 30226321

Abstract

Congenital heart disease (CHD) is a type of birth defects due to the abnormal development of heart and blood vessels during embryonic stage. Studies indicate that the etiology of CHD is complicated. Genetic and epigenetic mechanisms including chromosomal abnormalities, gene mutations, nucleic acid modifications, non-coding RNAs may play important roles in CHD. At present, genetic mechanisms such as chromosome abnormality and gene mutation have been widely used in the diagnosis and treatment of clinical diseases. However, the application of genetic and epigenetic modification in diagnosis and treatment of CHD still need further research. This paper reviews the relationship between chromosomal abnormality, gene mutation, copy number variation, epigenetic modification and the occurrence of CHD, which may provide a basis for further exploring the early diagnosis and individualized therapy of CHD.

Keywords: Heart defects, congenital/genetics; Chromosome aberrations; Histones/genetics; Epigenesis, genetic; MicroRNAs; DNA methylation; Review


先天性心脏病是最常见的出生缺陷,也是目前全球婴儿死亡的主要原因 [ 1] 。流行病学调查结果显示,先天性心脏病在美国的发病率为2%~3% [ 2] ,在我国为0.6%~1% [ 3] ,且占我国常见出生缺陷的1/3 [ 4] 。先天性心脏病的主要类型有室间隔缺损、房间隔缺损、房室间隔缺损、动脉导管未闭、法洛四联症、右心室双向流出道、大动脉转位等。除少数轻度心脏缺损患儿5岁以内有自愈机会外,绝大多数患儿需要手术治疗。先天性心脏病的病因主要包括遗传因素和环境因素及两者之间的相互作用( 图 1)。本文综述了遗传和表观遗传机制在先天性心脏病发生中的作用,以期为进一步探究先天性心脏病早期诊断及个体化治疗提供依据。

graphic file with name zjdxxbyxb-47-3-227-1.jpg

染色体异常包括数目异常和结构畸变。先天性心脏病患者中染色体异常的发生率高达18%~ 22% [ 5] ,其中主要是染色体数目异常,包括21三体综合征(唐氏综合征)、18三体综合征(爱德华综合征,即Edwards综合征)等;少数染色体异常由结构畸变导致,其中发生率较高的为22号染色体长臂缺失(迪格奥尔格综合征,即DiGeorge综合征)、4号染色体短臂缺失(Wolf-Hirschorn综合征)以及5号染色体短臂缺失(猫叫综合征)等 [ 6]

染色体异常引起的综合征多伴有先天性心脏病。研究表明,80%~100%的18三体综合征患者伴有先天性心脏病 [ 7] ;21三体综合征患者中心脏缺陷的发生率为40%~50% [ 8] ,其中大多数患者确诊为房室间隔缺损。22号染色体结构异常是引起先天性心脏病最常见的原因 [ 9] ,其中最严重的一类是22q11.2缺失或扩增,可导致多种类型的先天性心脏病,包括房间隔缺损、室间隔缺损、动脉导管未闭、法洛四联症等 [ 10] 。4号染色体短臂缺失和5号染色体短臂缺失中出现先天性心脏病较为少见,主要表现为室间隔缺损,其临床表现的严重程度也不一致,可能与正常细胞和染色体短臂缺失细胞的混合嵌合现象有关,异常细胞所占比例越高,先天性心脏病的临床表现越严重。

除常染色体异常外,性染色体异常也可导致先天性心脏病。特纳综合征主要由X染色体结构异常引起,其染色体除45,X外,可有多种嵌合体,不同的嵌合体导致心脏畸形的临床症状不一致 [ 11] ,如二叶式主动脉瓣、主动脉缩窄或扩张、主动脉壁夹层形成等。X染色体数目异常在临床上较少见,但其也可以导致患者的心脏发育不全,如临床上出现的49,XXXXX病例伴有心脏发育异常及血管畸形 [ 12]

在临床应用中,常规的染色体镜检只能观察到染色体结构、数目改变及大片段异常,容易导致先天性心脏病漏诊。现代精准医学利用高通量染色体芯片技术,可以对染色体微小片段的缺失和异常进行检测,大大降低了先天性心脏病的漏诊率。研究发现,利用高通量染色体芯片对胎儿进行产前检测能有效检测出超声确诊的先天性心脏病胎儿中存在染色体微小片段缺失,可以作为产前胎儿先天性心脏病诊断的有效工具 [ 13] 。基因芯片是一种现代分子检测技术,能够检测出常规染色体检查不能检出的染色体微缺失和微重复综合征。临床上所说的基因芯片通常是指微阵列比较基因组杂交芯片技术,通过这一技术可以更加准确地发现疾病相关的染色体变异,提高先天性心脏病胎儿亚显微染色体畸变的检出率 [ 14]

基因突变也是先天性心脏病的一个重要遗传病因 [ 15] ,目前证实的与先天性心脏病相关的基因数目超过50个( 表 1),包括转录因子、信号通路基因及心脏结构组分基因,基因缺失或突变是最常见的异常 [ 16- 91]

表1 与先天性心脏病相关的基因及其表型

Table 1 Genes associated with congenital heart disease and their cardiac phenotypes

基因

心脏表型

参考文献

ACTC1

房间隔缺损、室间隔缺损

[ 17]

ACVR2B

心脏左右轴异位畸形

[ 18]

ALK2

房间隔缺损

[ 19]

AXIN2

先天性瓣膜缺损

[ 20]

ANKRD1

总静脉回流异常

[ 21]

BAF60C

房间隔缺损、室间隔缺损、房室间隔缺损、心脏圆锥动脉畸形

[ 22]

BRAF

肺动脉狭窄、房间隔缺损

[ 23]

BRG1

房间隔缺损、室间隔缺损

[ 24]

CHD7

法洛四联症、右室双向流出道

[ 25]

CITED2

房间隔缺损、室间隔缺损

[ 26]

CRELD1

房室间隔缺损

[ 27- 29]

CX40

心室发育不良

[ 30]

CX43

法洛四联症

[ 31]

DLC1

房间隔缺损

[ 32]

ELN

上腔静脉主动脉狭窄

[ 33]

FOXH1

法洛四联症、先天性心功能异常

[ 34]

GATA4

房间隔缺损、房室间隔缺损、法洛四联症

[ 35- 38]

GATA6

持续性动脉硬化性肺动脉瓣

[ 39]

GDF1

法洛四联症、大动脉转位

[ 19]

GJA5

室间隔缺损、法洛四联症、主动脉狭窄

[ 40- 41]

HAND2

法洛四联症

[ 42- 43]

HDAC5

室间隔缺损

[ 44]

HEY2

三尖瓣闭锁

[ 45]

HRAS IRX4

肺动脉狭窄、心动过速室间隔缺损

[ 46][ 47]

JAG1

法洛四联症

[ 48- 49]

KRAS

肺动脉狭窄、房间隔缺损

[ 50]

MAP2K1

肺动脉狭窄、房间隔缺损

[ 51]

MED13L

大动脉转位、左心发育不良、主动脉狭窄

[ 52]

MYBPC3

房间隔缺损、室间隔缺损

[ 53- 55]

MEF2C

室间隔缺损

[ 56]

MESP1

右室双向流出道

[ 57]

MYH6

房间隔缺损

[ 58]

MYH7

左心室心肌致密化不全、二叶式主动脉

[ 59]

NKX2.5

房间隔缺损、室间隔缺损、法洛四联症、右室双向流出道、左心发育不全

[ 60- 64]

NKX2.6

持续性动脉硬化性肺动脉瓣

[ 65]

NODAL

大动脉转位

[ 66- 69]

NOTCH1

主动脉瓣疾病

[ 67- 68]

NOTCH2

法洛四联症、肺动脉狭窄、主动脉狭窄

[ 69]

NR2F2

房间隔缺损、主动脉狭窄

[ 70]

PTPN11

房间隔缺损、室间隔缺损、肺动脉狭窄

[ 71]

RAF1

房间隔缺损、法洛四联症

[ 72]

PAX2

室间隔缺损

[ 73]

RIT1

室间隔缺损、法洛四联症、主动脉狭窄

[ 74]

SEMA3E

法洛四联症、右室双向流出道

[ 75]

SMAD6

主动脉瓣疾病

[ 76]

SMYD1

心室发育不良

[ 77]

SOS1

房间隔缺损、室间隔缺损、法洛四联症

[ 78]

SOX9

法洛四联症

[ 79]

STRT1

房间隔缺损、室间隔缺损

[ 80]

TBX1

室间隔缺损、主动脉弓中断

[ 81- 83]

TBX5

房间隔缺损、室间隔缺损、房室间隔缺损

[ 84]

TBX20

房间隔缺损、室间隔缺损、左心发育不良、动脉导管未闭

[ 85- 86]

TDGF1

法洛四联症

[ 34]

WHSC1

房间隔缺损、室间隔缺损

[ 87]

ZFPM2

法洛四联症、右室双向流出道

[ 88]

ZIC3

房间隔缺损、大动脉异位

[ 89- 91]

转录因子GATA结合蛋白4(GATA4)、NK2同源盒蛋白1(NKX2.5)和T-框蛋白(TBX)5形成复合物,在心脏间隔形成过程中发挥重要的基因调节作用 [ 92] NKX2.5突变会造成心脏房室缺损, TBX5突变造成心脏间隔缺损 [ 60- 64, 84] GATA4需要与 TBX5协同发挥作用,其中一个基因的突变会影响彼此间的相互作用能力 [ 93] ,最终引起表型异常。 TBX1和成纤维细胞生长因子8( FGF8)基因突变通过阻碍第二心岛的正常发育而导致心脏流出道异常 [ 82] 。中胚层后方同源物1( MESP1)基因编码正常心血管发育所需的基本螺旋-环-螺旋转录因子, MESP1缺失突变会造成右心室双向流出道从而导致先天性心脏病 [ 57]

Wnt/β-catenin信号通路主要作用于心脏瓣膜的发育过程,在瓣膜形成的发育过渡期起到关键作用。Axis抑制蛋白2(AXIN2)参与心脏瓣膜生长、延伸阶段的调控,同时它的表达产物是Wnt/β-catenin信号通路的负调节因子。 AXIN2过度表达将引起Wnt/β-catenin信号通路的异常中断,导致常见的先天性瓣膜缺损 [ 20]

VHL-HIF信号通路主要参与心室肌的特化过程。E3泛素连接酶Vhl的缺失导致低氧诱导因子(HIF)1α过度活化,阻断中间代谢产物的转移并损害心脏成熟和功能发挥,HIF1小梁激活引起糖酵解特征的改变导致建立心脏传导系统所必需的基因缝隙连接蛋白(CX)40、TBX5表达下降,进而影响心室肌特化过程。VHL-HIF信号通路的异常最终导致心室肌发育不良,从而引起先天性心脏病的发生 [ 30]

心内膜中NOTCH信号通路突变可导致先天性结构畸形 [ 94] 。NOTCH信号通路通过调控TNF-α的表达,在心内膜间质转化后,抑制瓣膜内间质细胞的增生从而促进其凋亡,作用于主动脉瓣膜的发育过程。该通路的异常会造成二叶型主动脉瓣,甚至出现主动脉瓣狭窄,进而产生左心室发育障碍 [ 69] 。NOTCH信号通路的异常突变还会导致信号和转录调节因子NOTCH1表达下降,引起一系列发育性主动脉瓣异常和严重瓣膜钙化,同时导致NOTCH1的配体Jagged1蛋白(JAG1)表达降低,进而引起法洛四联症的发生 [ 49]

在临床诊断中,随着第二代测序技术包括全基因组测序、外显子测序和转录组测序等的广泛应用,先天性心脏病相关基因的发现成为可能,对于先天性心脏病患儿的遗传诊断、早期预防及个性化治疗具有重要意义 [ 95] 。现代精准医学利用全基因组测序技术,可以准确定位疾病相关的基因,配合实时荧光定量PCR技术能够检测心脏组织中相关基因表达量的变化。先天性心脏病患者心脏组织全基因组测序结果显示, BRG1 [ 24] 、心脏和神经嵴衍生蛋白2( HAND2) [ 42- 43] 、Zic基因家族成员3 ( ZIC3) [ 30, 89- 91] 等基因的突变是导致先天性心脏病的重要因素;心肌细胞标记基因Mut Y同源性( MYH) 6突变会产生房间隔缺 [ 58] MYH7点突变则可能会造成二叶式主动脉瓣 [ 59] 。部分基因并没有发生序列上的变化,但是其表达水平发生明显变化。因此,表观遗传学修饰可能是这些基因表达下调的主要原因。

拷贝数变异是基因组重排而导致的,一般是长度为一千到几百万碱基对DNA片段的缺失或扩增。包含几百万碱基对的大片段变异可以通过荧光原位杂交进行分析,而仅包含几百到一千碱基对的小片段变异可以运用高通量微阵列比较基因组杂交芯片技术来识别。研究发现,拷贝数变异在多种遗传变异所致的先天性心脏病中起重要作用 [ 96- 103] ,主要的变异包括染色体22q11.2、15q11.2、8p23.1、7q21.3、4q22.1、1q21.1等位点的微缺失或微扩增。

染色体22q11.2变异是最常见的一类拷贝数变异,与先天性心脏病相关的主要是22q11.2微缺失,主要表现有主动脉弓中断(约50%)、动脉干畸形(约33%)、法洛四联症(约15%)、室间隔缺损(5%~10%) [ 104- 105] 。第二代测序结果发现,单纯的22q11.2微缺失是造成先天性心脏病的一部分原因,在其变异位点上的 TBX1 [ 106] 、Crk样蛋白( CRKL) [ 107] 、迪格奥尔格综合征危象区基因8( DGCR8) [ 108] 也起到关键作用。此外临床研究发现,22q11.2微缺失和圆锥动脉畸形所导致的先天性心脏病患儿较其他原因引起的相同类型的先天性心脏病患儿术后病死率更高 [ 105, 109]

染色体15q11.2微缺失也是拷贝数变异中的一类,典型的缺失在其变异位点上包含4个关键基因FMRP相互作用蛋白1( CYFIP1)、普拉德-威利综合征/Angelman综合征非印迹蛋白( NIPA) 1NIPA2和微管蛋白γ复合体关联蛋白5 ( TUBGCP5),其共同作用导致先天性心脏病发生,主要表现为左心畸形、主动脉缩窄、房间隔缺损、室间隔缺损、法洛四联症及总静脉回流异常 [ 110]

不同于之前的两类拷贝数变异,染色体8p23.1的微缺失 [ 111] 和微扩增 [ 112- 113] 都与先天性心脏病的发生密切相关。在8p23.1位点上发挥作用的基因是 GATA4GATA4TBX5协同作用导致先天性心脏病发生 [ 114]

表观遗传学修饰主要包括DNA修饰、RNA修饰、组蛋白修饰、非编码RNA和染色质重塑等,在多种生物学过程和疾病发生中发挥重要作用。研究发现,表观遗传调控心脏的正常发育过程,参与先天性心脏病的发生 [ 115]

在临床研究中,DNA甲基化是先天性心脏病致病基因表观遗传修饰中的一个重要组成部分,研究最为广泛。现代精准医学利用DNA甲基化检测技术能精确定位到基因单个CpG点的甲基化状态。研究表明,在人类基因组中60%的基因启动子区存在CpG岛,其在正常情况下处于非甲基化状态,CpG岛的甲基化异常会引起基因沉默 [ 116] 。DNA甲基化修饰可以引起先天性心脏病相关致病基因表达下降,即随着基因甲基化程度降低,相关疾病发生的风险增加 [ 117]

微小RNA(miRNA)在心脏发育过程中起到重要的调控作用 [ 118- 119] 。心脏组织全基因组测序结果分析发现, CX43基因是心脏发育过程中的重要基因。通过实时荧光定量PCR技术检测法洛四联症患者的心脏组织发现, CX43基因呈现高表达 [ 21] 。研究者通过筛查确定了与 CX43基因有关的10个miRNA,其中miRNA-1和miRNA-206表达明显下调,表明这两个miRNA的下调可能是导致 CX43基因高表达并最终引起先天性心脏病的原因。最新的研究发现,miRNA-34a通过激活NOTCH信号通路抑制 NOTCH1基因的表达,进而导致先天性心脏病的发生 [ 120]

DNA甲基化是指DNA中胞嘧啶的5号碳原子位置加入一个甲基基团,取代了原来的氢原子,是由DNA甲基转移酶(DNMT)介导的过程 [ 121] 。DNMT主要包括Dnmt1、Dnmt3a和Dnmt3b,其中Dnmt3a和Dnmt3b主要介导从头甲基化的过程,Dnmt1则介导DNA复制过程中甲基化的维持。DNA甲基化会调控心脏关键基因的表达,影响相关信号通路和下游功能,进而导致先天性心脏病。透明质酸合成酶2( Has2)是心脏发育的关键基因,在心内膜-间质转化和心脏瓣膜形成过程中发挥重要作用。在胚胎发育的第14.5天,小鼠心脏瓣膜内的 Has2基因出现下调,而该下调过程依赖于Dnmt3b介导的DNA甲基化 Has2增强子,实现基因调控,进而调控瓣膜正常形成; 不同胚胎时期的小鼠心脏内的差异甲基化位点大部分是在心脏发育的关键基因上 [ 122] 。在先天性心脏病患者中的相关基因也有甲基化的异常,如在患者心肌中 BRG1基因内的CpG区会表现出异常的低甲基化 [ 123] ,导致患者出现房间隔缺损、室间隔缺损 [ 24] ; 而启动子区的 CITED2基因异常甲基化也会导致患者出现房间隔缺损、室间隔缺损 [ 26]

组蛋白修饰是指组蛋白在相关酶的作用下发生甲基化、乙酰化、磷酸化、泛素化等过程。参与组蛋白修饰调控的酶主要包括组蛋白甲基转移酶、组蛋白乙酰化酶和组蛋白去乙酰化酶(HDAC) [ 15] 。生殖细胞中敲除Ⅱ类HDAC中的 HDAC5HDAC9会引起室间隔缺损 [ 44] ,而在生殖细胞中敲除Ⅲ类HDAC中的沉默信息调节因子2相关酶1( SIRT1)则会造成房间隔缺损、室间隔缺损和心脏瓣膜缺损 [ 80] 。生殖细胞中敲除组蛋白甲基转移酶 SMYD1造成心室发育不全 [ 77] ,而敲除其中另一个组蛋白甲基转移酶 WHSC1则会造成心房和心室间隔缺损 [ 87] 。此外,研究发现组蛋白去甲基化酶的异常也会造成心脏发育受损,如组蛋白去甲基化酶Jumonji缺乏会导致右室双流出道和过度小梁化 [ 15]

ATP依赖的染色质重塑复合体有四个,根据复合体内ATP酶亚基的序列和结构,分为SWI/SNF、ISWI、CHD和INO80 [ 124] 。这些复合体在其他因子的辅助下,调控核小体的再定位和去除,从而促进或抑制基因表达。SWI/SNF和CHD这两个复合体与心脏缺陷联系紧密。哺乳动物体内的SWI/SNF复合体类似物是Brg1/BAF复合体。作为SWI/SNF复合体中的ATP酶亚基, Brg1在心脏发育过程中发挥着关键的作用。在小鼠胚胎发育第9.5天时条件性敲除心肌细胞中的 Brg1,会造成室间隔缺损;而在第二心岛敲除 Brg1,则会造成右心室及流出道发育不全 [ 24] 。染色质域解旋酶DNA结合蛋白(CHD)家族是染色质重塑复合体中的重要一类,其中CHD7在中胚层系统的心脏分隔和成熟、神经分布及血管生成中发挥重要作用,缺失CHD7主要表现为圆锥动脉干畸形、房间隔缺损、室间隔缺损及房室间隔缺损 [ 25] 。此外,研究发现在小鼠胚胎中 Baf60c选择性表达于心脏与体节,条件性敲低 Baf60c会造成第一心岛发育缺陷、心室发育不全、流出道异常 [ 22]

非编码RNA是指不翻译成蛋白质的RNA,其中参与基因调控的非编码RNA包括miRNA、长链非编码RNA(lncRNA)、PIWI相互作用RNA(piRNA)、小干扰RNA(siRNA)等 [ 125] 。miRNA和lncRNA是非编码RNA中研究最为广泛的。

miRNA是一类广泛存在于真核细胞中并且高度保守的约22个核苷酸组成的内源性非编码单链小分子RNA。调控方式主要通过靶向结合mRNA,进而抑制或阻断翻译 [ 126- 127] 。心脏发育是一个多基因调控的过程,miRNA可参与心脏发育相关通路的调控进而导致先天性心脏病的发生 [ 128] 。室间隔缺损是最常见的先天性心脏病类型。实验表明,在室间隔缺损患者的心脏组织中,miRNA-1-1表达明显下调。通过筛选证实 SOX9是miRNA-1-1的靶基因, SOX9是心脏瓣膜和间隔发育重要的调控基因,其表达下降引起心脏发育缺陷 [ 79] 。法洛四联症是常见的严重青紫型先天性心脏病。实验证实,在法洛四联症患者的心脏组织中,miRNA-1275、miRNA-27b和miRNA- 421表达上调,而miRNA-1201和miRNA-122表达下调 [ 129] 。肌细胞增强因子2( Mef2c)是miRNA-27b的靶基因,miRNA-27b过度表达可抑制 Mef2c从而影响心肌发育,导致心肌肥厚 [ 130] 。最新研究发现, Frataxin ( FXN)是先天性心脏病中表达差异最明显的中枢基因, miRNA-145过表达可以抑制 FXN基因的表达;同时,miRNA-145通过影响 FXN基因表达,对细胞凋亡和线粒体功能进行调控,进而导致先天性心脏病的发生 [ 131]

lncRNA是指长度超过200个核苷酸的非编码RNA。lncRNA通过控制基因表达调节细胞过程不编码蛋白质的新型转录物。对临床室间隔缺损患者的心脏样本进行转录组分析,发现具有显著表达差异的lncRNA,从中挑选高度保守的lncRNA uc.299作为研究对象。结果表明,uc.299定位于 PAX2基因的第1个内含子和第2个外显子交接处 [ 73] ,而 PAX2参与许多器官的发育,其异常表达常引起疾病的发生 [ 132] ,uc.299的显著低表达最终导致了先天性心脏病的发生。

通过数十年的研究,已知各种类型的染色体变异、基因突变及表观遗传性修饰等与先天性心脏病的发生密切相关。但是关于表观遗传学修饰及环境因素的相互作用在先天性心脏病发生中的角色仍然还有很多未知。随着精准医学概念的提出,基因组测序、生物芯片和生物信息技术的快速进展和应用,先天性心脏病的治疗和研究进入了一个全新的阶段。这些新技术的运用将为先天性心脏病的预防、诊断和治疗提供有效的方法,为先天性心脏病的个体化医疗开辟新的途径。

Funding Statement

浙江省重点研发计划(2017C03009);浙江省卫生高层次人才培养工程(2016-6)

References

  • 1.VAN DER BOM T, ZOMER A C, ZWINDERMAN A H, et al. The changing epidemiology of congenital heart disease. Nat Rev Cardiol. 2011;8(1):50–60. doi: 10.1038/nrcardio.2010.166. [VAN DER BOM T, ZOMER A C, ZWINDERMAN A H, et al. The changing epidemiology of congenital heart disease[J]. Nat Rev Cardiol, 2011, 8(1):50-60.] [DOI] [PubMed] [Google Scholar]
  • 2.GELB B, BRUECKNER M, CHUNG W, et al. The Congenital Heart Disease Genetic Network Study:rationale, design, and early results. Circ Res. 2013;112(4):698–706. doi: 10.1161/CIRCRESAHA.111.300297. [GELB B, BRUECKNER M, CHUNG W, et al. The Congenital Heart Disease Genetic Network Study:rationale, design, and early results[J]. Circ Res, 2013, 112(4):698-706.] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 3.王 卫平. 儿科学. 北京: 人民卫生出版社; 2013. p. 292. [王卫平.儿科学[M].8版.北京:人民卫生出版社, 2013:292.] [Google Scholar]
  • 4.李 烁琳, 顾 若漪, 黄 国英. 儿童先天性心脏病流行病学特征. http://d.old.wanfangdata.com.cn/Conference/8436983. 中国实用儿科杂志. 2017;32(11):871–875. [李烁琳, 顾若漪, 黄国英.儿童先天性心脏病流行病学特征[J].中国实用儿科杂志, 2017, 32(11):871-875.] [Google Scholar]
  • 5.MADEMONT-SOLER I, MORALES C, SOLER A, et al. Prenatal diagnosis of chromosomal abnormalities in fetuses with abnormal cardiac ultrasound findings:evaluation of chromosomal microarray-based analysis. Ultrasound Obstet Gynecol. 2013;41(4):375–382. doi: 10.1002/uog.12372. [MADEMONT-SOLER I, MORALES C, SOLER A, et al. Prenatal diagnosis of chromosomal abnormalities in fetuses with abnormal cardiac ultrasound findings:evaluation of chromosomal microarray-based analysis[J]. Ultrasound Obstet Gynecol, 2013, 41(4):375-382.] [DOI] [PubMed] [Google Scholar]
  • 6.HARTMAN R J, RASMUSSEN S A, BOTTO L D, et al. The contribution of chromosomal abnormalities to congenital heart defects:a population-based study. Pediatr Cardiol. 2011;32(8):1147–1157. doi: 10.1007/s00246-011-0034-5. [HARTMAN R J, RASMUSSEN S A, BOTTO L D, et al. The contribution of chromosomal abnormalities to congenital heart defects:a population-based study[J]. Pediatr Cardiol, 2011, 32(8):1147-1157.] [DOI] [PubMed] [Google Scholar]
  • 7.PETRY P, POLLI J B, MATTOS V F, et al. Clinical features and prognosis of a sample of patients with trisomy 13(Patau syndrome) from Brazil. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=JJ0230172358. Am J Med Genet A. 2013;161A(6):1278–1283. doi: 10.1002/ajmg.a.35863. [PETRY P, POLLI J B, MATTOS V F, et al. Clinical features and prognosis of a sample of patients with trisomy 13(Patau syndrome) from Brazil[J]. Am J Med Genet A, 2013, 161A(6):1278-1283.] [DOI] [PubMed] [Google Scholar]
  • 8.FAHED A C, GELB B D, SEIDMAN J G, et al. Genetics of congenital heart disease:the glass half empty. Circ Res. 2013;112(4):707–720. doi: 10.1161/CIRCRESAHA.112.300853. [FAHED A C, GELB B D, SEIDMAN J G, et al. Genetics of congenital heart disease:the glass half empty[J]. Circ Res, 2013, 112(4):707-720.] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 9.VOELCKEL M A, GIRARDOT L, GIUSIANO B, et al. Allelic variations at the haploid TBX1 locus do not influence the cardiac phenotype in cases of 22q11 microdeletion. Ann Genet. 2004;47(3):235–240. doi: 10.1016/j.anngen.2004.04.002. [VOELCKEL M A, GIRARDOT L, GIUSIANO B, et al. Allelic variations at the haploid TBX1 locus do not influence the cardiac phenotype in cases of 22q11 microdeletion[J]. Ann Genet, 2004, 47(3):235-240.] [DOI] [PubMed] [Google Scholar]
  • 10.王 栋, 刘 迎龙. 先天性心脏病宫内微创治疗进展. 心肺血管病杂志. 2011;30(1):79–81. doi: 10.3969/j.issn.1007-5062.2011.01.025. [王栋, 刘迎龙.先天性心脏病宫内微创治疗进展[J].心肺血管病杂志, 2011, 30(1):79-81.] [DOI] [Google Scholar]
  • 11.于 宝生. Turner综合征的诊断和治疗. 中华实用儿科临床杂志. 2013;28(8):561–563. doi: 10.3760/cma.j.issn.2095-428X.2013.08.001. [于宝生.Turner综合征的诊断和治疗[J].中华实用儿科临床杂志, 2013, 28(8):561-563.] [DOI] [Google Scholar]
  • 12.DEMIRHAN O, TANRIVERDI N, YILMAZ M B, et al. Report of a new case with pentasomy X and novel clinical findings. Balkan J Med Genet. 2015;18(1):85–92. doi: 10.1515/bjmg-2015-0010. [DEMIRHAN O, TANRIVERDI N, YILMAZ M B, et al. Report of a new case with pentasomy X and novel clinical findings[J]. Balkan J Med Genet, 2015, 18(1):85-92.] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 13.吴 晓丽, 符 芳, 李 茹, et al. 染色体微阵列分析技术对先天性心脏病胎儿进行遗传病因学诊断的临床价值. 中华妇产科杂志. 49(12):893–898. doi: 10.3760/cma.j.issn.0529-567x.2014.12.003. [吴晓丽, 符芳, 李茹, 等.染色体微阵列分析技术对先天性心脏病胎儿进行遗传病因学诊断的临床价值[J].中华妇产科杂志, 49(12):893-898.] [DOI] [Google Scholar]
  • 14.DE WIT M C. Re: detection of submicroscopic chromosomal aberrations by array-based comparative genomic hybridization in fetuses with congenital heart disease. Y. Yan, Q. Wu, L. Zhang, X. Wang, S. Dan, D. Deng, L. Sun, L. Yao, Y. Ma and L. Wang. Ultrasound Obstet Gynecol 2014;43: 404-412[J]. Ultrasound Obstet Gynecol, 2014, 43(4): 363. . [DOI] [PubMed]
  • 15.MUNTEAN I, TOGǍNEL R, BENEDEK T. Genetics of congenital heart disease:past and present. Biochem Genet. 2017;55(2):105–123. doi: 10.1007/s10528-016-9780-7. [MUNTEAN I, TOGǍNEL R, BENEDEK T. Genetics of congenital heart disease:past and present[J]. Biochem Genet, 2017, 55(2):105-123.] [DOI] [PubMed] [Google Scholar]
  • 16.VECOLI C, PULIGNANI S, FOFFA I, et al. Congenital heart disease:the crossroads of genetics, epigenetics and environment. Curr Genomics. 2014;15(5):390–399. doi: 10.2174/1389202915666140716175634. [VECOLI C, PULIGNANI S, FOFFA I, et al. Congenital heart disease:the crossroads of genetics, epigenetics and environment[J]. Curr Genomics, 2014, 15(5):390-399.] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 17.MONSERRAT L, HERMIDA-PRIETO M, FERNANDEZ X, et al. Mutation in the alpha-cardiac actin gene associated with apical hypertrophic cardiomyopathy, left ventricular non-compaction, and septal defects. Eur Heart J. 2007;28(16):1953–1961. doi: 10.1093/eurheartj/ehm239. [MONSERRAT L, HERMIDA-PRIETO M, FERNANDEZ X, et al. Mutation in the alpha-cardiac actin gene associated with apical hypertrophic cardiomyopathy, left ventricular non-compaction, and septal defects[J]. Eur Heart J, 2007, 28(16):1953-1961.] [DOI] [PubMed] [Google Scholar]
  • 18.KOSAKI R, GEBBIA M, KOSAKI K, et al. Left-right axis malformations associated with mutations in ACVR2B, the gene for human activin receptor type ⅡB. Am J Med Genet. 1999;82(1):70–76. doi: 10.1002/(ISSN)1096-8628. [KOSAKI R, GEBBIA M, KOSAKI K, et al. Left-right axis malformations associated with mutations in ACVR2B, the gene for human activin receptor type ⅡB[J]. Am J Med Genet, 1999, 82(1):70-76.] [DOI] [PubMed] [Google Scholar]
  • 19.KARKERA J D, LEE J S, ROESSLER E, et al. Loss-of-function mutations in growth differentiation factor-1(GDF1) are associated with congenital heart defects in humans. Am J Hum Genet. 2007;81(5):987–994. doi: 10.1086/522890. [KARKERA J D, LEE J S, ROESSLER E, et al. Loss-of-function mutations in growth differentiation factor-1(GDF1) are associated with congenital heart defects in humans[J]. Am J Hum Genet, 2007, 81(5):987-994.] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 20.BOSADA F M, DEVASTHALI V, JONES K A, et al. Wnt/beta-catenin signaling enables developmental transitions during valvulogenesis. Development. 2016;143(6):1041–1054. doi: 10.1242/dev.130575. [BOSADA F M, DEVASTHALI V, JONES K A, et al. Wnt/beta-catenin signaling enables developmental transitions during valvulogenesis[J]. Development, 2016, 143(6):1041-1054.] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 21.CINQUETTI R, BADI I, CAMPIONE M, et al. Transcriptional deregulation and a missense mutation define ANKRD1 as a candidate gene for total anomalous pulmonary venous return. Hum Mutat. 2008;29(4):468–474. doi: 10.1002/humu.20711. [CINQUETTI R, BADI I, CAMPIONE M, et al. Transcriptional deregulation and a missense mutation define ANKRD1 as a candidate gene for total anomalous pulmonary venous return[J]. Hum Mutat, 2008, 29(4):468-474.] [DOI] [PubMed] [Google Scholar]
  • 22.LICKERT H, TAKEUCHI J K, VON BOTH I, et al. Baf60c is essential for function of BAF chromatin remodelling complexes in heart development. Nature. 2004;432(7013):107–112. doi: 10.1038/nature03071. [LICKERT H, TAKEUCHI J K, VON BOTH I, et al. Baf60c is essential for function of BAF chromatin remodelling complexes in heart development[J]. Nature, 2004, 432(7013):107-112.] [DOI] [PubMed] [Google Scholar]
  • 23.SARKOZY A, CARTA C, MORETTI S, et al. Germline BRAF mutations in Noonan, LEOPARD, and cardiofaciocutaneous syndromes:molecular diversity and associated phenotypic spectrum. Hum Mutat. 2009;30(4):695–702. doi: 10.1002/humu.v30:4. [SARKOZY A, CARTA C, MORETTI S, et al. Germline BRAF mutations in Noonan, LEOPARD, and cardiofaciocutaneous syndromes:molecular diversity and associated phenotypic spectrum[J]. Hum Mutat, 2009, 30(4):695-702.] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 24.HANG C T, YANG J, HAN P, et al. Chromatin regulation by Brg1 underlies heart muscle development and disease. Nature. 2010;466(7302):62–67. doi: 10.1038/nature09130. [HANG C T, YANG J, HAN P, et al. Chromatin regulation by Brg1 underlies heart muscle development and disease[J]. Nature, 2010, 466(7302):62-67.] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 25.BAJPAI R, CHEN D A, RADA-IGLESIAS A, et al. CHD7 cooperates with PBAF to control multipotent neural crest formation. Nature. 2010;463(7283):958–962. doi: 10.1038/nature08733. [BAJPAI R, CHEN D A, RADA-IGLESIAS A, et al. CHD7 cooperates with PBAF to control multipotent neural crest formation[J]. Nature, 2010, 463(7283):958-962.] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 26.SPERLING S, GRIMM C H, DUNKEL I, et al. Identification and functional analysis of CITED2 mutations in patients with congenital heart defects. Hum Mutat. 2005;26(6):575–582. doi: 10.1002/(ISSN)1098-1004. [SPERLING S, GRIMM C H, DUNKEL I, et al. Identification and functional analysis of CITED2 mutations in patients with congenital heart defects[J]. Hum Mutat, 2005, 26(6):575-582.] [DOI] [PubMed] [Google Scholar]
  • 27.ROBINSON S W, MORRIS C D, GOLDMUNTZ E, et al. Missense mutations in CRELD1 are associated with cardiac atrioventricular septal defects. Am J Hum Genet. 2003;72(4):1047–1052. doi: 10.1086/374319. [ROBINSON S W, MORRIS C D, GOLDMUNTZ E, et al. Missense mutations in CRELD1 are associated with cardiac atrioventricular septal defects[J]. Am J Hum Genet, 2003, 72(4):1047-1052.] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 28.ZATYKA M, PRIESTLEY M, LADUSANS E J, et al. Analysis of CRELD1 as a candidate 3p25 atrioventicular septal defect locus (AVSD2) Clin Genet. 2005;67(6):526–528. doi: 10.1111/j.1399-0004.2005.00435.x. [ZATYKA M, PRIESTLEY M, LADUSANS E J, et al. Analysis of CRELD1 as a candidate 3p25 atrioventicular septal defect locus (AVSD2)[J]. Clin Genet, 2005, 67(6):526-528.] [DOI] [PubMed] [Google Scholar]
  • 29.MASLEN C L, BABCOCK D, ROBINSON S W, et al. CRELD1 mutations contribute to the occurrence of cardiac atrioventricular septal defects in Down syndrome. https://onlinelibrary.wiley.com/doi/full/10.1002/ajmg.a.31494. Am J Med Genet A. 2006;140(22):2501–2505. doi: 10.1002/ajmg.a.31494. [MASLEN C L, BABCOCK D, ROBINSON S W, et al. CRELD1 mutations contribute to the occurrence of cardiac atrioventricular septal defects in Down syndrome[J]. Am J Med Genet A, 2006, 140(22):2501-2505.] [DOI] [PubMed] [Google Scholar]
  • 30.MENENDEZ-MONTES I, ESCOBAR B, PALACIOS B, et al. Myocardial VHL-HIF signaling controls an embryonic metabolic switch essential for cardiac maturation. Dev Cell. 2016;39(6):724–739. doi: 10.1016/j.devcel.2016.11.012. [MENENDEZ-MONTES I, ESCOBAR B, PALACIOS B, et al. Myocardial VHL-HIF signaling controls an embryonic metabolic switch essential for cardiac maturation[J]. Dev Cell, 2016, 39(6):724-739.] [DOI] [PubMed] [Google Scholar]
  • 31.WU Y, MA X J, WANG H J, et al. Expression of Cx43-related microRNAs in patients with tetralogy of Fallot. World J Pediatr. 2014;10(2):138–144. doi: 10.1007/s12519-013-0434-0. [WU Y, MA X J, WANG H J, et al. Expression of Cx43-related microRNAs in patients with tetralogy of Fallot[J]. World J Pediatr, 2014, 10(2):138-144.] [DOI] [PubMed] [Google Scholar]
  • 32.LIN B, WANG Y, WANG Z, et al. Uncovering the rare variants of DLC1 isoform 1 and their functional effects in a Chinese sporadic congenital heart disease cohort[J/OL]. PLoS One, 2014, 9(2): e90215. . [DOI] [PMC free article] [PubMed]
  • 33.LI D Y, TOLAND A E, BOAK B B, et al. Elastin point mutations cause an obstructive vascular disease, supravalvular aortic stenosis. Hum Mol Genet. 1997;6(7):1021–1028. doi: 10.1093/hmg/6.7.1021. [LI D Y, TOLAND A E, BOAK B B, et al. Elastin point mutations cause an obstructive vascular disease, supravalvular aortic stenosis[J]. Hum Mol Genet, 1997, 6(7):1021-1028.] [DOI] [PubMed] [Google Scholar]
  • 34.ROESSLER E, OUSPENSKAIA M V, KARKERA J D, et al. Reduced NODAL signaling strength via mutation of several pathway members including FOXH1 is linked to human heart defects and holoprosencephaly. Am J Hum Genet. 2008;83(1):18–29. doi: 10.1016/j.ajhg.2008.05.012. [ROESSLER E, OUSPENSKAIA M V, KARKERA J D, et al. Reduced NODAL signaling strength via mutation of several pathway members including FOXH1 is linked to human heart defects and holoprosencephaly[J]. Am J Hum Genet, 2008, 83(1):18-29.] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 35.GARG V, KATHIRIYA I S, BARNES R, et al. GATA4 mutations cause human congenital heart defects and reveal an interaction with TBX5. Nature. 2003;424(6947):443–447. doi: 10.1038/nature01827. [GARG V, KATHIRIYA I S, BARNES R, et al. GATA4 mutations cause human congenital heart defects and reveal an interaction with TBX5[J]. Nature, 2003, 424(6947):443-447.] [DOI] [PubMed] [Google Scholar]
  • 36.TOMITA-MITCHELL A, MASLEN C L, MORRIS C D, et al. GATA4 sequence variants in patients with congenital heart disease. J Med Genet. 2007;44(12):779–783. doi: 10.1136/jmg.2007.052183. [TOMITA-MITCHELL A, MASLEN C L, MORRIS C D, et al. GATA4 sequence variants in patients with congenital heart disease[J]. J Med Genet, 2007, 44(12):779-783.] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 37.ZHANG W, LI X, SHEN A, et al. GATA4 mutations in 486 Chinese patients with congenital heart disease. Eur J Med Genet. 2008;51(6):527–535. doi: 10.1016/j.ejmg.2008.06.005. [ZHANG W, LI X, SHEN A, et al. GATA4 mutations in 486 Chinese patients with congenital heart disease[J]. Eur J Med Genet, 2008, 51(6):527-535.] [DOI] [PubMed] [Google Scholar]
  • 38.NEMER G, FADLALAH F, USTA J, et al. A novel mutation in the GATA4 gene in patients with Tetralogy of Fallot. http://europepmc.org/abstract/MED/16470721. Hum Mutat. 2006;27(3):293–294. doi: 10.1002/humu.9410. [NEMER G, FADLALAH F, USTA J, et al. A novel mutation in the GATA4 gene in patients with Tetralogy of Fallot[J]. Hum Mutat, 2006, 27(3):293-294.] [DOI] [PubMed] [Google Scholar]
  • 39.KODO K, NISHIZAWA T, FURUTANI M, et al. GATA6 mutations cause human cardiac outflow tract defects by disrupting semaphorin-plexin signaling. Proc Natl Acad Sci U S A. 2009;106(33):13933–13938. doi: 10.1073/pnas.0904744106. [KODO K, NISHIZAWA T, FURUTANI M, et al. GATA6 mutations cause human cardiac outflow tract defects by disrupting semaphorin-plexin signaling[J]. Proc Natl Acad Sci U S A, 2009, 106(33):13933-13938.] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 40.CHRISTIANSEN J, DYCK J D, ELYAS B G, et al. Chromosome 1q21.1 contiguous gene deletion is associated with congenital heart disease. Circ Res. 2004;94(11):1429–1435. doi: 10.1161/01.RES.0000130528.72330.5c. [CHRISTIANSEN J, DYCK J D, ELYAS B G, et al. Chromosome 1q21.1 contiguous gene deletion is associated with congenital heart disease[J]. Circ Res, 2004, 94(11):1429-1435.] [DOI] [PubMed] [Google Scholar]
  • 41.COOPER G M, COE B P, GIRIRAJAN S, et al. A copy number variation morbidity map of developmental delay. Nat Genet. 2011;43(9):838–846. doi: 10.1038/ng.909. [COOPER G M, COE B P, GIRIRAJAN S, et al. A copy number variation morbidity map of developmental delay[J]. Nat Genet, 2011, 43(9):838-846.] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 42.ZHAO Y, SAMAL E, SRIVASTAVA D. Serum response factor regulates a muscle-specific microRNA that targets Hand2 during cardiogenesis. Nature. 2005;436(7048):214–220. doi: 10.1038/nature03817. [ZHAO Y, SAMAL E, SRIVASTAVA D. Serum response factor regulates a muscle-specific microRNA that targets Hand2 during cardiogenesis[J]. Nature, 2005, 436(7048):214-220.] [DOI] [PubMed] [Google Scholar]
  • 43.SRIVASTAVA D, THOMAS T, LIN Q, et al. Regulation of cardiac mesodermal and neural crest development by the bHLH transcription factor, dHAND. Nat Genet. 1997;16(2):154–160. doi: 10.1038/ng0697-154. [SRIVASTAVA D, THOMAS T, LIN Q, et al. Regulation of cardiac mesodermal and neural crest development by the bHLH transcription factor, dHAND[J]. Nat Genet, 1997, 16(2):154-160.] [DOI] [PubMed] [Google Scholar]
  • 44.CHANG S, MCKINSEY T A, ZHANG C L, et al. Histone deacetylases 5 and 9 govern responsiveness of the heart to a subset of stress signals and play redundant roles in heart development. Mol Cell Biol. 2004;24(19):8467–8476. doi: 10.1128/MCB.24.19.8467-8476.2004. [CHANG S, MCKINSEY T A, ZHANG C L, et al. Histone deacetylases 5 and 9 govern responsiveness of the heart to a subset of stress signals and play redundant roles in heart development[J]. Mol Cell Biol, 2004, 24(19):8467-8476.] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 45.JORDAN V K, ROSENFELD J A, LALANI S R, et al. Duplication of HEY2 in cardiac and neurologic development. http://www.ncbi.nlm.nih.gov/pubmed/25832314. Am J Med Genet A. 2015;167A(9):2145–2149. doi: 10.1002/ajmg.a.37086. [JORDAN V K, ROSENFELD J A, LALANI S R, et al. Duplication of HEY2 in cardiac and neurologic development[J]. Am J Med Genet A, 2015, 167A(9):2145-2149.] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 46.AOKI Y, NIIHORI T, KAWAME H, et al. Germline mutations in HRAS proto-oncogene cause Costello syndrome. Nat Genet. 2005;37(10):1038–1040. doi: 10.1038/ng1641. [AOKI Y, NIIHORI T, KAWAME H, et al. Germline mutations in HRAS proto-oncogene cause Costello syndrome[J]. Nat Genet, 2005, 37(10):1038-1040.] [DOI] [PubMed] [Google Scholar]
  • 47.CHENG Z, WANG J, SU D, et al. Two novel mutations of the IRX4 gene in patients with congenital heart disease. Hum Genet. 2011;130(5):657–662. doi: 10.1007/s00439-011-0996-7. [CHENG Z, WANG J, SU D, et al. Two novel mutations of the IRX4 gene in patients with congenital heart disease[J]. Hum Genet, 2011, 130(5):657-662.] [DOI] [PubMed] [Google Scholar]
  • 48.KRANTZ I D, SMITH R, COLLITON R P, et al. Jagged1 mutations in patients ascertained with isolated congenital heart defects. Am J Med Genet. 1999;84(1):56–60. doi: 10.1002/(ISSN)1096-8628. [KRANTZ I D, SMITH R, COLLITON R P, et al. Jagged1 mutations in patients ascertained with isolated congenital heart defects[J]. Am J Med Genet, 1999, 84(1):56-60.] [DOI] [PubMed] [Google Scholar]
  • 49.ELDADAH Z A, HAMOSH A, BIERY N J, et al. Familial Tetralogy of Fallot caused by mutation in the jagged1 gene. Hum Mol Genet. 2001;10(2):163–169. doi: 10.1093/hmg/10.2.163. [ELDADAH Z A, HAMOSH A, BIERY N J, et al. Familial Tetralogy of Fallot caused by mutation in the jagged1 gene[J]. Hum Mol Genet, 2001, 10(2):163-169.] [DOI] [PubMed] [Google Scholar]
  • 50.SCHUBBERT S, ZENKER M, ROWE S L, et al. Germline KRAS mutations cause Noonan syndrome. Nat Genet. 2006;38(3):331–336. doi: 10.1038/ng1748. [SCHUBBERT S, ZENKER M, ROWE S L, et al. Germline KRAS mutations cause Noonan syndrome[J]. Nat Genet, 2006, 38(3):331-336.] [DOI] [PubMed] [Google Scholar]
  • 51.SCHULZ A L, ALBRECHT B, ARICI C, et al. Mutation and phenotypic spectrum in patients with cardio-facio-cutaneous and Costello syndrome. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=JJ022331985. Clin Genet. 2008;73(1):62–70. doi: 10.1111/j.1399-0004.2007.00931.x. [SCHULZ A L, ALBRECHT B, ARICI C, et al. Mutation and phenotypic spectrum in patients with cardio-facio-cutaneous and Costello syndrome[J]. Clin Genet, 2008, 73(1):62-70.] [DOI] [PubMed] [Google Scholar]
  • 52.MUNCKE N, JUNG C, RVDIGER H, et al. Missense mutations and gene interruption in PROSIT240, a novel TRAP240-like gene, in patients with congenital heart defect(transposition of the great arteries) Circulation. 2003;108(23):2843–2850. doi: 10.1161/01.CIR.0000103684.77636.CD. [MUNCKE N, JUNG C, RVDIGER H, et al. Missense mutations and gene interruption in PROSIT240, a novel TRAP240-like gene, in patients with congenital heart defect(transposition of the great arteries)[J]. Circulation, 2003, 108(23):2843-2850.] [DOI] [PubMed] [Google Scholar]
  • 53.ZAHKA K, KALIDAS K, SIMPSON M A, et al. Homozygous mutation of MYBPC3 associated with severe infantile hypertrophic cardiomyopathy at high frequency among the Amish. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=JJ027431288. Heart. 2008;94(10):1326–1330. doi: 10.1136/hrt.2007.127241. [ZAHKA K, KALIDAS K, SIMPSON M A, et al. Homozygous mutation of MYBPC3 associated with severe infantile hypertrophic cardiomyopathy at high frequency among the Amish[J]. Heart, 2008, 94(10):1326-1330.] [DOI] [PubMed] [Google Scholar]
  • 54.XIN B, PUFFENBERGER E, TUMBUSH J, et al. Homozygosity for a novel splice site mutation in the cardiac myosin-binding protein C gene causes severe neonatal hypertrophic cardiomyopathy. Am J Med Genet A. 2007;143A(22):2662–2667. doi: 10.1002/ajmg.a.v143a:22. [XIN B, PUFFENBERGER E, TUMBUSH J, et al. Homozygosity for a novel splice site mutation in the cardiac myosin-binding protein C gene causes severe neonatal hypertrophic cardiomyopathy[J]. Am J Med Genet A, 2007, 143A(22):2662-2667.] [DOI] [PubMed] [Google Scholar]
  • 55.LEKANNE D R H, MUURLING-VLIETMAN J J, HRUDA J, et al. Two cases of severe neonatal hypertrophic cardiomyopathy caused by compound heterozygous mutations in the MYBPC3 gene. J Med Genet. 2006;43(10):829–832. doi: 10.1136/jmg.2005.040329. [LEKANNE D R H, MUURLING-VLIETMAN J J, HRUDA J, et al. Two cases of severe neonatal hypertrophic cardiomyopathy caused by compound heterozygous mutations in the MYBPC3 gene[J]. J Med Genet, 2006, 43(10):829-832.] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 56.QIAO X H, WANG F, ZHANG X L, et al. MEF2C loss-of-function mutation contributes to congenital heart defects. Int J Med Sci. 2017;14(11):1143–1153. doi: 10.7150/ijms.21353. [QIAO X H, WANG F, ZHANG X L, et al. MEF2C loss-of-function mutation contributes to congenital heart defects[J]. Int J Med Sci, 2017, 14(11):1143-1153.] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 57.ZHANG M, LI F X, LIU X Y, et al. MESP1 loss-of-function mutation contributes to double outlet right ventricle. Molecular Medicine Reports. 2017;16(3):2747–2754. doi: 10.3892/mmr.2017.6875. [ZHANG M, LI F X, LIU X Y, et al. MESP1 loss-of-function mutation contributes to double outlet right ventricle[J]. Molecular Medicine Reports, 2017, 16(3):2747-2754.] [DOI] [PubMed] [Google Scholar]
  • 58.GRANADOS-RIVERON J T, GHOSH T K, POPE M, et al. Alpha-cardiac myosin heavy chain (MYH6) mutations affecting myofibril formation are associated with congenital heart defects. Hum Mol Genet. 2010;19(20):4007–4016. doi: 10.1093/hmg/ddq315. [GRANADOS-RIVERON J T, GHOSH T K, POPE M, et al. Alpha-cardiac myosin heavy chain (MYH6) mutations affecting myofibril formation are associated with congenital heart defects[J]. Hum Mol Genet, 2010, 19(20):4007-4016.] [DOI] [PubMed] [Google Scholar]
  • 59.POSTMA A V, VAN ENGELEN K, VAN DE MEERAKKER J, et al. Mutations in the sarcomere gene MYH7 in Ebstein anomaly. Circ Cardiovasc Genet. 2011;4(1):43–50. doi: 10.1161/CIRCGENETICS.110.957985. [POSTMA A V, VAN ENGELEN K, VAN DE MEERAKKER J, et al. Mutations in the sarcomere gene MYH7 in Ebstein anomaly[J]. Circ Cardiovasc Genet, 2011, 4(1):43-50.] [DOI] [PubMed] [Google Scholar]
  • 60.SCHOTT J J, BENSON D W, BASSON C T, et al. Congenital heart disease caused by mutations in the transcription factor NKX2-5. Science. 1998;281(5373):108–111. doi: 10.1126/science.281.5373.108. [SCHOTT J J, BENSON D W, BASSON C T, et al. Congenital heart disease caused by mutations in the transcription factor NKX2-5[J]. Science, 1998, 281(5373):108-111.] [DOI] [PubMed] [Google Scholar]
  • 61.GOLDMUNTZ E, GEIGER E, BENSON D W. NKX2.5 mutations in patients with tetralogy of fallot. Circulation. 2001;104(21):2565–2568. doi: 10.1161/hc4601.098427. [GOLDMUNTZ E, GEIGER E, BENSON D W. NKX2.5 mutations in patients with tetralogy of fallot[J]. Circulation, 2001, 104(21):2565-2568.] [DOI] [PubMed] [Google Scholar]
  • 62.MCELHINNEY D B, GEIGER E, BLINDER J, et al. NKX2.5 mutations in patients with congenital heart disease. J Am Coll Cardiol. 2003;42(9):1650–1655. doi: 10.1016/j.jacc.2003.05.004. [MCELHINNEY D B, GEIGER E, BLINDER J, et al.NKX2.5 mutations in patients with congenital heart disease[J]. J Am Coll Cardiol, 2003, 42(9):1650-1655.] [DOI] [PubMed] [Google Scholar]
  • 63.PENG T, WANG L, ZHOU S F, et al. Mutations of the GATA4 and NKX2.5 genes in Chinese pediatric patients with non-familial congenital heart disease. Genetica. 2010;138(11-12):1231–1240. doi: 10.1007/s10709-010-9522-4. [PENG T, WANG L, ZHOU S F, et al. Mutations of the GATA4 and NKX2.5 genes in Chinese pediatric patients with non-familial congenital heart disease[J]. Genetica, 2010, 138(11-12):1231-1240.] [DOI] [PubMed] [Google Scholar]
  • 64.WANG J, XIN Y F, LIU X Y, et al. A novel NKX2-5 mutation in familial ventricular septal defect. http://www.ncbi.nlm.nih.gov/pubmed/21165553. Int J Mol Med. 2011;27(3):369–375. doi: 10.3892/ijmm.2010.585. [WANG J, XIN Y F, LIU X Y, et al. A novel NKX2-5 mutation in familial ventricular septal defect[J]. Int J Mol Med, 2011, 27(3):369-375.] [DOI] [PubMed] [Google Scholar]
  • 65.HEATHCOTE K, BRAYBROOK C, ABUSHABAN L, et al. Common arterial trunk associated with a homeodomain mutation of NKX2.6. Hum Mol Genet. 2005;14(5):585–593. doi: 10.1093/hmg/ddi055. [HEATHCOTE K, BRAYBROOK C, ABUSHABAN L, et al. Common arterial trunk associated with a homeodomain mutation of NKX2.6[J]. Hum Mol Genet, 2005, 14(5):585-593.] [DOI] [PubMed] [Google Scholar]
  • 66.MOHAPATRA B, CASEY B, LI H, et al. Identification and functional characterization of NODAL rare variants in heterotaxy and isolated cardiovascular malformations. Hum Mol Genet. 2009;18(5):861–871. doi: 10.1093/hmg/ddn411. [MOHAPATRA B, CASEY B, LI H, et al. Identification and functional characterization of NODAL rare variants in heterotaxy and isolated cardiovascular malformations[J]. Hum Mol Genet, 2009, 18(5):861-871.] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 67.ROESSLER E, PEI W, OUSPENSKAIA M V, et al. Cumulative ligand activity of NODAL mutations and modifiers are linked to human heart defects and holoprosencephaly. Mol Genet Metab. 2009;98(1-2):225–234. doi: 10.1016/j.ymgme.2009.05.005. [ROESSLER E, PEI W, OUSPENSKAIA M V, et al. Cumulative ligand activity of NODAL mutations and modifiers are linked to human heart defects and holoprosencephaly[J]. Mol Genet Metab, 2009, 98(1-2):225-234.] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 68.GARG V, MUTH A N, RANSOM J F, et al. Mutations in NOTCH1 cause aortic valve disease. Nature. 2005;437(7056):270–274. doi: 10.1038/nature03940. [GARG V, MUTH A N, RANSOM J F, et al. Mutations in NOTCH1 cause aortic valve disease[J]. Nature, 2005, 437(7056):270-274.] [DOI] [PubMed] [Google Scholar]
  • 69.RICHARDS A A, GARG V. Genetics of congenital heart disease. Curr Cardiol Rev. 2010;6(2):91–97. doi: 10.2174/157340310791162703. [RICHARDS A A, GARG V. Genetics of congenital heart disease[J]. Curr Cardiol Rev, 2010, 6(2):91-97.] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 70.Al T S, MANICKARAJ A K, MERCER C L, et al. Rare variants in NR2F2 cause congenital heart defects in humans. Am J Hum Genet. 2014;94(4):574–585. doi: 10.1016/j.ajhg.2014.03.007. [Al T S, MANICKARAJ A K, MERCER C L, et al. Rare variants in NR2F2 cause congenital heart defects in humans[J]. Am J Hum Genet, 2014, 94(4):574-585.] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 71.TARTAGLIA M, MEHLER E L, GOLDBERG R, et al. Mutations in PTPN11, encoding the protein tyrosine phosphatase SHP-2, cause Noonan syndrome. Nat Genet. 2001;29(4):465–468. doi: 10.1038/ng772. [TARTAGLIA M, MEHLER E L, GOLDBERG R, et al. Mutations in PTPN11, encoding the protein tyrosine phosphatase SHP-2, cause Noonan syndrome[J]. Nat Genet, 2001, 29(4):465-468.] [DOI] [PubMed] [Google Scholar]
  • 72.PANDIT B, SARKOZY A, PENNACCHIO L A, et al. Gain-of-function RAF1 mutations cause Noonan and LEOPARD syndromes with hypertrophic cardiomyopathy. Nat Genet. 2007;39(8):1007–1012. doi: 10.1038/ng2073. [PANDIT B, SARKOZY A, PENNACCHIO L A, et al. Gain-of-function RAF1 mutations cause Noonan and LEOPARD syndromes with hypertrophic cardiomyopathy[J]. Nat Genet, 2007, 39(8):1007-1012.] [DOI] [PubMed] [Google Scholar]
  • 73.DU Z, FEI T, VERHAAK R G, et al. Integrative genomic analyses reveal clinically relevant long noncoding RNAs in human cancer. Nat Struct Mol Biol. 2013;20(7):908–913. doi: 10.1038/nsmb.2591. [DU Z, FEI T, VERHAAK R G, et al. Integrative genomic analyses reveal clinically relevant long noncoding RNAs in human cancer[J]. Nat Struct Mol Biol, 2013, 20(7):908-913.] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 74.AOKI Y, NⅡHORI T, BANJO T, et al. Gain-of-function mutations in RIT1 cause Noonan syndrome, a RAS/MAPK pathway syndrome. Am J Hum Genet. 2013;93(1):173–180. doi: 10.1016/j.ajhg.2013.05.021. [AOKI Y, NⅡHORI T, BANJO T, et al. Gain-of-function mutations in RIT1 cause Noonan syndrome, a RAS/MAPK pathway syndrome[J]. Am J Hum Genet, 2013, 93(1):173-180.] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 75.LALANI S R, SAFIULLAH A M, MOLINARI L M, et al. SEMA3E mutation in a patient with CHARGE syndrome[J/OL]. J Med Genet, 2004, 41(7): e94. . [DOI] [PMC free article] [PubMed]
  • 76.TAN H L, GLEN E, TÖPF A, et al. Nonsynonymous variants in the SMAD6 gene predispose to congenital cardiovascular malformation. Hum Mutat. 2012;33(4):720–727. doi: 10.1002/humu.22030. [TAN H L, GLEN E, TÖPF A, et al. Nonsynonymous variants in the SMAD6 gene predispose to congenital cardiovascular malformation[J]. Hum Mutat, 2012, 33(4):720-727.] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 77.PARK C Y, PIERCE S A, VON D M, et al. skNAC, a Smyd1-interacting transcription factor, is involved in cardiac development and skeletal muscle growth and regeneration. Proc Natl Acad Sci U S A. 2010;107(48):20750–20755. doi: 10.1073/pnas.1013493107. [PARK C Y, PIERCE S A, VON D M, et al. skNAC, a Smyd1-interacting transcription factor, is involved in cardiac development and skeletal muscle growth and regeneration[J]. Proc Natl Acad Sci U S A, 2010, 107(48):20750-20755.] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 78.ROBERTS A E, ARAKI T, SWANSON K D, et al. Germline gain-of-function mutations in SOS1 cause Noonan syndrome. Nat Genet. 2007;39(1):70–74. doi: 10.1038/ng1926. [ROBERTS A E, ARAKI T, SWANSON K D, et al. Germline gain-of-function mutations in SOS1 cause Noonan syndrome[J]. Nat Genet, 2007, 39(1):70-74.] [DOI] [PubMed] [Google Scholar]
  • 79.AKIYAMA H, CHABOISSIER M C, BEHRINGER R R, et al. Essential role of Sox9 in the pathway that controls formation of cardiac valves and septa. Proc Natl Acad Sci U S A. 2004;101(17):6502–6507. doi: 10.1073/pnas.0401711101. [AKIYAMA H, CHABOISSIER M C, BEHRINGER R R, et al. Essential role of Sox9 in the pathway that controls formation of cardiac valves and septa[J]. Proc Natl Acad Sci U S A, 2004, 101(17):6502-6507.] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 80.CHENG H L, MOSTOSLAVSKY R, SAITO S, et al. Developmental defects and p53 hyperacetylation in Sir2 homolog (SIRT1)-deficient mice. Proc Natl Acad Sci U S A. 2003;100(19):10794–10799. doi: 10.1073/pnas.1934713100. [CHENG H L, MOSTOSLAVSKY R, SAITO S, et al. Developmental defects and p53 hyperacetylation in Sir2 homolog (SIRT1)-deficient mice[J]. Proc Natl Acad Sci U S A, 2003, 100(19):10794-10799.] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 81.JEROME L A, PAPAIOANNOU V E. DiGeorge syndrome phenotype in mice mutant for the T-box gene, Tbx1. Nat Genet. 2001;27(3):286–291. doi: 10.1038/85845. [JEROME L A, PAPAIOANNOU V E. DiGeorge syndrome phenotype in mice mutant for the T-box gene, Tbx1[J]. Nat Genet, 2001, 27(3):286-291.] [DOI] [PubMed] [Google Scholar]
  • 82.GONG W, GOTTLIEB S, COLLINS J, et al. Mutation analysis of TBX1 in non-deleted patients with features of DGS/VCFS or isolated cardiovascular defects[J/OL]. J Med Genet, 2001, 38(12): E45. . [DOI] [PMC free article] [PubMed]
  • 83.JONES J W, TRACY M, PERRYMAN M, et al. Airway anomalies in patients with 22q11.2 deletion syndrome:a 5-year review. Ann Otol Rhinol Laryngol. 2018;127(6):384–389. doi: 10.1177/0003489418771711. [JONES J W, TRACY M, PERRYMAN M, et al. Airway anomalies in patients with 22q11.2 deletion syndrome:a 5-year review[J]. Ann Otol Rhinol Laryngol, 2018, 127(6):384-389.] [DOI] [PubMed] [Google Scholar]
  • 84.BASSON C T, HUANG T, LIN R C, et al. Different TBX5 interactions in heart and limb defined by Holt-Oram syndrome mutations. Proc Natl Acad Sci U S A. 1999;96(6):2919–2924. doi: 10.1073/pnas.96.6.2919. [BASSON C T, HUANG T, LIN R C, et al. Different TBX5 interactions in heart and limb defined by Holt-Oram syndrome mutations[J]. Proc Natl Acad Sci U S A, 1999, 96(6):2919-2924.] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 85.KIRK E P, SUNDE M, COSTA M W, et al. Mutations in cardiac T-box factor gene TBX20 are associated with diverse cardiac pathologies, including defects of septation and valvulogenesis and cardiomyopathy. Am J Hum Genet. 2007;81(2):280–291. doi: 10.1086/519530. [KIRK E P, SUNDE M, COSTA M W, et al. Mutations in cardiac T-box factor gene TBX20 are associated with diverse cardiac pathologies, including defects of septation and valvulogenesis and cardiomyopathy[J]. Am J Hum Genet, 2007, 81(2):280-291.] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 86.POSCH M G, GRAMLICH M, SUNDE M, et al. A gain-of-function TBX20 mutation causes congenital atrial septal defects, patent foramen ovale and cardiac valve defects. J Med Genet. 2010;47(4):230–235. doi: 10.1136/jmg.2009.069997. [POSCH M G, GRAMLICH M, SUNDE M, et al. A gain-of-function TBX20 mutation causes congenital atrial septal defects, patent foramen ovale and cardiac valve defects[J]. J Med Genet, 2010, 47(4):230-235.] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 87.NIMURA K, URA K, SHIRATORI H, et al. A histone H3 lysine 36 trimethyltransferase links Nkx2-5 to Wolf-Hirschhorn syndrome. Nature. 2009;460(7252):287–291. doi: 10.1038/nature08086. [NIMURA K, URA K, SHIRATORI H, et al. A histone H3 lysine 36 trimethyltransferase links Nkx2-5 to Wolf-Hirschhorn syndrome[J]. Nature, 2009, 460(7252):287-291] [DOI] [PubMed] [Google Scholar]
  • 88.IZZUTI A, SARKOZY A, NEWTON A L, et al. Mutations of ZFPM2/FOG2 gene in sporadic cases of tetralogy of Fallot. Hum Mutat. 2003;22(5):372–377. doi: 10.1002/(ISSN)1098-1004. [IZZUTI A, SARKOZY A, NEWTON A L, et al. Mutations of ZFPM2/FOG2 gene in sporadic cases of tetralogy of Fallot[J]. Hum Mutat, 2003, 22(5):372-377.] [DOI] [PubMed] [Google Scholar]
  • 89.MÉGARBANÉ A, SALEM N, STEPHAN E, et al. X-linked transposition of the great arteries and incomplete penetrance among males with a nonsense mutation in ZIC3. Eur J Hum Genet. 2000;8(9):704–708. doi: 10.1038/sj.ejhg.5200526. [MÉGARBANÉ A, SALEM N, STEPHAN E, et al. X-linked transposition of the great arteries and incomplete penetrance among males with a nonsense mutation in ZIC3[J]. Eur J Hum Genet, 2000, 8(9):704-708.] [DOI] [PubMed] [Google Scholar]
  • 90.WARE S M, PENG J, ZHU L, et al. Identification and functional analysis of ZIC3 mutations in heterotaxy and related congenital heart defects. Am J Hum Genet. 2004;74(1):93–105. doi: 10.1086/380998. [WARE S M, PENG J, ZHU L, et al. Identification and functional analysis of ZIC3 mutations in heterotaxy and related congenital heart defects[J]. Am J Hum Genet, 2004, 74(1):93-105.] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 91.CHHIN B, HATAYAMA M, BOZON D, et al. Elucidation of penetrance variability of a ZIC3 mutation in a family with complex heart defects and functional analysis of ZIC3 mutations in the first zinc finger domain. Hum Mutat. 2007;28(6):563–570. doi: 10.1002/humu.v28:6. [CHHIN B, HATAYAMA M, BOZON D, et al. Elucidation of penetrance variability of a ZIC3 mutation in a family with complex heart defects and functional analysis of ZIC3 mutations in the first zinc finger domain[J]. Hum Mutat, 2007, 28(6):563-570.] [DOI] [PubMed] [Google Scholar]
  • 92.HUANG J B, LIU Y L, LV X D. Pathogenic mechanisms of congenital heart disease. Fetal Pediatr Pathol. 2010;29(5):359–372. doi: 10.3109/15513811003789628. [HUANG J B, LIU Y L, LV X D. Pathogenic mechanisms of congenital heart disease[J]. Fetal Pediatr Pathol, 2010, 29(5):359-372.] [DOI] [PubMed] [Google Scholar]
  • 93.BRUNEAU B G. The developmental genetics of congenital heart disease. Nature. 2008;451(7181):943–948. doi: 10.1038/nature06801. [BRUNEAU B G. The developmental genetics of congenital heart disease[J]. Nature, 2008, 451(7181):943-948.] [DOI] [PubMed] [Google Scholar]
  • 94.LUXÁN G, D'AMATO G, MACGROGAN D, et al. Endocardial notch signaling in cardiac development and disease[J/OL]. Circ Res, 2016, 118(1): e1-e18. . [DOI] [PubMed]
  • 95.LI Y J, YANG Y Q. An update on the molecular diagnosis of congenital heart disease:focus on loss-of-function mutations. Expert Rev Mol Diagn. 2017;17(4):393–401. doi: 10.1080/14737159.2017.1300062. [LI Y J, YANG Y Q. An update on the molecular diagnosis of congenital heart disease:focus on loss-of-function mutations[J]. Expert Rev Mol Diagn, 2017, 17(4):393-401.] [DOI] [PubMed] [Google Scholar]
  • 96.HITZ M P, LEMIEUX-PERREAULT L P, MARSHALL C, et al. Rare copy number variants contribute to congenital left-sided heart disease[J/OL]. PLoS Genet, 2012, 8(9): e1002903. . [DOI] [PMC free article] [PubMed]
  • 97.PRIEST J R, GIRIRAJAN S, VU T H, et al. Rare copy number variants in isolated sporadic and syndromic atrioventricular septal defects. Am J Med Genet A. 2012;158A(6):1279–1284. doi: 10.1002/ajmg.a.35315. [PRIEST J R, GIRIRAJAN S, VU T H, et al. Rare copy number variants in isolated sporadic and syndromic atrioventricular septal defects[J]. Am J Med Genet A, 2012, 158A(6):1279-1284.] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 98.SILVERSIDES C K, LIONEL A C, COSTAIN G, et al. Rare copy number variations in adults with tetralogy of Fallot implicate novel risk gene pathways. PLoS Genet. 2012;8(8):e1002843. doi: 10.1371/journal.pgen.1002843. [SILVERSIDES C K, LIONEL A C, COSTAIN G, et al. Rare copy number variations in adults with tetralogy of Fallot implicate novel risk gene pathways[J/OL]. PLoS Genet, 2012, 8(8):e1002843.] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 99.SOEMEDI R, WILSON I J, BENTHAM J, et al. Contribution of global rare copy-number variants to the risk of sporadic congenital heart disease. Am J Hum Genet. 2012;91(3):489–501. doi: 10.1016/j.ajhg.2012.08.003. [SOEMEDI R, WILSON I J, BENTHAM J, et al. Contribution of global rare copy-number variants to the risk of sporadic congenital heart disease[J]. Am J Hum Genet, 2012, 91(3):489-501.] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 100.TOMITA-MITCHELL A, MAHNKE D K, STRUBLE C A, et al. Human gene copy number spectra analysis in congenital heart malformations. Physiol Genomics. 2012;44(9):518–541. doi: 10.1152/physiolgenomics.00013.2012. [TOMITA-MITCHELL A, MAHNKE D K, STRUBLE C A, et al. Human gene copy number spectra analysis in congenital heart malformations[J]. Physiol Genomics, 2012, 44(9):518-541.] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 101.XIE L, CHEN J L, ZHANG W Z, et al. Rare de novo copy number variants in patients with congenital pulmonary atresia[J/OL]. PLoS One, 2014, 9(5): e96471. . [DOI] [PMC free article] [PubMed]
  • 102.AN Y, DUAN W, HUANG G, et al. Genome-wide copy number variant analysis for congenital ventricular septal defects in Chinese Han population. https://www.ncbi.nlm.nih.gov/medgen/757132. BMC Med Genomics. 2016;9:2. doi: 10.1186/s12920-015-0163-4. [AN Y, DUAN W, HUANG G, et al. Genome-wide copy number variant analysis for congenital ventricular septal defects in Chinese Han population[J]. BMC Med Genomics, 2016, 9:2.] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 103.KASPARIAN N A, DE ABREU LOURENCO R, WINLAW D S, et al. Tell me once, tell me soon:parents' preferences for clinical genetics services for congenital heart disease. Genet Med. 2018 doi: 10.1038/gim.2018.16. [KASPARIAN N A, DE ABREU LOURENCO R, WINLAW D S, et al. Tell me once, tell me soon:parents' preferences for clinical genetics services for congenital heart disease[J]. Genet Med, 2018.] [DOI] [PubMed] [Google Scholar]
  • 104.PEYVANDI S, LUPO P J, GARBARINI J, et al. 22q11.2 deletions in patients with conotruncal defects:data from 1, 610 consecutive cases. Pediatr Cardiol. 2013;34(7):1687–1694. doi: 10.1007/s00246-013-0694-4. [PEYVANDI S, LUPO P J, GARBARINI J, et al. 22q11.2 deletions in patients with conotruncal defects:data from 1, 610 consecutive cases[J]. Pediatr Cardiol, 2013, 34(7):1687-1694.] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 105.WANG W, REIN B, ZHANG F, et al. Chemogenetic activation of prefrontal cortex rescues synaptic and behavioral deficits in a mouse model of 16p11.2 deletion syndrome. J Neurosci. 2018;38(26):5939–5948. doi: 10.1523/JNEUROSCI.0149-18.2018. [WANG W, REIN B, ZHANG F, et al. Chemogenetic activation of prefrontal cortex rescues synaptic and behavioral deficits in a mouse model of 16p11.2 deletion syndrome[J]. J Neurosci, 2018, 38(26):5939-5948.] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 106.SCAMBLER P J. 22q11 deletion syndrome:a role for TBX1 in pharyngeal and cardiovascular development. Pediatr Cardiol. 2010;31(3):378–390. doi: 10.1007/s00246-009-9613-0. [SCAMBLER P J. 22q11 deletion syndrome:a role for TBX1 in pharyngeal and cardiovascular development[J]. Pediatr Cardiol, 2010, 31(3):378-390.] [DOI] [PubMed] [Google Scholar]
  • 107.RACEDO S E, MCDONALD-MCGINN D M, CHUNG J H, et al. Mouse and human CRKL is dosage sensitive for cardiac outflow tract formation. Am J Hum Genet. 2015;96(2):235–244. doi: 10.1016/j.ajhg.2014.12.025. [RACEDO S E, MCDONALD-MCGINN D M, CHUNG J H, et al. Mouse and human CRKL is dosage sensitive for cardiac outflow tract formation[J]. Am J Hum Genet, 2015, 96(2):235-244.] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 108.CHAPNIK E, SASSON V, BLELLOCH R, et al. Dgcr8 controls neural crest cells survival in cardiovascular development. Dev Biol. 2012;362(1):50–56. doi: 10.1016/j.ydbio.2011.11.008. [CHAPNIK E, SASSON V, BLELLOCH R, et al. Dgcr8 controls neural crest cells survival in cardiovascular development[J]. Dev Biol, 2012, 362(1):50-56.] [DOI] [PubMed] [Google Scholar]
  • 109.BASSETT A S, CHOW E W, HUSTED J, et al. Clinical features of 78 adults with 22q11 Deletion Syndrome. http://pubmedcentralcanada.ca/pmcc/articles/PMC3127862/ Am J Med Genet A. 2005;138(4):307–313. doi: 10.1002/ajmg.a.30984. [BASSETT A S, CHOW E W, HUSTED J, et al. Clinical features of 78 adults with 22q11 Deletion Syndrome[J]. Am J Med Genet A, 2005, 138(4):307-313.] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 110.SOEMEDI R, WILSON I J, BENTHAM J, et al. Contribution of global rare copy-number variants to the risk of sporadic congenital heart disease. Am J Hum Genet. 2012;91(3):489–501. doi: 10.1016/j.ajhg.2012.08.003. [SOEMEDI R, WILSON I J, BENTHAM J, et al. Contribution of global rare copy-number variants to the risk of sporadic congenital heart disease[J]. Am J Hum Genet, 2012, 91(3):489-501.] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 111.NAKANISHI T, MARKWALD R R, BALDWIN H S, et al. Etiology and morphogenesis of congenital heart disease:from gene function and cellular interaction to morphology. Tokyo: Springer; 2016. [NAKANISHI T, MARKWALD R R, BALDWIN H S, et al. Etiology and morphogenesis of congenital heart disease:from gene function and cellular interaction to morphology[M]. Tokyo:Springer, 2016.] [PubMed] [Google Scholar]
  • 112.CAREY A S, LIANG L, EDWARDS J, et al. Effect of copy number variants on outcomes for infants with single ventricle heart defects. Circ Cardiovasc Genet. 2013;6(5):444–451. doi: 10.1161/CIRCGENETICS.113.000189. [CAREY A S, LIANG L, EDWARDS J, et al. Effect of copy number variants on outcomes for infants with single ventricle heart defects[J]. Circ Cardiovasc Genet, 2013, 6(5):444-451.] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 113.OSOEGAWA K, IOVANNISCI D M, LIN B, et al. Identification of novel candidate gene loci and increased sex chromosome aneuploidy among infants with conotruncal heart defects. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=JJ0232039039. Am J Med Genet A. 2014;164A(2):397–406. doi: 10.1002/ajmg.a.36291. [OSOEGAWA K, IOVANNISCI D M, LIN B, et al. Identification of novel candidate gene loci and increased sex chromosome aneuploidy among infants with conotruncal heart defects[J]. Am J Med Genet A, 2014, 164A(2):397-406.] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 114.GARG V, KATHIRIYA I S, BARNES R, et al. GATA4 mutations cause human congenital heart defects and reveal an interaction with TBX5. Nature. 2003;424(6947):443–447. doi: 10.1038/nature01827. [GARG V, KATHIRIYA I S, BARNES R, et al. GATA4 mutations cause human congenital heart defects and reveal an interaction with TBX5[J]. Nature, 2003, 424(6947):443-447.] [DOI] [PubMed] [Google Scholar]
  • 115.SERRA-JUHÉ C, CUSCÓ I, HOMS A, et al. DNA methylation abnormalities in congenital heart disease. Epigenetics. 2015;10(2):167–177. doi: 10.1080/15592294.2014.998536. [SERRA-JUHÉ C, CUSCÓ I, HOMS A, et al. DNA methylation abnormalities in congenital heart disease[J]. Epigenetics, 2015, 10(2):167-177.] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 116.STRAUSSMAN R, NEJMAN D, ROBERTS D, et al. Developmental programming of CpG island methylation profiles in the human genome. Nat Struct Mol Biol. 2009;16(5):564–571. doi: 10.1038/nsmb.1594. [STRAUSSMAN R, NEJMAN D, ROBERTS D, et al. Developmental programming of CpG island methylation profiles in the human genome[J]. Nat Struct Mol Biol, 2009, 16(5):564-571.] [DOI] [PubMed] [Google Scholar]
  • 117.SHENG W, QIAN Y, WANG H, et al. Association between mRNA levels of DNMT1, DNMT3A, DNMT3B, MBD2 and LINE-1 methylation status in infants with tetralogy of Fallot. Int J Mol Med. 2013;32(3):694–702. doi: 10.3892/ijmm.2013.1427. [SHENG W, QIAN Y, WANG H, et al. Association between mRNA levels of DNMT1, DNMT3A, DNMT3B, MBD2 and LINE-1 methylation status in infants with tetralogy of Fallot[J]. Int J Mol Med, 2013, 32(3):694-702.] [DOI] [PubMed] [Google Scholar]
  • 118.BARRINGHAUS K G, ZAMORE P D. MicroRNAs:regulating a change of heart. Circulation. 2009;119(16):2217–2224. doi: 10.1161/CIRCULATIONAHA.107.715839. [BARRINGHAUS K G, ZAMORE P D. MicroRNAs:regulating a change of heart[J]. Circulation, 2009, 119(16):2217-2224.] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 119.ZHOU J, DONG X, ZHOU Q, et al. microRNA expression profiling of heart tissue during fetal development. Int J Mol Med. 2014;33(5):1250–1260. doi: 10.3892/ijmm.2014.1691. [ZHOU J, DONG X, ZHOU Q, et al. microRNA expression profiling of heart tissue during fetal development[J]. Int J Mol Med, 2014, 33(5):1250-1260.] [DOI] [PubMed] [Google Scholar]
  • 120.WU K H, XIAO Q R, YANG Y, et al. MicroRNA-34a modulates the Notch signaling pathway in mice with congenital heart disease and its role in heart development. J Mol Cell Cardiol. 2018;114:300–308. doi: 10.1016/j.yjmcc.2017.11.015. [WU K H, XIAO Q R, YANG Y, et al. MicroRNA-34a modulates the Notch signaling pathway in mice with congenital heart disease and its role in heart development[J]. J Mol Cell Cardiol, 2018, 114:300-308.] [DOI] [PubMed] [Google Scholar]
  • 121.GILSBACH R, PREISSL S, GRVNING B A, et al. Dynamic DNA methylation orchestrates cardiomyocyte development, maturation and disease. Nat Commun. 2014;5:5288. doi: 10.1038/ncomms6288. [GILSBACH R, PREISSL S, GRVNING B A, et al. Dynamic DNA methylation orchestrates cardiomyocyte development, maturation and disease[J]. Nat Commun, 2014, 5:5288.] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 122.CHAMBERLAIN A A, LIN M, LISTER R L, et al. DNA methylation is developmentally regulated for genes essential for cardiogenesis[J/OL]. J Am Heart Assoc, 2014, 3(3): e000976. . [DOI] [PMC free article] [PubMed]
  • 123.QIAN Y, XIAO D, GUO X, et al. Hypomethylation and decreased expression of BRG1 in the myocardium of patients with congenital heart disease. Birth Defects Res. 2017;109(15):1183–1195. doi: 10.1002/bdr2.v109.15. [QIAN Y, XIAO D, GUO X, et al. Hypomethylation and decreased expression of BRG1 in the myocardium of patients with congenital heart disease[J]. Birth Defects Res, 2017, 109(15):1183-1195.] [DOI] [PubMed] [Google Scholar]
  • 124.YODH J. ATP-dependent chromatin remodeling. http://d.old.wanfangdata.com.cn/Periodical/zgswhxyfzswxb200304002. Adv Exp Med Biol. 2013;767:263–295. doi: 10.1007/978-1-4614-5037-5_13. [YODH J. ATP-dependent chromatin remodeling[J]. Adv Exp Med Biol, 2013, 767:263-295.] [DOI] [PubMed] [Google Scholar]
  • 125.VAN DER HARST P, DE WINDT L J, CHAMBERS J C. Translational perspective on epigenetics in cardiovascular disease. J Am Coll Cardiol. 2017;70(5):590–606. doi: 10.1016/j.jacc.2017.05.067. [VAN DER HARST P, DE WINDT L J, CHAMBERS J C. Translational perspective on epigenetics in cardiovascular disease[J]. J Am Coll Cardiol, 2017, 70(5):590-606.] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 126.BARTEL D P. MicroRNAs:genomics, biogenesis, mechanism, and function. Cell. 2004;116(2):281–297. doi: 10.1016/S0092-8674(04)00045-5. [BARTEL D P. MicroRNAs:genomics, biogenesis, mechanism, and function[J]. Cell, 2004, 116(2):281-297.] [DOI] [PubMed] [Google Scholar]
  • 127.YATES L A, NORBURY C J, GILBERT R J. The long and short of microRNA. Cell. 2013;153(3):516–519. doi: 10.1016/j.cell.2013.04.003. [YATES L A, NORBURY C J, GILBERT R J. The long and short of microRNA[J]. Cell, 2013, 153(3):516-519.] [DOI] [PubMed] [Google Scholar]
  • 128.LIU N, OLSON E N. MicroRNA regulatory networks in cardiovascular development. Dev Cell. 2010;18(4):510–525. doi: 10.1016/j.devcel.2010.03.010. [LIU N, OLSON E N. MicroRNA regulatory networks in cardiovascular development[J]. Dev Cell, 2010, 18(4):510-525.] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 129.O'BRIEN J E, KIBIRYEVA N, ZHOU X G, et al. Noncoding RNA expression in myocardium from infants with tetralogy of Fallot. Circ Cardiovasc Genet. 2012;5(3):279–286. doi: 10.1161/CIRCGENETICS.111.961474. [O'BRIEN J E, KIBIRYEVA N, ZHOU X G, et al. Noncoding RNA expression in myocardium from infants with tetralogy of Fallot[J]. Circ Cardiovasc Genet, 2012, 5(3):279-286.] [DOI] [PubMed] [Google Scholar]
  • 130.CHINCHILLA A, LOZANO E, DAIMI H, et al. MicroRNA profiling during mouse ventricular maturation:a role for miR-27 modulating Mef2c expression. Cardiovasc Res. 2011;89(1):98–108. doi: 10.1093/cvr/cvq264. [CHINCHILLA A, LOZANO E, DAIMI H, et al. MicroRNA profiling during mouse ventricular maturation:a role for miR-27 modulating Mef2c expression[J]. Cardiovasc Res, 2011, 89(1):98-108.] [DOI] [PubMed] [Google Scholar]
  • 131.WANG L, TIAN D, HU J, et al. MiRNA-145 regulates the development of congenital heart disease through targeting FXN. Pediatr Cardiol. 2016;37(4):629–636. doi: 10.1007/s00246-015-1325-z. [WANG L, TIAN D, HU J, et al. MiRNA-145 regulates the development of congenital heart disease through targeting FXN[J]. Pediatr Cardiol, 2016, 37(4):629-636.] [DOI] [PubMed] [Google Scholar]
  • 132.SAIFUDEEN Z, LIU J, DIPP S, et al. A p53-Pax2 pathway in kidney development: implications for nephrogenesis[J/OL]. PLoS One, 2012, 7(9): e44869. . [DOI] [PMC free article] [PubMed]

Articles from Journal of Zhejiang University (Medical Sciences) are provided here courtesy of Zhejiang University Press

RESOURCES