Abstract
现代辅助生殖技术通过药物刺激实现多个卵子同步成熟,利用体外培养和显微操作完成精子和卵子受精结合以及早期胚胎的生长发育,在消除患者生殖障碍病因的同时,干涉了生殖细胞增殖、受精、发育乃至分化的多个过程,存在影响生殖细胞正常生长发育的可能性。本文结合国内外相关研究,从临床和基础两方面综述借助辅助生殖技术出生子代的安全性研究。研究显示,借助辅助生殖技术出生的子代出生缺陷的发生率增加。辅助生殖技术所包含的多项技术可能通过调节胚胎发育过程中基因的表观遗传信息进而影响子代的生长发育,并且某些影响可能传递到子二代,但这些变化对出生子代的潜在影响仍需进一步探索。
Abstract
Assisted reproductive technology (ART) employs superovulation, in vitro culture and other micromanipulation to complete oocyte maturation, fertilization and early embryo development. Although these techniques have been successfully applied to solve infertility problems, the process may interfere in cell proliferation, differentiation and growth. The clinical and laboratory studies on the safety issue of ART are reviewed in this article. Studies found that the incidence of birth defects increased in ART offspring. Superovulation, in vitro culture and intracytoplasmic sperm injection may induce epigenetic aberrations during embryo development, which would influence the development of ART conceived children. The epigenetic susceptibility related to ART might be transmitted to subsequent generations, and the potential impact on ART offspring still need further investigation. In addition, ART treatments may also increase the risk of genetic diseases.
Keywords: Embryonic development/genetics; Child development/genetics; Parent-child relations; Reproductive techniques, assisted/adverse effects; Genetics; Safety; Review
生殖健康是人类生存繁衍的基础。自1978年首例试管婴儿Louise Brown出生以来,以体外受精和卵细胞胞浆内单精子注射(intracytoplasmic sperm injection, ICSI)为主流技术的辅助生殖技术已成为临床上治疗不孕不育的有效方法。辅助生殖技术利用激素超促排卵、体外成熟、体外培养及显微操作等技术手段实现精子和卵子体外受精及早期胚胎的体外发育。该方法满足了患者夫妇生育要求,但却干扰了配子发生、胚胎发育甚至整个妊娠过程的大环境。目前,我国借助各种辅助生殖技术出生的子代以每年数以万计的速度增长,这些子代的生长发育状况受到极大的关注。本文将结合国内外相关研究,从临床和基础两方面综述辅助生殖技术对子代安全性的影响。
随着辅助生殖技术的推广应用,越来越多的人开始关注子代出生缺陷发生的风险。一项来自日本的研究分析了2004至2010年日本全国范围内借助辅助生殖技术妊娠的219 185名孕妇和153 791个活产儿的资料发现,25~29岁年龄组孕妇所产婴儿出生缺陷的发生率为14%,其中非染色体异常因素占8%;且随着孕妇年龄的增长,子代染色体异常的发生率升高,而非染色体异常出生缺陷的发生率没有明显改变 [ 1] 。2009年美国的流行病学调查也显示,借助辅助生殖技术出生的新生儿存在心脏室间隔缺损、唇裂或唇腭裂、食管闭锁及肛门直肠闭锁高发的风险 [ 2] 。来自中国的一项借助辅助生殖技术出生的儿童随访研究显示,与体外受精相比,借助ICSI技术妊娠的男婴出生缺陷率更高 [ 3] 。2013年的一项综合了45个队列研究的meta分析结果显示,借助辅助生殖技术出生的子代较自然妊娠子代具有较高的出生缺陷风险,相对风险值为1.32 [ 4] 。当研究数据范围限制在主要的出生缺陷类型或是单胎妊娠时,风险进一步提升。
我国是借助辅助生殖技术出生儿绝对数增加最为迅速的国家,但迄今仍缺乏诊断标准统一、对照严格、多中心大样本的辅助生殖技术出生儿流行病学调查数据。因此,为详细了解中国的辅助生殖技术实施现状、孕妇围产期及子代结局,作者团队实施了一项大样本、多中心的回顾性流行病学调查研究,旨在应用统一的诊断标准,通过多中心回顾性研究,获取各辅助生殖技术中显微操作的周期、孕期各种并发症的发生率、多胎发生率、早产发生率、新生儿出生体质量、新生儿出生缺陷率(ICD-10) 和出生缺陷构成、男女性别比等,比较分析辅助生殖技术新生儿(9446名)与对照组(18 673名)的各项临床指标。研究结果提示,借助辅助生殖技术出生的新生儿早产的发生率高于对照组,平均体质量低于对照组,新生儿循环系统、中枢神经系统及呼吸系统出生缺陷的发生率高于对照组,而泌尿生殖系统和肌肉骨骼系统出生缺陷的发生率均低于对照组。其中,体外受精组新生儿出生缺陷的发生率与对照组相近,而ICSI组的新生儿出生缺陷的发生率则高于对照组(相关论文待发表)。
表观遗传学是指由染色体改变引起的稳定的可遗传的表现型,而非DNA序列的改变 [ 5] 。目前,辅助生殖技术相关表观遗传学研究主要集中在基因的选择性转录表达调控,包括DNA甲基化和组蛋白修饰等,以基因组印记的研究最为丰富。基因组印记一般发生在配子形成期,哺乳动物在原始生殖细胞发育过程中发生了大规模的去甲基化。人类妊娠后10~11周,原始生殖细胞甲基化水平降到最低,而后进入甲基化重编程 [ 6] 。这次DNA去甲基化较早期胚胎发育过程发生得更为彻底,早期胚胎发育过程中生殖细胞印记调控区(imprinting control region, ICR)或者称为差异甲基化区域(differentially methylated region, DMR)的甲基化状态并未发生改变 [ 7] 。印记基因是仅来源于亲本一方的同源基因表达,而另一方不表达的基因,DMR控制印记基因的不对称表达。两次DNA甲基化重编程过程中任一环节出现问题都可能导致胚胎发育异常,导致遗传疾病的发生。如 Kcnq1ot1印记调控区的异常低甲基化可以导致贝—威综合征(Beckwith-Wiedemann syndrome), Snrpn印记调控区的异常低甲基化可以导致天使综合征(agelman syndrome)等 [ 8- 9] 。
遗传印记可以通过调节细胞扩增、凋亡和分化影响胎儿的生长 [ 10] 。早期胚胎发育过程的印记重编程过程与辅助生殖技术过程相重叠,因此辅助生殖技术涵盖的多项体外操作可能干扰配子或早期胚胎的遗传印记,进而影响胚胎的生长发育。Kerjean等 [ 11] 对体外发育小鼠卵子进行印记基因的甲基化水平研究,与体内发育的生发泡(GV)期卵细胞相比,体外发育的卵子 IgfR、 Mest/ Peg1存在甲基化丢失, H19甲基化水平增加。Borghol等 [ 12] 在体外成熟的1/4卵母细胞中同样发现了 H19甲基化获得的现象。另有研究显示,体外培养对小鼠植入前胚胎组蛋白乙酰化酶GCN5和组蛋白去乙酰化酶HDAC1表达模式及表达水平有影响 [ 13] 。
Halliday等 [ 14] 对体外受精出生的子代进行大样本的病例对照研究,结果发现,借助于体外受精出生的儿童贝—威综合征的发病风险明显高于自然妊娠出生的儿童,其原因主要来源于印记丢失。Beltrand等 [ 15] 的研究结果也同样指出借助于辅助生殖技术出生儿童贝—威综合征的发生率增加。胎儿早期的生长状态与其出生后的成长状况密切相关。上世纪90年代,Barker [ 16] 提出“成人疾病的胎源性”学说,指出宫内环境是影响胎儿发育的重要因素。因此,分析辅助生殖技术与出生缺陷的相关性应考虑到辅助生殖各项操作对胚胎乃至卵子发育早期的影响。2003年,《柳叶刀》( The Lancet)上的一篇关于罕见先天异常、印记基因和辅助生殖技术的文章指出,鉴于借助辅助生殖技术出生的子代遗传疾病的高发频率,需要对辅助生殖技术子代进行持续的监测,包括出生缺陷、神经行为发育状况以及癌症的发生风险 [ 17] 。因此动物模型研究势在必行。
辅助生殖技术模型包括控制性超排卵(controlled ovarian hyperstimulation, COH)—体内受精—胚胎移植、体外受精、ICSI、卵母细胞体外成熟相应对照的小鼠模型。研究显示,体外受精小鼠与COH妊娠小鼠的妊娠天数、平均产仔数量、出生小鼠存活率和雌雄比差异无统计学意义,但体外受精小鼠每移植胚胎出生小鼠数减少;卵母细胞体外成熟小鼠和ICSI妊娠小鼠的妊娠天数、平均产仔数量和雌雄比差异无统计学意义,但卵母细胞体外成熟小鼠每移植胚胎的出生小鼠数、出生小鼠存活率显著性降低;体外受精小鼠与ICSI小鼠妊娠及其子一代出生情况差异无统计学意义 [ 18] 。上述研究提示,卵母细胞体外成熟和胚胎体外培养是影响胚胎完成宫内生长发育全过程的主要因素。与自然妊娠或COH妊娠相比,体外受精、ICSI、卵母细胞体外成熟新生小鼠体质量均增加,但其第2、3周龄体质量减小,4周龄后体质量与对照组相比无统计学意义。与自然妊娠小鼠相比,各组小鼠成熟时的水迷宫实验潜伏期及穿台次数差异无统计学意义,精子活力相关指数或动情周期差异无统计学意义,且未见各组小鼠外表明显的畸形,HE染色未见主要脏器组织学明显改变。与自然妊娠小鼠相比,卵母细胞体外成熟小鼠合笼后产仔数量增加,出生的子二代小鼠存活率降低 [ 19- 20] 。
应用Affymetrix mouse 430小鼠基因组表达芯片分析子一代卵母细胞体外成熟、ICSI和自然妊娠新生小鼠脑组织的基因表达差异,结果显示,脑组织神经活动配体—受体相互作用通路中八个基因及与脑发育相关的五个基因表达水平变化显著 [ 21] 。对新生期、经生长期到成熟期的基因表达动态观察发现,新生卵母细胞体外成熟多数表达差异的基因表达逐渐趋于正常,到成熟期除雄性小鼠 Neurod1、 Pax6和雌性小鼠 Agtr2、 Pax6表达仍高于对照组外,其余均已正常 [ 21] 。应用表达芯片分析子一代卵母细胞体外成熟、ICSI和自然妊娠新生小鼠睾丸组织的基因表达差异。共检出卵母细胞体外成熟组上调基因264个、下调基因431个;ICSI组上调基因150个、下调基因324个 [ 22] 。在所检测的40个印记基因中,11个基因在卵母细胞体外成熟和ICSI组都存在表达下调的现象,父源表达的8个,母源表达的3个,其中5个父源表达的印记基因 Lit1、 Mest、 Plagl1、 Peg3和 Snrpn的表达差异可延续到性成熟时 [ 23] 。以COH为对照,对生长期、成熟期和老龄体外受精小鼠肝脏与生长发育相关的印记基因进行表达差异分析。结果发现生长期体外受精小鼠肝脏 Igf2、 Igfbp3及 Igfbp2表达显著上调,成熟期这类基因表达差异消失,老龄时出现基因表达下调。老龄体外受精小鼠肝脏存在 H19DMR高甲基化等改变,提示体外受精过程不仅可对幼年小鼠肝脏基因表达产生影响,而且可能与老年小鼠时期的肝脏功能减退有关 [ 20] 。
应用全基因组甲基化芯片和亚硫酸氢盐处理后测序(BSP)分析体外受精出生小鼠脑组织DNA甲基化修饰状态,结果表明,相比自然妊娠小鼠,体外受精小鼠有225个CpG岛及191启动子区域发生了高甲基化,22个CpG岛和28启动子区域发生了低甲基化。经BSP验证和实时定量PCR表达分析发现,体外受精小鼠脑组织 Fgf1、 Nos3、 Notch3、 Lck、 Col9a2、 Fgf6、 Slc5a的mRNA表达水平变化与其基因甲基化修饰异常相对应,提示体外受精对子代脑组织基因表达的影响可能起因于DNA的甲基化修饰改变 [ 24] 。通过基因表达芯片筛选印记基因 H19、 Igf2、 Kcnq1ot1、 Mest、 Peg3、 Ube3a、 Snrpn和 Peg12,结果显示体外受精出生小鼠 H19表达下调, Kcnq1ot1表达上调,其余6个基因表达水平三组间差异无统计学意义。BSP检测显示,体外受精组 H19基因的部分母源性表达位点出现甲基化, Kcnq1ot1基因启动子区CpG岛的20个CpG位点甲基化程度略低,但差异均无统计学意义。同时进行三组脑组织DNA甲基化修饰关键调节酶Dnmt1、Dnmt3a、Dnmt3b、Dnmt3L表达分析,结果体外受精组Dnmt1表达水平升高,体外受精组和ICSI组Dnmt3a表达水平升高 [ 25] 。
通过不同性别辅助生殖技术出生子一代小鼠与自然出生小鼠合笼,获得多种组合的辅助生殖技术子二代小鼠。以成熟期子一代体外受精小鼠脑组织仍表达升高 Neurod1、 Pax6(雄性)和 Agtr2、 Pax6(雌性)为靶基因,分析子二代体外受精小鼠的基因表达改变。结果显示, Agtr2在体外受精组子二代雄性小鼠仍表达增加,提示体外受精对子一代脑组织基因表达的部分影响可延续到子二代,且呈性别差异。基因组甲基化芯片和BSP分析显示:体外受精子二代小鼠脑组织 Fgf1、 Nos3、 Notch3、 Th、 Vav1启动子区存在与子一代相同的甲基化水平上升,提示辅助生殖技术显微操作导致的基因甲基化修饰异常具有跨代遗传的效应 [ 24] 。
染色体异常的发生机制不明,可能由于细胞分裂后期染色体发生不分离或其他原因导致断裂和重新连接所致,发生原因包括物理因素、化学因素、生物因素、自身免疫疾病、母亲的年龄以及遗传因素等。多项研究指出,借助辅助生殖技术出生的子代染色体异常发生的风险增加。Clementini等 [ 26] 对2078对行辅助生殖技术妊娠夫妇的研究显示,其中2.1%异位、0.3%嵌合体、0.3%性染色体异常、0.14%倒位、0.05%存在染色体微重复,说明遗传因素是导致辅助生殖技术子代染色体异常的主要原因。另外,由于辅助生殖技术过程涉及一系列人工干预,在辅助生殖技术子代中还出现一些新发染色体变异 [ 27- 28] 。
早在1974年,Fujimoto等 [ 29] 就发现在超促排卵的兔囊胚染色体异常的发生率增加。而Imreh等 [ 30] 研究显示,体外培养人胚胎干细胞容易引起染色体异常。亦有报道显示,环境中的氧分压较生理氧分压更易导致新发的染色体畸变 [ 31] 。Tateno [ 32] 用不同培养基对于鼠胚进行体外培养,结果胚胎发生染色体畸变的比例有所不同。另有研究显示,ICSI操作可能影响纺锤体的正常结构 [ 33] ,而且ICSI技术本身就是利用人为的操作代替自然选择将精子注射到卵子中,这样的操作大大增加染色体异常的精卵的结合率,直接导致异常胚胎的产生。AZF缺失是临床上导致男性不育的重要因素,分为AZFa、AZFb和AZFc三个区域。根据患者缺失区段的不同表现为少弱精症甚至无精症,ICSI技术在帮助这类患者获得子代的同时也可能将这类Y染色体微缺失区域传递给男性后代,从而使这类染色体异常及男性不育的现象在这一家庭中一直传递下去。随着植入前遗传学检测在我国多个地区的普遍开展,目前对于这种明确诊断为AZF缺失的患者建议选择女性胚胎移植,以阻断这一遗传疾病的代间传递。
体内或体外环境受到干扰对于遗传物质DNA的稳定性都会产生一定的影响。新发突变的发生频率为1:10 000~1:1 000 000,因此通过考察单个位点的突变频率分析辅助生殖技术对DNA稳定性的影响是不现实的。相对于点突变,动态突变的发生频率要高出几个数量级,尤其是在减数分裂过程中 [ 34] 。动态突变是一种三核苷酸重复序列,存在于基因的3′/5′UTR、启动子区、编码区以及内含子区,正常情况下存在一定的变异范围,三核苷酸重复拷贝数扩展范围超出阈值则会导致疾病的发生。拷贝数在上下代之间传递,可增加亦可减少。动态突变形式单一且突变率高,是分析DNA稳定性的理想靶点。
Zheng等 [ 35] 收集完成分娩的体外受精家系75例、ICSI家系72例、自然妊娠家系99例,分别获取夫妇双方静脉血和新生儿的脐血,以七种动态突变疾病(齿状核红核苍白球丘脑下部核萎缩、脊髓延髓肌萎缩、脊髓小脑共济失调Ⅰ型、马赫多—约瑟夫病、亨廷顿病、肌强直性肌萎缩和脆性X综合征)的致病基因 ATN1、 AR、 ATXN1、 ATXN3、 HTT、 DMPK和 FMR1为目的基因,通过PCR三核苷酸重复序列区扩增及测序,进行动态突变基因三核苷酸重复序列拷贝数变化分析。结果发现:在所有被检测的家系中,各动态突变位点的三核苷酸重复拷贝数既有增加,也有减少,但均在其正常范围内。根据不孕不育背景,将体外受精和ICSI再分成以下各小组:女方因素组,包括输卵管性不孕、子宫内膜异位症、排卵障碍;男方因素组,包括少精、弱精、畸精及梗阻性无精子症;男女双方因素组;不明原因不孕及其他因素组。发现在ICSI组中,不孕因素为女方因素(3.90%)及男女双方因素(2.59%)的患者发生动态突变的频率要高于单纯男方因素(0.76%)的患者。
综上所述,辅助生殖的技术所包含的多项技术可能通过调节胚胎发育过程中基因的表观遗传信息进而影响子代的生长发育,并且某些影响可能传递到子二代,然而研究发现的变化对出生子代的潜在影响仍需进一步探索。
Funding Statement
国家自然科学基金(81571500,81370760,81300532);浙江省自然科学基金(LZ15H040001,LZ13H040001,LQ17H040001,LY14H040009);国家重点基础研究发展计划(973计划)(2012CB944901,2014CB943302);浙江省医药卫生科技计划(2016KYA120)
References
- 1.OOKI S. Maternal age and birth defects after the use of assisted reproductive technology in Japan, 2004-2010. https://www.ncbi.nlm.nih.gov/pmc/articles/instance/3581291/ Int J Womens Health. 2013;5:65–77. doi: 10.2147/IJWH.S32296. [OOKI S. Maternal age and birth defects after the use of assisted reproductive technology in Japan, 2004-2010[J]. Int J Womens Health, 2013, 5:65-77.] [DOI] [PMC free article] [PubMed] [Google Scholar]
- 2.REEFHUIS J, HONEIN M A, SCHIEVE L A, et al. Assisted reproductive technology and major structural birth defects in the United States. Hum Reprod. 2009;24(2):360–366. doi: 10.1093/humrep/den387. [REEFHUIS J, HONEIN M A, SCHIEVE L A, et al. Assisted reproductive technology and major structural birth defects in the United States[J]. Hum Reprod, 2009, 24(2):360-366.] [DOI] [PubMed] [Google Scholar]
- 3.YIN L, HANG F, GU L J, et al. Analysis of birth defects among children 3 years after conception through assisted reproductive technology in China. Birth Defects Res A Clin Mol Teratol. 2013;97(11):744–749. doi: 10.1002/bdra.v97.11. [YIN L, HANG F, GU L J, et al. Analysis of birth defects among children 3 years after conception through assisted reproductive technology in China[J]. Birth Defects Res A Clin Mol Teratol, 2013, 97(11):744-749.] [DOI] [PubMed] [Google Scholar]
- 4.HANSEN M, KURINCZUK J J, MILNE E, et al. Assisted reproductive technology and birth defects:a systematic review and meta-analysis. Hum Reprod Update. 2013;19(4):330–353. doi: 10.1093/humupd/dmt006. [HANSEN M, KURINCZUK J J, MILNE E, et al. Assisted reproductive technology and birth defects:a systematic review and meta-analysis[J]. Hum Reprod Update, 2013, 19(4):330-353.] [DOI] [PubMed] [Google Scholar]
- 5.LEDFORD H. Language:disputed definitions. Nature. 2008;455(7216):1023–1028. doi: 10.1038/4551023a. [LEDFORD H. Language:disputed definitions[J]. Nature, 2008, 455(7216):1023-1028.] [DOI] [PubMed] [Google Scholar]
- 6.GUO F, YAN L, GUO H, et al. The transcriptome and DNA methylome landscapes of human primordial germ cells. Cell. 2015;161(6):1437–1452. doi: 10.1016/j.cell.2015.05.015. [GUO F, YAN L, GUO H, et al. The transcriptome and DNA methylome landscapes of human primordial germ cells[J]. Cell, 2015, 161(6):1437-1452.] [DOI] [PubMed] [Google Scholar]
- 7.GUO H, ZHU P, YAN L, et al. The DNA methylation landscape of human early embryos. Nature. 2014;511(7511):606–610. doi: 10.1038/nature13544. [GUO H, ZHU P, YAN L, et al. The DNA methylation landscape of human early embryos[J]. Nature, 2014, 511(7511):606-610.] [DOI] [PubMed] [Google Scholar]
- 8.AMOR D J, HALLIDAY J. A review of known imprinting syndromes and their association with assisted reproduction technologies. Hum Reprod. 2008;23(12):2826–2834. doi: 10.1093/humrep/den310. [AMOR D J, HALLIDAY J. A review of known imprinting syndromes and their association with assisted reproduction technologies[J]. Hum Reprod, 2008, 23(12):2826-2834.] [DOI] [PubMed] [Google Scholar]
- 9.RIVERA R M, STEIN P, WEAVER J R, et al. Manipulations of mouse embryos prior to implantation result in aberrant expression of imprinted genes on day 9.5 of development. Hum Mol Genet. 2008;17(1):1–14. doi: 10.1093/hmg/ddm280. [RIVERA R M, STEIN P, WEAVER J R, et al. Manipulations of mouse embryos prior to implantation result in aberrant expression of imprinted genes on day 9.5 of development[J]. Hum Mol Genet, 2008, 17(1):1-14.] [DOI] [PubMed] [Google Scholar]
- 10.PIEDRAHITA J A. The role of imprinted genes in fetal growth abnormalities. Birth Defects Res A Clin Mol Teratol. 2011;91(8):682–692. doi: 10.1002/bdra.v91.8. [PIEDRAHITA J A. The role of imprinted genes in fetal growth abnormalities[J]. Birth Defects Res A Clin Mol Teratol, 2011, 91(8):682-692.] [DOI] [PMC free article] [PubMed] [Google Scholar]
- 11.KERJEAN A, COUVERT P, HEAMS T, et al. In vitro follicular growth affects oocyte imprinting establishment in mice. Eur J Hum Genet. 2003;11(7):493–496. doi: 10.1038/sj.ejhg.5200990. [KERJEAN A, COUVERT P, HEAMS T, et al. In vitro follicular growth affects oocyte imprinting establishment in mice[J]. Eur J Hum Genet, 2003, 11(7):493-496.] [DOI] [PubMed] [Google Scholar]
- 12.BORGHOL N, LORNAGE J, BLACHERE T, et al. Epigenetic status of the H19 locus in human oocytes following in vitro maturation. Genomics. 2006;87(3):417–426. doi: 10.1016/j.ygeno.2005.10.008. [BORGHOL N, LORNAGE J, BLACHERE T, et al. Epigenetic status of the H19 locus in human oocytes following in vitro maturation[J]. Genomics, 2006, 87(3):417-426.] [DOI] [PubMed] [Google Scholar]
- 13.LIU X, ZHAO D, ZHENG Y, et al. Expression of histone acetyltransferase GCN5 and histone deacetylase 1 in the cultured mouse preimplantation embryos. Curr Pharm Des. 2014;20(11):1772–1777. doi: 10.2174/13816128113199990521. [LIU X, ZHAO D, ZHENG Y, et al. Expression of histone acetyltransferase GCN5 and histone deacetylase 1 in the cultured mouse preimplantation embryos[J]. Curr Pharm Des, 2014, 20(11):1772-1777.] [DOI] [PubMed] [Google Scholar]
- 14.HALLIDAY J, OKE K, BREHENY S, et al. Beckwith-Wiedemann syndrome and IVF:a case-control study. Am J Hum Genet. 2004;75(3):526–528. doi: 10.1086/423902. [HALLIDAY J, OKE K, BREHENY S, et al. Beckwith-Wiedemann syndrome and IVF:a case-control study[J]. Am J Hum Genet, 2004, 75(3):526-528.] [DOI] [PMC free article] [PubMed] [Google Scholar]
- 15.BELTRAND J, NICOLESCU R, KAGUELIDOU F, et al. Catch-up growth following fetal growth restriction promotes rapid restoration of fat mass but without metabolic consequences at one year of age. PLoS One. 2009;4(4):e5343. doi: 10.1371/journal.pone.0005343. [BELTRAND J, NICOLESCU R, KAGUELIDOU F, et al. Catch-up growth following fetal growth restriction promotes rapid restoration of fat mass but without metabolic consequences at one year of age[J/OL]. PLoS One, 2009, 4(4):e5343.] [DOI] [PMC free article] [PubMed] [Google Scholar]
- 16.BARKER D J. The fetal and infant origins of adult disease. BMJ. 1990;301(6761):1111. doi: 10.1136/bmj.301.6761.1111. [BARKER D J. The fetal and infant origins of adult disease[J]. BMJ, 1990, 301(6761):1111.] [DOI] [PMC free article] [PubMed] [Google Scholar]
- 17.GOSDEN R, TRASLER J, LUCIFERO D, et al. Rare congenital disorders, imprinted genes, and assisted reproductive technology. Lancet. 2003;361(9373):1975–1977. doi: 10.1016/S0140-6736(03)13592-1. [GOSDEN R, TRASLER J, LUCIFERO D, et al. Rare congenital disorders, imprinted genes, and assisted reproductive technology[J]. Lancet, 2003, 361(9373):1975-1977.] [DOI] [PubMed] [Google Scholar]
- 18.WANG N, REN C E, LOU Y Y, et al. Inter-generational effects of the in vitro maturation technique on pregnancy outcomes, early development, and cognition of offspring in mouse model . Clin Chim Acta. 2017;473:218–227. doi: 10.1016/j.cca.2016.11.025. [WANG N, REN C E, LOU Y Y, et al. Inter-generational effects of the in vitro maturation technique on pregnancy outcomes, early development, and cognition of offspring in mouse model[J]. Clin Chim Acta, 2017, 473:218-227. ] [DOI] [PubMed] [Google Scholar]
- 19.LI L, LE F, WANG L Y, et al. Normal epigenetic inheritance in mice conceived by in vitro fertilization and embryo transfer . J Zhejiang Univ Sci B. 2011;12(10):796–804. doi: 10.1631/jzus.B1000411. [LI L, LE F, WANG L Y, et al. Normal epigenetic inheritance in mice conceived by in vitro fertilization and embryo transfer[J]. J Zhejiang Univ Sci B, 2011, 12(10):796-804. ] [DOI] [PMC free article] [PubMed] [Google Scholar]
- 20.LE F, WANG L Y, WANG N, et al. In vitro fertilization alters growth and expression of Igf2/H19 and their epigenetic mechanisms in the liver and skeletal muscle of newborn and elder mice . Biol Reprod. 2013;88(3):75. doi: 10.1095/biolreprod.112.106070. [LE F, WANG L Y, WANG N, et al. In vitro fertilization alters growth and expression of Igf2/H19 and their epigenetic mechanisms in the liver and skeletal muscle of newborn and elder mice[J]. Biol Reprod, 2013, 88(3):75. ] [DOI] [PubMed] [Google Scholar]
- 21.WANG N, WANG L, LE F, et al. Altered expression of Armet and Mrlp51 in the oocyte, preimplantation embryo, and brain of mice following oocyte in vitro maturation but postnatal brain development and cognitive function are normal . Reproduction. 2011;142(3):401–408. doi: 10.1530/REP-11-0152. [WANG N, WANG L, LE F, et al. Altered expression of Armet and Mrlp51 in the oocyte, preimplantation embryo, and brain of mice following oocyte in vitro maturation but postnatal brain development and cognitive function are normal[J]. Reproduction, 2011, 142(3):401-408. ] [DOI] [PubMed] [Google Scholar]
- 22.WANG L Y, WANG N, LE F, et al. Persistence and intergenerational transmission of differentially expressed genes in the testes of intracytoplasmic sperm injection conceived mice. J Zhejiang Univ Sci B. 2013;14(5):372–381. doi: 10.1631/jzus.B1200321. [WANG L Y, WANG N, LE F, et al. Persistence and intergenerational transmission of differentially expressed genes in the testes of intracytoplasmic sperm injection conceived mice[J]. J Zhejiang Univ Sci B, 2013, 14(5):372-381.] [DOI] [PMC free article] [PubMed] [Google Scholar]
- 23.XU X R, FU R G, WANG L Y, et al. Epigenetic inheritance of paternally expressed imprinted genes in the testes of ICSI mice. Curr Pharm Des. 2014;20(11):1764–1771. doi: 10.2174/13816128113199990520. [XU X R, FU R G, WANG L Y, et al. Epigenetic inheritance of paternally expressed imprinted genes in the testes of ICSI mice[J]. Curr Pharm Des, 2014, 20(11):1764-1771.] [DOI] [PubMed] [Google Scholar]
- 24.LI L, WANG L, XU X, et al. Genome-wide DNA methylation patterns in IVF-conceived mice and their progeny:a putative model for ART-conceived humans. Reprod Toxicol. 2011;32(1):98–105. doi: 10.1016/j.reprotox.2011.05.016. [LI L, WANG L, XU X, et al. Genome-wide DNA methylation patterns in IVF-conceived mice and their progeny:a putative model for ART-conceived humans[J]. Reprod Toxicol, 2011, 32(1):98-105.] [DOI] [PubMed] [Google Scholar]
- 25.WANG N, FANG L, LIU X, et al. Altered expressions and DNA methylation of imprinted genes in chromosome 7 in brain of mouse offspring conceived from in vitro maturation . Reprod Toxicol. 2012;34(3):420–428. doi: 10.1016/j.reprotox.2012.04.012. [WANG N, FANG L, LIU X, et al. Altered expressions and DNA methylation of imprinted genes in chromosome 7 in brain of mouse offspring conceived from in vitro maturation[J]. Reprod Toxicol, 2012, 34(3):420-428. ] [DOI] [PubMed] [Google Scholar]
- 26.CLEMENTINI E, PALKA C, IEZZI I, et al. Prevalence of chromosomal abnormalities in 2078 infertile couples referred for assisted reproductive techniques. Hum Reprod. 2005;20(2):437–442. doi: 10.1093/humrep/deh626. [CLEMENTINI E, PALKA C, IEZZI I, et al. Prevalence of chromosomal abnormalities in 2078 infertile couples referred for assisted reproductive techniques[J]. Hum Reprod, 2005, 20(2):437-442.] [DOI] [PubMed] [Google Scholar]
- 27.BONDUELLE M, CAMUS M, DE VOS A, et al. Seven years of intracytoplasmic sperm injection and follow-up of 1987 subsequent children. Hum Reprod. 1999;14(Suppl 1):243–264. doi: 10.1093/humrep/14.suppl_1.243. [BONDUELLE M, CAMUS M, DE VOS A, et al. Seven years of intracytoplasmic sperm injection and follow-up of 1987 subsequent children[J]. Hum Reprod, 1999, 14 Suppl 1:243-264.] [DOI] [PubMed] [Google Scholar]
- 28.BONDUELLE M, LIEBAERS I, DEKETELAERE V, et al. Neonatal data on a cohort of 2889 infants born after ICSI (1991-1999) and of 2995 infants born after IVF (1983-1999) Hum Reprod. 2002;17(3):671–694. doi: 10.1093/humrep/17.3.671. [BONDUELLE M, LIEBAERS I, DEKETELAERE V, et al. Neonatal data on a cohort of 2889 infants born after ICSI (1991-1999) and of 2995 infants born after IVF (1983-1999)[J]. Hum Reprod, 2002, 17(3):671-694.] [DOI] [PubMed] [Google Scholar]
- 29.FUJIMOTO S, PAHLAVAN N, DUKELOW W R. Chromosome abnormalities in rabbit preimplantation blastocysts induced by superovulation. J Reprod Fertil. 1974;40(1):177–181. doi: 10.1530/jrf.0.0400177. [FUJIMOTO S, PAHLAVAN N, DUKELOW W R. Chromosome abnormalities in rabbit preimplantation blastocysts induced by superovulation[J]. J Reprod Fertil, 1974, 40(1):177-181.] [DOI] [PubMed] [Google Scholar]
- 30.IMREH M P, GERTOW K, CEDERVALL J, et al. In vitro culture conditions favoring selection of chromosomal abnormalities in human ES cells . J Cell Biochem. 2006;99(2):508–516. doi: 10.1002/(ISSN)1097-4644. [IMREH M P, GERTOW K, CEDERVALL J, et al. In vitro culture conditions favoring selection of chromosomal abnormalities in human ES cells[J]. J Cell Biochem, 2006, 99(2):508-516. ] [DOI] [PubMed] [Google Scholar]
- 31.FORSYTH N R, MUSIO A, VEZZONI P, et al. Physiologic oxygen enhances human embryonic stem cell clonal recovery and reduces chromosomal abnormalities. Cloning Stem Cells. 2006;8(1):16–23. doi: 10.1089/clo.2006.8.16. [FORSYTH N R, MUSIO A, VEZZONI P, et al. Physiologic oxygen enhances human embryonic stem cell clonal recovery and reduces chromosomal abnormalities[J]. Cloning Stem Cells, 2006, 8(1):16-23.] [DOI] [PubMed] [Google Scholar]
- 32.TATENO H. Chromosome aberrations in mouse embryos and fetuses produced by assisted reproductive technology. Mutat Res. 2008;657(1):26–31. doi: 10.1016/j.mrgentox.2008.09.002. [TATENO H. Chromosome aberrations in mouse embryos and fetuses produced by assisted reproductive technology[J]. Mutat Res, 2008, 657(1):26-31.] [DOI] [PubMed] [Google Scholar]
- 33.WANG W H, MENG L, HACKETT R J, et al. Limited recovery of meiotic spindles in living human oocytes after cooling-rewarming observed using polarized light microscopy. Hum Reprod. 2001;16(11):2374–2378. doi: 10.1093/humrep/16.11.2374. [WANG W H, MENG L, HACKETT R J, et al. Limited recovery of meiotic spindles in living human oocytes after cooling-rewarming observed using polarized light microscopy[J]. Hum Reprod, 2001, 16(11):2374-2378.] [DOI] [PubMed] [Google Scholar]
- 34.HASTINGS P J, LUPSKI J R, ROSENBERG S M, et al. Mechanisms of change in gene copy number. Nat Rev Genet. 2009;10(8):551–564. doi: 10.1038/nrg2593. [HASTINGS P J, LUPSKI J R, ROSENBERG S M, et al. Mechanisms of change in gene copy number[J]. Nat Rev Genet, 2009, 10(8):551-564.] [DOI] [PMC free article] [PubMed] [Google Scholar]
- 35.ZHENG Y M, LI L, ZHOU L M, et al. Alterations in the frequency of trinucleotide repeat dynamic mutations in offspring conceived through assisted reproductive technology. Hum Reprod. 2013;28(9):2570–2580. doi: 10.1093/humrep/det294. [ZHENG Y M, LI L, ZHOU L M, et al. Alterations in the frequency of trinucleotide repeat dynamic mutations in offspring conceived through assisted reproductive technology[J]. Hum Reprod, 2013, 28(9):2570-2580.] [DOI] [PubMed] [Google Scholar]