Skip to main content
Journal of Zhejiang University (Medical Sciences) logoLink to Journal of Zhejiang University (Medical Sciences)
. 2017 Apr 25;46(2):167–172. [Article in Chinese] doi: 10.3785/j.issn.1008-9292.2017.04.08

纳米材料靶向肿瘤相关巨噬细胞用于肿瘤成像及治疗的研究进展

Advances in nanoparticle-targeting tumor associated macrophages for cancer imaging and therapy

Fengliang GUO 1, Guping TANG 2,*, Qinglian HU 1
PMCID: PMC10396924  PMID: 28752708

Abstract

肿瘤组织由肿瘤细胞和复杂的微环境构成。肿瘤相关巨噬细胞(TAM)是肿瘤微环境的重要组成成分,在肿瘤生长转移及微环境调控中扮演着重要的角色。近年来的研究表明,纳米材料作为新兴的技术平台,为肿瘤的成像和治疗提供了新的思路。一方面可以通过TAM成像为肿瘤发生、发展以及肿瘤治疗的效果提供直观的证据;另一方面通过TAM靶向杀伤或者促进TAM类型转化,调节肿瘤微环境的免疫抑制,提高肿瘤治疗效果。本文阐述了TAM的功能,同时对靶向TAM的纳米材料在肿瘤成像以及治疗方面的应用进行了综述。


目前,肿瘤在诊断和药物化疗方面取得了重大的研究进展,各种针对肿瘤细胞的靶向治疗方案层出不穷,但肿瘤的耐药性、频繁复发和治疗的严重毒副作用仍然是临床治疗面临的主要难题 [ 1- 2] 。随着肿瘤生物学的发展,肿瘤微环境的逐步揭示,认识到肿瘤组织不再只是癌细胞的简单“堆叠”,而是伴随着多种淋巴细胞、基质细胞、内皮细胞以及成纤维细胞等,它们的组成在肿瘤生态系统中发挥着重要的作用 [ 3- 4] 。传统针对肿瘤细胞本身的治疗手段在肿瘤可持续性和永久性治疗上应用有限,而以肿瘤细胞与免疫系统相互作用为出发点,针对免疫细胞的肿瘤治疗策略为肿瘤治疗提供了新的视角 [ 5- 6]

正常情况下,细胞与其周围的组织环境达到动态平衡,共同作用调节细胞增殖、分化以及凋亡,实现内环境的稳定。肿瘤细胞需要维持快速无限增殖,需要建立一套适合生长的外部环境。随着肿瘤生物学的发展,肿瘤组织成分的揭示,学界提出了肿瘤微环境的概念。肿瘤微环境是由肿瘤细胞外基质、成纤维细胞、血管和免疫细胞组成的一个复杂的综合体。肿瘤微环境通过分泌产生大量的生长因子、水解酶以及炎性因子作用于肿瘤细胞,为肿瘤的生长提供丰厚的“土壤”基础。肿瘤细胞与肿瘤微环境的相互作用,构筑了一个缺氧的高压酸性环境,调控肿瘤的多种生物学行为,包括肿瘤血管的生成、复发、转移、耐药以及免疫抑制等 [ 7]

肿瘤相关巨噬细胞(tumor associated macrophages,TAM)是肿瘤微环境的重要组成部分,纳米材料作为载体系统可提供一种新的药物输送方式,在药物靶向输送、控制释放以及安全性方面具有独特的优势。纳米材料靶向的TAM为肿瘤诊断及治疗提供了新的契机,其应用如 图 1所示,一方面可以通过TAM成像为肿瘤发生、发展以及肿瘤治疗的效果提供直观的证据;另一方面通过TAM靶向杀伤或者促进TAM类型转化,调节肿瘤微环境的免疫抑制,提高肿瘤治疗效果 [ 8] 。本文先介绍TAM,然后着重综述TAM靶向的诊疗试剂和纳米药物在肿瘤成像及治疗中的应用。

graphic file with name zjdxxbyxb-46-2-167-1.jpg

巨噬细胞广泛分布于脾脏、淋巴结等重要的免疫器官以及血液中 [ 9] 。巨噬细胞作为机体的防御卫士,在机体炎症、免疫以及组织重建中发挥重要作用 [ 3] ,如 图 2。根据其功能和分化程度可分为经典途径激活的M1型巨噬细胞(杀伤型)和替代途径激活的M2型巨噬细胞(治愈型)。大量研究表明,经典的M1型巨噬细胞可以分泌大量促炎性因子,表达高水平的分子并参与杀灭病原体和肿瘤细胞。而M2型巨噬细胞则抑制炎症反应、清除细胞碎片、促进血管新生以及组织重塑。近年来研究表明,巨噬细胞可广泛侵入肿瘤组织形成TAM,是肿瘤基质的重要组成部分,占肿瘤总量的50%,绝大多数的TAM属于M2型 [ 10]

graphic file with name zjdxxbyxb-46-2-167-2.jpg

肿瘤微环境可以分泌大量的趋化因子,如单核细胞趋化蛋白CCL2和CCL5,招募血液循环中的单核细胞进入肿瘤组织,并诱导成为TAM [ 11] 。CCL2是广泛关注的一类趋化因子,由肿瘤细胞分泌,在多种肿瘤组织中高表达,如神经纤维胶质瘤、乳腺癌、卵巢癌和黑色素瘤。CCL2缺陷小鼠在炎性模型中无法招募单核细胞,创伤血管的新生也会延迟。这表明CCL2在单核细胞招募以及创伤愈合的过程中发挥着重要的作用 [ 12] 。CCL5也是一类TAM招募的重要趋化因子,不仅可以由初始T细胞分泌,肿瘤细胞也能够分泌,促进单核细胞向肿瘤部位迁移。值得关注的是,CCL5能激活单核细胞,促进单核细胞分泌CCL2、CCL3和CCL4。因此CCL5能够进一步引起级联反应,招募更多的TAM到肿瘤组织 [ 13]

TAM在肿瘤发展中的功能如 图 1所示,一方面TAM通过分泌细胞因子如IL-10、TGF-β,抑制免疫细胞的活性,导致肿瘤组织免疫抑制;另一方面,TAM能够迅速对组织缺氧产生应答反应,改变基因的表达,如上调缺氧诱导因子(HIF)、血管内皮生长因子(VEGF)以及基质金属蛋白酶(MMP), 来诱导肿瘤血管生成和调节肿瘤的细胞外基质,从而刺激肿瘤细胞生长和转移 [ 14- 16] 。最近的研究结果也表明,TAM可能参与化疗药物的耐药性,且TAM在肿瘤缺氧组织中大量富集,导致患者临床治疗预后不良,生存期缩短 [ 17- 18] 。随着TAM在肿瘤组织中的功能及作用特点逐步揭示,针对性调节肿瘤的微环境中TAM功能成为肿瘤诊断及治疗的研究前沿 [ 19- 20]

肿瘤组织中缺氧的高压环境制约了纳米材料在肿瘤组织中的有效聚集及组织穿透。巨噬细胞强大的吞噬能力以及在肿瘤缺氧组织中分布为有效提高纳米诊断试剂在肿瘤缺氧部位富集提供了重要的保障。因此,TAM成像在临床上有如下应用:(1) 为肿瘤诊断提供信息;(2) 通过观察TAM数量在肿瘤转移与非转移患者中的差异,为肿瘤分期提供参考;(3) 界定肿瘤边缘,为肿瘤手术治疗提供指导;(4) 通过分析巨噬细胞的凋亡程度对肿瘤治疗的疗效进行量化分析。

MRI是一种常用的临床成像手段,氧化铁核磁成像造影剂NP是重要的临床诊断试剂。Coussens课题组研究发现,在体外细胞系中,四氧化三铁能够优先被巨噬细胞所吞噬,而不是肿瘤细胞。体内通过巨噬细胞聚集刺激因子α的抗体去掉TAM后,纳米材料在肿瘤部位的富集减少。CD68免疫检测发现,四氧化三铁的造影剂定位在TAM。该研究表明四氧化三铁造影剂对TAM的成像可以作为肿瘤发展的新的标记,用于治疗策略的制订及肿瘤免疫治疗效果的评估 [ 21- 22]

正电子发射断层扫描(PET)也逐渐成为肿瘤诊断的重要手段。Thomas Reiner课题组利用放射性标记的高密度脂蛋白89Zr-LDH构建了TAM靶向的造影剂。尾静脉注射造影剂24 h后,在肿瘤组织中检测到放射性物质的聚集。免疫组织化学检测结果显示,放射性信号与TAM的丰富度相关联,且TAM中放射性信号的聚集是肿瘤细胞的6.8倍。通过TAM定量PET分析可以为肿瘤TAM无创伤检测提供重要的参考依据 [ 23]

正常组织中的微血管内皮间隙致密、结构完整,大分子纳米颗粒不易透过血管壁;而肿瘤组织中血管丰富,细胞快速生长导致血管密度降低,管壁结构完整性变差,毛细血管通透性增加,造成大分子类物质和纳米颗粒具有选择性高通透性和渗透性,这被称为EPR(enhanced permeability and retention)效应。EPR效应是药物载体在肿瘤部位富集的关键 [ 24] 。随着TAM在肿瘤组织中的作用及功能的逐步揭示,发现纳米材料的富集在TAM丰富的肿瘤组织中明显高于TAM缺乏的组织,且单个TAM的纳米材料摄取量远远大于肿瘤细胞。这些成果表明,TAM能够大量吞噬纳米材料并且将纳米载体运载至肿瘤厌氧区域,为药物在肿瘤部位的富集及组织穿透做出了巨大的贡献。考虑到TAM在肿瘤组织的大量分布以及对纳米材料的吞噬能力,结合TAM在肿瘤发生和发展过程中的作用,针对TAM的肿瘤治疗策略主要有:(1) TAM作为药物载体“蓄水池”,通过TAM转运作用,增强药物载体在肿瘤部位富集;(2) 通过TAM类型转化,提高TAM杀伤肿瘤能力;(3) 直接杀伤M2型TAM,抑制TAM功能 [ 20]

TAM本身可以作为载体,携载纳米材料进入实体瘤的中心区域,实现药物在肿瘤部位的富集及穿透。如吞噬纳米金之后的巨噬细胞,可以穿透肿瘤组织,进入肿瘤核心缺氧区域 [ 25] 。另外,肿瘤组织的TAM也可以成为药物的“蓄水池”,提高药物在肿瘤的聚集。如Farokhzad课题组利用PLGA-PEG高分子材料装载荧光分子和化疗前体药物Pt制备肿瘤治疗的纳米材料。纳米材料在TAM细胞中富集远远高于肿瘤细胞,TAM是纳米化疗药物输送的重要“蓄水池”,纳米材料被TAM吞噬对纳米药物在肿瘤的富集以及缓慢释放起着非常重要的作用。纳米载体药物被TAM吞噬后,会传递给周围的肿瘤细胞,提高纳米在肿瘤部位的富集及组织穿透 [ 26]

在TAM的靶向肿瘤治疗中,一方面可以通过药物靶向TAM来杀伤M2型巨噬细胞;另一方面可以通过药物靶向TAM导致抑制性巨噬细胞转变为杀伤型巨噬细胞(M1型),从而抑制肿瘤生长及转移,达到肿瘤治疗的目的。Behnam Badie课题组利用环糊精纳米粒子CDP-NP实现TAM向脑肿瘤部位的靶向输送。在小鼠胶质瘤模型中,TAM吸收CDP-NP后,成功进入颅内肿瘤及周围中枢神经系统,这进一步支持采用纳米载体靶向TAM治疗恶性脑肿瘤的策略 [ 27]

张俊峰教授课题组利用半乳糖修饰的阳性壳聚糖包裹CpG,抗IL-10和IL-10RA的寡核苷酸实现TAM的靶向输送,有效抑制了动物肿瘤模型的生长,实现TAM向M1型巨噬细胞转化 [ 28] 。通过对纳米载体的表面进行特定修饰,能够提高巨噬细胞对纳米载体的摄取和吞噬。甘露糖受体主要选择性表达在M2型巨噬细胞和一些抗原递呈细胞的表面,因而甘露糖广泛应用于TAM的靶向输送 [ 29] 。如甘露糖靶向修饰二氧化锰纳米粒实现TAM的靶向输送,改变了肿瘤微环境,提高化疗药物的疗效 [ 30] 。王浩课题组利用聚β-氨基酯高分子材料构建肿瘤微环境响应性纳米材料装载IL-12靶向肿瘤组织,随着细胞因子IL-12释放,可以进一步对TAM进行驯化,转变成杀伤型巨噬细胞,通过调节肿瘤的免疫微环境达到肿瘤治疗的目的 [ 31]

肿瘤微环境在肿瘤发生、发展中扮演着重要的角色。新兴纳米技术靶向肿瘤微环境为肿瘤的精确定位、诊断、治疗及其监控提供了重要的研发平台,表现出广阔的应用前景。鉴于纳米材料本身的稳定性较差以及体内肿瘤微环境的复杂性,提高药物在肿瘤部位的富集及实现持续和永久的肿瘤治疗,依然是一个极大的挑战。TAM是肿瘤微环境的一个重要组成部分,纳米材料靶向的TAM为肿瘤诊断及治疗提供了新的契机。TAM靶向的肿瘤成像及治疗一体化将是纳米材料生物医学应用的重要研究方向。

Funding Statement

国家自然科学基金(51603186)

References

  • 1.UMAR A, DUNN B K, GREENWALD P. Future directions in cancer prevention. Nat Rev Cancer. 2012;12(12):835–848. doi: 10.1038/nrc3397. [UMAR A, DUNN B K, GREENWALD P. Future directions in cancer prevention[J]. Nat Rev Cancer, 2012, 12(12):835-848.] [DOI] [PubMed] [Google Scholar]
  • 2.KELLAND L. The resurgence of platinum-based cancer chemotherapy. Nat Rev Cancer. 2007;7(8):573–584. doi: 10.1038/nrc2167. [KELLAND L. The resurgence of platinum-based cancer chemotherapy[J]. Nat Rev Cancer, 2007, 7(8):573-584.] [DOI] [PubMed] [Google Scholar]
  • 3.QUAIL D F, JOYCE J A. Microenvironmental regulation of tumor progression and metastasis. Nat Med. 2013;19(11):1423–1437. doi: 10.1038/nm.3394. [QUAIL D F, JOYCE J A. Microenvironmental regulation of tumor progression and metastasis[J]. Nat Med, 2013, 19(11):1423-1437.] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 4.HANAHAN D, COUSSENS L M. Accessories to the crime: functions of cells recruited to the tumor microenvironment. Cancer Cell. 2012;21(3):309–322. doi: 10.1016/j.ccr.2012.02.022. [HANAHAN D, COUSSENS L M. Accessories to the crime: functions of cells recruited to the tumor microenvironment[J]. Cancer Cell, 2012, 21(3):309-322.] [DOI] [PubMed] [Google Scholar]
  • 5.MELLMAN I, COUKOS G, DRANOFF G. Cancer immunotherapy comes of age. Nature. 2011;480(7378):480–489. doi: 10.1038/nature10673. [MELLMAN I, COUKOS G, DRANOFF G. Cancer immunotherapy comes of age[J]. Nature, 2011, 480(7378):480-489.] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 6.MCDERMOTT D, LEBBÉ C, HODI F S, et al. Durable benefit and the potential for long-term survival with immunotherapy in advanced melanoma. Cancer Treat Rev. 2014;40(9):1056–1064. doi: 10.1016/j.ctrv.2014.06.012. [MCDERMOTT D, LEBBÉ C, HODI F S, et al. Durable benefit and the potential for long-term survival with immunotherapy in advanced melanoma[J]. Cancer Treat Rev, 2014, 40(9):1056-1064.] [DOI] [PubMed] [Google Scholar]
  • 7.FUKUMURA D, JAIN R K. Tumor microenvironment abnormalities: causes, consequences, and strategies to normalize. J Cell Biochem. 2007;101(4):937–949. doi: 10.1002/(ISSN)1097-4644. [FUKUMURA D, JAIN R K. Tumor microenvironment abnormalities: causes, consequences, and strategies to normalize[J]. J Cell Biochem, 2007, 101(4):937-949.] [DOI] [PubMed] [Google Scholar]
  • 8.WEISSLEDER R, NAHRENDORF M, PITTET M J. Imaging macrophages with nanoparticles. Nat Mater. 2014;13(2):125–138. doi: 10.1038/nmat3780. [WEISSLEDER R, NAHRENDORF M, PITTET M J. Imaging macrophages with nanoparticles[J]. Nat Mater, 2014, 13(2):125-138.] [DOI] [PubMed] [Google Scholar]
  • 9.SOLINAS G, GERMANO G, MANTOVANI A, et al. Tumor-associated macrophages (TAM) as major players of the cancer-related inflammation. J Leukoc Biol. 2009;86(5):1065–1073. doi: 10.1189/jlb.0609385. [SOLINAS G, GERMANO G, MANTOVANI A, et al. Tumor-associated macrophages (TAM) as major players of the cancer-related inflammation[J]. J Leukoc Biol, 2009, 86(5):1065-1073.] [DOI] [PubMed] [Google Scholar]
  • 10.SORIA G, BEN-BARUCH A. The inflammatory chemokines CCL2 and CCL5 in breast cancer. Cancer Lett. 2008;267(2):271–285. doi: 10.1016/j.canlet.2008.03.018. [SORIA G, BEN-BARUCH A. The inflammatory chemokines CCL2 and CCL5 in breast cancer[J]. Cancer Lett, 2008, 267(2):271-285.] [DOI] [PubMed] [Google Scholar]
  • 11.TSUTSUMI C, SONODA K H, EGASHIRA K, et al. The critical role of ocular-infiltrating macrophages in the development of choroidal neovascularization. J Leukoc Biol. 2003;74(1):25–32. doi: 10.1189/jlb.0902436. [TSUTSUMI C, SONODA K H, EGASHIRA K, et al. The critical role of ocular-infiltrating macrophages in the development of choroidal neovascularization[J]. J Leukoc Biol, 2003, 74(1):25-32.] [DOI] [PubMed] [Google Scholar]
  • 12.LOCATI M, DEUSCHLE U, MASSARDI M L, et al. Analysis of the gene expression profile activated by the CC chemokine ligand 5/RANTES and by lipopolysaccharide in human monocytes. J Immunol. 2002;168(7):3557–3562. doi: 10.4049/jimmunol.168.7.3557. [LOCATI M, DEUSCHLE U, MASSARDI M L, et al. Analysis of the gene expression profile activated by the CC chemokine ligand 5/RANTES and by lipopolysaccharide in human monocytes[J]. J Immunol, 2002, 168(7):3557-3562.] [DOI] [PubMed] [Google Scholar]
  • 13.POLLARD J W. Tumour-educated macrophages promote tumour progression and metastasis. Nat Rev Cancer. 2004;4(1):71–78. doi: 10.1038/nrc1256. [POLLARD J W. Tumour-educated macrophages promote tumour progression and metastasis[J]. Nat Rev Cancer, 2004, 4(1):71-78.] [DOI] [PubMed] [Google Scholar]
  • 14.BINGLE L, BROWN N J, LEWIS C E. The role of tumour-associated macrophages in tumour progression: implications for new anticancer therapies. J Pathol. 2002;196(3):254–265. doi: 10.1002/(ISSN)1096-9896. [BINGLE L, BROWN N J, LEWIS C E. The role of tumour-associated macrophages in tumour progression: implications for new anticancer therapies[J]. J Pathol, 2002, 196(3):254-265.] [DOI] [PubMed] [Google Scholar]
  • 15.VINOGRADOV S, WARREN G, WEI X. Macrophages associated with tumors as potential targets and therapeutic intermediates. Nanomedicine. 2014;9(5):695–707. doi: 10.2217/nnm.14.13. [VINOGRADOV S, WARREN G, WEI X. Macrophages associated with tumors as potential targets and therapeutic intermediates[J]. Nanomedicine, 2014, 9(5):695-707.] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 16.YANG C, HE L, HE P, et al. Increased drug resistance in breast cancer by tumor-associated macrophages through IL-10/STAT3/bcl-2 signaling pathway. https://link.springer.com/article/10.1007/s12032-014-0352-6. Med Oncol. 2015;32(2):352. doi: 10.1007/s12032-014-0352-6. [YANG C, HE L, HE P, et al. Increased drug resistance in breast cancer by tumor-associated macrophages through IL-10/STAT3/bcl-2 signaling pathway[J]. Med Oncol, 2015, 32(2):352.] [DOI] [PubMed] [Google Scholar]
  • 17.JINUSHI M, CHIBA S, YOSHIYAMA H, et al. Tumor-associated macrophages regulate tumorigenicity and anticancer drug responses of cancer stem/initiating cells. Proc Nati Acad Sci U S A. 2011;108(30):12425–12430. doi: 10.1073/pnas.1106645108. [JINUSHI M, CHIBA S, YOSHIYAMA H, et al. Tumor-associated macrophages regulate tumorigenicity and anticancer drug responses of cancer stem/initiating cells[J]. Proc Nati Acad Sci U S A, 2011, 108(30):12425-12430.] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 18.BANCIU M, METSELAAR J M, SCHIFFELERS R M, et al. Antitumor activity of liposomal prednisolone phosphate depends on the presence of functional tumor-associated macrophages in tumor tissue. Neoplasia. 2008;10(2):108–117. doi: 10.1593/neo.07913. [BANCIU M, METSELAAR J M, SCHIFFELERS R M, et al. Antitumor activity of liposomal prednisolone phosphate depends on the presence of functional tumor-associated macrophages in tumor tissue[J]. Neoplasia, 2008, 10(2):108-117.] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 19.LIN E Y, NGUYEN A V, RUSSELL R G, et al. Colony-stimulating factor 1 promotes progression of mammary tumors to malignancy. J Exp Med. 2001;193(6):727–740. doi: 10.1084/jem.193.6.727. [LIN E Y, NGUYEN A V, RUSSELL R G, et al. Colony-stimulating factor 1 promotes progression of mammary tumors to malignancy[J]. J Exp Med, 2001, 193(6):727-740.] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 20.AMOOZGAR Z, GOLDBERG M S. Targeting myeloid cells using nanoparticles to improve cancer immunotherapy. Adv Drug Deliv Rev. 2015;91:38–51. doi: 10.1016/j.addr.2014.09.007. [AMOOZGAR Z, GOLDBERG M S. Targeting myeloid cells using nanoparticles to improve cancer immunotherapy[J]. Adv Drug Deliv Rev, 2015, 91:38-51.] [DOI] [PubMed] [Google Scholar]
  • 21.DALDRUP-LINK H E, GOLOVKO D, RUFFELL B, et al. MRI of tumor-associated macrophages with clinically applicable iron oxide nanoparticles. Clin Cancer Res. 2011;17(17):5695–5704. doi: 10.1158/1078-0432.CCR-10-3420. [DALDRUP-LINK H E, GOLOVKO D, RUFFELL B, etal.MRI of tumor-associated macrophages with clinically applicable iron oxide nanoparticles[J]. Clin Cancer Res, 2011, 17(17):5695-5704.] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 22.DALDRUP-LINK H, COUSSENS L M. MR imaging of tumor-associated macrophages. Oncoimmunology. 2012;1(4):507–509. doi: 10.4161/onci.19456. [DALDRUP-LINK H, COUSSENS L M. MR imaging of tumor-associated macrophages[J]. Oncoimmunology, 2012, 1(4):507-509.] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 23.KELIHER E J, YOO J, NAHRENDORF M, et al. 89Zr-labeled dextran nanoparticles allow in vivo macrophage imaging . Bioconjug Chem. 2011;22(12):2383–2389. doi: 10.1021/bc200405d. [KELIHER E J, YOO J, NAHRENDORF M, et al. 89Zr-labeled dextran nanoparticles allow in vivo macrophage imaging[J]. Bioconjug Chem, 2011, 22(12):2383-2389. ] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 24.PARVEEN S, SAHOO S K. Polymeric nanoparticles for cancer therapy. J Drug Target. 2008;16(2):108–123. doi: 10.1080/10611860701794353. [PARVEEN S, SAHOO S K. Polymeric nanoparticles for cancer therapy[J]. J Drug Target, 2008, 16(2):108-123.] [DOI] [PubMed] [Google Scholar]
  • 25.CHOI M R, STANTON-MAXEY K J, STANLEY J K, et al. A cellular Trojan Horse for delivery of therapeutic nanoparticles into tumors. Nano Lett. 2007;7(12):3759–3765. doi: 10.1021/nl072209h. [CHOI M R, STANTON-MAXEY K J, STANLEY J K, etal. A cellular Trojan Horse for delivery of therapeutic nanoparticles into tumors[J]. Nano Lett, 2007, 7(12):3759-3765.] [DOI] [PubMed] [Google Scholar]
  • 26.MILLER M A, ZHENG Y R, GADDE S, et al. Tumour-associated macrophages act as a slow-release reservoir of nano-therapeutic Pt(Ⅳ) pro-drug. Nat Commun. 2015;6:8692. doi: 10.1038/ncomms9692. [MILLER M A, ZHENG Y R, GADDE S, et al. Tumour-associated macrophages act as a slow-release reservoir of nano-therapeutic Pt(Ⅳ) pro-drug[J]. Nat Commun, 2015, 6:8692.] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 27.ALIZADEH D, ZHANG L, HWANG J, et al. Tumor-associated macrophages are predominant carriers of cyclodextrin-based nanoparticles into gliomas. Nanomedicine. 2010;6(2):382–390. doi: 10.1016/j.nano.2009.10.001. [ALIZADEH D, ZHANG L, HWANG J, et al. Tumor-associated macrophages are predominant carriers of cyclodextrin-based nanoparticles into gliomas[J]. Nanomedicine, 2010, 6(2):382-390.] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 28.MOVAHEDI K, SCHOONOOGHE S, LAOUI D, et al. Nanobody-based targeting of the macrophage mannose receptor for effective in vivo imaging of tumor-associated macrophages . Cancer Res. 2012;72(16):4165–4177. doi: 10.1158/0008-5472.CAN-11-2994. [MOVAHEDI K, SCHOONOOGHE S, LAOUI D, et al. Nanobody-based targeting of the macrophage mannose receptor for effective in vivo imaging of tumor-associated macrophages[J]. Cancer Res, 2012, 72(16):4165-4177. ] [DOI] [PubMed] [Google Scholar]
  • 29.HUANG Z, ZHANG Z, JIANG Y, et al. Targeted delivery of oligonucleotides into tumor-associated macrophages for cancer immunotherapy. J Control Release. 2012;158(2):286–292. doi: 10.1016/j.jconrel.2011.11.013. [HUANG Z, ZHANG Z, JIANG Y, et al. Targeted delivery of oligonucleotides into tumor-associated macrophages for cancer immunotherapy[J]. J Control Release, 2012, 158(2):286-292.] [DOI] [PubMed] [Google Scholar]
  • 30.SONG M, LIU T, SHI C, et al. Bioconjugated manganese dioxide nanoparticles enhance chemotherapy response by priming tumor-associated macrophages toward M1-like dhenotype and attenuating tumor hypoxia. ACS Nano. 2016;10(1):633–647. doi: 10.1021/acsnano.5b06779. [SONG M, LIU T, SHI C, et al. Bioconjugated manganese dioxide nanoparticles enhance chemotherapy response by priming tumor-associated macrophages toward M1-like dhenotype and attenuating tumor hypoxia[J]. ACS Nano, 2016, 10(1):633-647.] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 31.WANG Y, LIN Y X, QIAO S L, et al. Polymeric nanoparticles promote macrophage reversal from M2 to M1 phenotypes in the tumor microenvironment. Biomaterials. 2017;112:153–163. doi: 10.1016/j.biomaterials.2016.09.034. [WANG Y, LIN Y X, QIAO S L, et al. Polymeric nanoparticles promote macrophage reversal from M2 to M1 phenotypes in the tumor microenvironment[J]. Biomaterials, 2017, 112:153-163.] [DOI] [PubMed] [Google Scholar]

Articles from Journal of Zhejiang University (Medical Sciences) are provided here courtesy of Zhejiang University Press

RESOURCES