Skip to main content
Journal of Zhejiang University (Medical Sciences) logoLink to Journal of Zhejiang University (Medical Sciences)
. 2017 Jun 25;46(3):233–239. [Article in Chinese] doi: 10.3785/j.issn.1008-9292.2017.06.02

浙江省新生儿氨基酸代谢疾病筛查及随访分析

Screening for amino acid metabolic disorders of newborns in Zhejiang province:prevalence, outcome and follow-up

Xinwen HUANG 1, Yu ZHANG 1, Fang HONG 1, Jing ZHENG 1, Jianbin YANG 1, Fan TONG 1, Huaqing MAO 1, Xiaolei HUANG 1, Xuelian ZHOU 1, Rulai YANG 1, Zhengyan ZHAO 1,*
PMCID: PMC10396939  PMID: 29039163

Abstract

目的

了解浙江省新生儿氨基酸代谢疾病的患病及转归情况。

方法

回顾性分析2009年1月至2016年12月1 861 262名新生儿串联质谱筛查结果,并对确诊氨基酸代谢疾病的患儿的相关基因突变和随访情况进行分析。

结果

共确诊氨基酸代谢疾病164例(1:11 349),其中高苯丙氨酸血症83例(1:22 400),希特林蛋白缺乏致新生儿肝内胆汁淤积症29例(1:64 138),其他依次为甲硫氨酸腺苷转移酶缺乏症Ⅰ型16例(1:116 250),枫糖尿症9例(1:206 667),精氨酸血症8例(1:232 500),瓜氨酸血症Ⅰ型7例(1:265 700),高脯氨酸血症Ⅰ型6例(1:310 000),氨甲酰磷酸合成酶缺乏症Ⅰ型2例(1:930 000),鸟氨酸氨甲酰转移酶缺乏症、胱硫醚β-合酶缺乏症、精氨酸代琥珀酸尿症、酪氨酸血症Ⅰ型各1例。随访发现,发育落后2例,死亡7例,失访2例,其他患儿均发育正常。

结论

浙江省新生儿氨基酸代谢疾病以高苯丙氨酸血症最为常见,通过干预多数患儿发育良好。


氨基酸代谢疾病是由于氨基酸代谢障碍引起的一组出生缺陷疾病,患病率高于有机酸及脂肪酸代谢疾病 [ 1] 。该病可导致患儿智力发育落后、肝功能受损、高氨血症,甚至死亡。氨基酸代谢疾病的临床表现无特异性,容易误诊。通过串联质谱法测定新生儿干滤纸血斑中的氨基酸含量,及早诊治,可避免患儿智力发育落后及代谢失调的发生 [ 2] 。目前,美国、英国、德国、澳大利亚、韩国及日本等国已将串联质谱新生儿筛查列为法定项目,筛查病种各国不一。中国于2002年开展这一项目,目前全国串联质谱筛查机构大约90余家,年筛查300余万新生儿 [ 3] 。浙江省新生儿疾病筛查中心从2009年1月起采用串联质谱技术筛查了浙江省1 861 262名新生儿,现将这些新生儿氨基酸代谢疾病的筛查情况报道如下。

2009年1月至2016年12月,浙江省新生儿疾病筛查中心共筛查1 861 262名新生儿,其中足月儿1 822 024名,早产儿12 641名,过期产儿26 579名。97%的新生儿为汉族,男:女为1.4:1。健康新生儿出生72 h充分哺乳后采血;早产儿、低出生体重儿、正在治疗疾病的新生儿,采血时间不超过出生后30 d。所有样本的采集和检测均经浙江大学医学院附属儿童医院伦理委员会批准并在监护人签署知情同意书的情况下完成。

AQCUTY TQ-D串联质谱仪购自美国Waters公司;GC-MS QP2010气相色谱—质谱联用仪购自日本岛津公司;CT-100 PCR仪购自美国Bio-Rad公司;3500-DX测序仪购自美国Life Tech公司;MiSeq测序仪购自美国Illumina公司;MassARRAY Analyzer 4飞行时间质谱仪、MassARRAY Nanodispenser RS-1000芯片点样机购自美国Sequenom公司。NeoBase新生儿非衍生法筛查试剂盒、NeoGram新生儿衍生法筛查试剂盒购自芬兰PerKin Elmer公司;文库制备试剂盒购自美国NEB公司;外显子捕获试剂盒购自美国Illumina公司;PCR试剂盒购自日本TaKaRa公司。

采集手指、足底末梢血,滴于专用采血滤纸上阴干,5个工作日内检测。取直径3 mm干血滤纸片置于96孔板中,通过含有内标液的萃取溶液萃取血斑中的氨基酸,转移萃取液于V型96孔板中,采用串联质谱法检测11种氨基酸的浓度。2009年1月至2013年10采用衍生化法;2013年11月至2016年12月采用非衍生化法,增加脯氨酸与琥珀酰丙酮两种氨基酸。以0.5%~99.5%的置信区间为正常参考范围(低出生体重儿苯丙氨酸、蛋氨酸、精氨酸、酪氨酸及亮氨酸浓度的99.5%百分位数均高于正常出生体重儿,采用低出生体重儿参考范围),氨基酸浓度超出正常参考范围判为阳性,阴性者纳入常规儿童保健。

检验指标超出截断值两倍或者发病较急的患儿立即召回;指标在截断值两倍以内或者发病较缓的于2~3周召回。召回复查时根据检验指标提示的疾病选择性进行血氨、血气分析、血糖及生化等检测,高苯丙氨酸血症结合尿蝶呤谱分析及二氢生物蝶呤还原酶活性进行分型,其他氨基酸代谢疾病结合血氨基酸及尿有机酸分析初步诊断。

生化检查初步诊断为氨基酸代谢疾病的患儿均需进行基因突变检测。选择Sanger、第二代测序或MassARRAY技术进行相关致病基因的突变分析。通过与dbSNP、1000 Genomes、ESP6500、ClinVar及PubMed等公共数据库的资料进行比对,获得可疑的突变位点。对筛选出致病突变位点的患儿,采集患儿及其父母的外周血2 mL(EDTA抗凝)进行Sanger测序验证,并确定变异来源。

对确诊病例进行饮食指导,包括低蛋白饮食、特殊营养粉或蛋白粉,补充微量营养素、瓜氨酸、精氨酸、苯甲酸钠及对症治疗。急性发作期补充足量葡萄糖,纠正酸中毒和水电解质紊乱及降氨等治疗。

病情稳定2~3个月随访复查一次,监测项目包括血氨基酸谱、血糖、血氨、肝功能及血常规等,以及体格发育评估。智力发育评估,0~30月龄采用Bayley婴儿发育量表,30月龄以上~6岁采用Gesell发育量表,6岁以上采用WISC-R儿童智能量表。超过预定随访时间3个月且电话催促仍不复诊定为失访。随访时间为2~82个月。

1861 262名新生儿中,共有332例氨基酸代谢疾病筛查阳性,其中164例确诊,总患病率为1:11 349,确诊时间为1~2个月。确诊的氨基酸代谢疾病主要有四大类共13种,以高苯丙氨酸血症最常见(83例),占50.1%,患病率为1:22 400,其中苯丙氨酸羟化酶缺乏症76例,占91.6%;四氢生物蝶呤缺乏症7例,均为6-丙酮酸四氢蝶呤合成酶缺乏症。其次为希特林蛋白缺乏致新生儿肝内胆汁淤积症29例,占17.7%,患病率为1:64 138,漏筛2例。其他依次为甲硫氨酸腺苷转移酶缺乏症Ⅰ型、枫糖尿症、精氨酸血症、瓜氨酸血症Ⅰ型及高脯氨酸血症Ⅰ型,见 表 1

表1 1 861 262名新生儿氨基酸代谢疾病筛查和随访结果

Table 1 The prevalence and follow-up of amino acid metabolic disorders in neonatal screening

疾病名称

确诊例数(%)

患病率

死亡( n)

失访( n)

发育情况( n)

正常

落后

芳香族氨基酸代谢疾病 苯丙氨酸羟化酶缺乏症

76(46.3)

1:24 474

0

0

76

0

                                        四氢生物蝶呤缺乏症

7(4.3)

1:265 714

0

0

7

0

                                        酪氨酸血症Ⅰ型

1(0.6)

1:1 860 000

1

0

0

0

尿素循环障碍 希特林蛋白缺乏致新生儿肝内胆汁淤积症

29(17.7)

1:64 138

0

0

29

0

                       精氨酸血症

8(4.9)

1:232 500

0

0

7

1

                       瓜氨酸血症Ⅰ型

7(4.3)

1:265 700

0

0

6

1

                       氨甲酰磷酸合成酶缺乏症Ⅰ型

2(1.2)

1:930 000

0

0

2

0

                       鸟氨酸氨甲酰转移酶缺乏症

1(0.6)

1:1 860 000

0

0

1

0

                       精氨酰代琥珀酸尿症

1(0.6)

1:1 860 000

0

0

1

0

甲硫氨酸循环障碍 甲硫氨酸腺苷转移酶缺乏症Ⅰ型

16(9.8)

1:116 250

0

0

16

0

                               胱硫醚β-合酶缺乏症

1(0.6)

1:1 860 000

0

0

1

0

支链氨基酸代谢疾病 枫糖尿症

9(5.5)

1:206 667

6

2

1

0

其他 高脯氨酸血症Ⅰ型

6(3.7)

1:310 000

0

0

6

0

合计

164

1:11 349

7

2

153

2

筛查召回率为97.9%。13种氨基酸代谢疾病的初筛阳性率和阳性预测值见 表 2。① 芳香族氨基酸代谢疾病:高苯丙氨酸血症(苯丙氨酸羟化酶缺乏症、四氢生物蝶呤缺乏症)的初筛阳性率和阳性预测值分别为0.100‰和24.9%;酪氨酸血症Ⅰ型的初筛阳性率和阳性预测值分别为0.001‰和0.1%。② 尿素循环障碍:希特林蛋白缺乏致新生儿肝内胆汁淤积症、精氨酰代琥珀酸尿症及瓜氨酸血症Ⅰ型均为瓜氨酸增高,初筛阳性率和阳性预测值分别为0.030‰和10.8%;精氨酸血症的初筛阳性率和阳性预测值分别为0.010‰及3.4%;氨甲酰磷酸合成酶缺乏症Ⅰ型和鸟氨酸氨甲酰转移酶缺乏症均为瓜氨酸下降,初筛阳性率和阳性预测值分别为0.003‰和0.5%。③ 甲硫氨酸循环障碍:甲硫氨酸腺苷转移酶缺乏症Ⅰ型和胱硫醚β-合酶缺乏症均为蛋氨酸增高,初筛阳性率和阳性预测值分别为0.010‰和3.4%。④ 支链氨基酸代谢疾病:枫糖尿症的初筛阳性率和阳性预测值为0.010‰和2.9%。其他氨基酸代谢疾病如高脯氨酸血症Ⅰ型的初筛阳性率和阳性预测值为0.010‰和3.4%。

表2 串联质谱技术筛查1 861 262名新生儿氨基酸代谢疾病的效率

Table 2 Efficiency of tandem mass spectrometry in preliminary screening for amino acid metabolic disorders

疾病名称

初筛阳性率(‰)

阳性预测值(%)

芳香族氨基酸代谢疾病 苯丙氨酸羟化酶缺乏症/四氢生物蝶呤缺乏症

0.100

24.9

                                        酪氨酸血症Ⅰ型

0.001

0.1

尿素循环障碍 希特林蛋白缺乏致新生儿肝内胆汁淤积症/精氨酰代琥珀酸尿症/瓜氨酸血症Ⅰ型

0.030

10.8

                          精氨酸血症

0.010

3.4

                          氨甲酰磷酸合成酶缺乏症Ⅰ型/鸟氨酸氨甲酰转移酶缺乏症

0.003

0.5

甲硫氨酸循环障碍 甲硫氨酸腺苷转移酶缺乏症Ⅰ型/胱硫醚β-合酶缺乏症

0.010

3.4

支链氨基酸代谢疾病 枫糖尿症

0.010

2.9

其他 高脯氨酸血症Ⅰ型

0.010

3.4

    斜杠表示串联质谱筛查中使用同一个检测指标判定,在基因检测确诊前无法详细区分每种疾病的初筛阳性率以及阳性预测值.

83例高苯丙氨酸血症患儿中,76例(91.6%)为 PAH基因突变,最常见的突变位点为c.728G>A(34.6%)、c.721C>T(21.8%)、c.158G>A(13.5%);四氢生物蝶呤缺乏症均为 PTPS基因突变,其中c.286G>A突变的发生率为23.8%,c.73C>G和c.379C>T突变的发生率为19%。

希特林蛋白缺乏致新生儿肝内胆汁淤积症患儿 SLC25A13热点突变为c.852_855delTAT(48.8%),其次为IVS16ins3K(24.4%),c.615+5G>A和c.1638_1660dup两个突变的频率均为12.2%。

甲硫氨酸腺苷转移酶缺乏症Ⅰ型患儿 MAT1A基因突变中50.1%为c.791G>A杂合突变,其余为已知纯合或者混合性杂合子突变。

9例枫糖尿症除1例为 DBT基因突变,其余均为 BCKDHB基因突变。6例高脯氨酸血症Ⅰ型 PRODH基因突变以c.1414G>A突变纯合或复合杂合突变最为常见(72.7%),其次为c.1357C>T(54.5%)。瓜氨酸血症Ⅰ型的 ASS1基因及精氨酸血症的 ARG1基因均为混合性杂合子突变,未发现热点突变。1例鸟氨酸氨甲酰转移酶缺乏症为杂合突变。其余病例均为已知混合性杂合子突变。

发育落后2例,死亡7例,失访2例。发育落后的患儿中1例精氨酸血症患儿血清精氨酸水平控制不良,伴持续高氨血症,智力发育落后;1例瓜氨酸血症Ⅰ型患儿发育落后。1例酪氨酸血症Ⅰ型患儿出生后3周确诊时肝功能正常,2月龄时突然死亡。所有枫糖尿症患儿均维生素B1治疗无效,采用特殊奶粉并限制蛋白质摄入的方法;1例新生儿筛查确诊时没有临床症状,发育良好,其他患儿均出生后4~7 d以抽搐脑病入院,新生儿期死亡6例,随访3~4个月失访2例。其余患儿在随访期间均无临床症状及急性代谢失调,体格及智力发育均正常,见 表 1

研究表明,氨基酸代谢疾病的总患病率奥地利(1:4980) [ 4] 和葡萄牙(1:5856) [ 5] 较高,且以高苯丙氨酸血症最多,占50%,其次是尿素循环及其旁路障碍代谢疾病,疾病构成与英国相似 [ 6] 。本研究确诊氨基酸代谢疾病13种共164例,患病率为1:11 349,与中国台湾(1:11 236) [ 7] 及美国北卡罗来纳州(1:15 100) [ 8] 接近。以下就本文资料中各类氨基酸代谢疾病的检出情况分析如下。

本文资料中高苯丙氨酸血症的患病率为1:22 400,与美国的患病率(1:25 000) 相近 [ 8] ,低于欧洲(1:10 000) [ 9] 。本研究发现,苯丙氨酸羟化酶缺乏症占91.6%,四氢生物蝶呤缺乏症占8.4%(均为PTPS酶缺陷),与美国和日本相近 [ 10] ,而马来西亚及中国台湾地区则是四氢生物蝶呤缺乏症比例较高,分别占64%和33.3% [ 7]

酪氨酸血症Ⅰ型的患病率一般为1:100 000~1:120 000,该病在加拿大魁北克的患病率为1:16 000,而在萨格内—圣约翰湖区(Saguenay-Lac-St-Jean)可达1:1846 [ 11] 。本研究仅确诊1例,暂时性酪氨酸增高较为常见,可能与新生儿肝脏4-羟基苯丙酮酸二氧化酶活性较低有关 [ 12] 。血和尿液琥珀酰丙酮升高是诊断酪氨酸血症Ⅰ型的特征性指标 [ 13] ,本例酪氨酸血症Ⅰ型患儿血琥珀酰丙酮增高5倍(8.9 μmol/L),酪氨酸增高1倍(660 μmol/L),确诊时肝功能正常,2月龄时突然死亡。酪氨酸血症Ⅰ型仅饮食治疗,多数患儿在婴幼儿期会因反复严重肝肾功能损伤而死亡 [ 8, 10]

尿素循环障碍的总患病率为1:35 000~1:8000,常在新生儿期出现严重代谢失代偿及脑损伤,脑损伤程度取决于高血氨昏迷的持续时间 [ 14] 。我们确诊六种尿素循环障碍,总患病率为1:44 000,以精氨酸血症为多,其次是瓜氨酸血症Ⅰ型。鸟氨酸氨甲酰转移酶缺乏症是尿素循环障碍中最常见的类型,欧洲报道208例尿素循环障碍患者中鸟氨酸氨甲酰转移酶缺乏症占58%,其次为瓜氨酸血症Ⅰ型(20%)和精氨酰琥珀酸尿症(15%) [ 15] 。本研究仅发现1例鸟氨酸氨甲酰转移酶缺乏症。该病以瓜氨酸下降作为筛查指标,新生儿期发病严重的鸟氨酸氨甲酰转移酶缺乏症患儿瓜氨酸水平非常低,晚发型男性或女性杂合子瓜氨酸水平相对正常,有漏筛可能 [ 16] 。乳清酸升高是检测鸟氨酸氨甲酰转移酶缺乏症的关键指标,可提高该病筛查的特异性和敏感度 [ 17]

瓜氨酸血症Ⅰ型和精氨酰琥珀酸尿症均以瓜氨酸增高筛查。研究认为,瓜氨酸在瓜氨酸血症Ⅰ型患者可升高100倍,而在精氨酰琥珀酸尿症患者升高约10倍 [ 18] 。本研究确诊的7例瓜氨酸血症Ⅰ型患儿,除1例患儿的瓜氨酸为200 μmol/L,其余6例均在1000 μmol/L以上。治疗后瓜氨酸下降不明显,但除1例发育落后,其余患儿均无血氨升高,发育良好。瓜氨酸血症Ⅰ型患者可反复血氨升高,严重者会有永久性的神经系统后遗症,晚发型患者多发育良好 [ 19] 。精氨酰琥珀酸尿症的患病率为1:70 000,仅次于鸟氨酸氨甲酰合成酶缺乏症。本次研究仅确诊1例,晚发型精氨酰琥珀酸尿症血瓜氨酸与精氨酸代琥珀酸可以正常,容易漏筛 [ 20] 。精氨酰琥珀酸尿症患者存在反复高氨血症、智力障碍和脑病的风险,但是及早诊治可以改善预后 [ 21] 。本研究确诊的精氨酸血症患儿中除1例血精氨酸酶水平控制不好,伴持续高氨血症,智力发育落后外,其他患儿均血氨稳定,发育良好。精氨酸血症新生儿期很少发病,及早诊治患儿可发育正常 [ 21- 22]

希特林蛋白缺乏致新生儿肝内胆汁淤积症是尿素循环障碍旁路代谢异常疾病,该病在韩国的患病率为1:50 000,日本为1:19 000,中国人携带率为1:63,推算患病率为1:17 000 [ 23] 。然而,本文资料显示该病的患病率仅为1:64 138,且漏筛2例,中国台湾有资料显示该病在14万名新生儿筛查中漏筛1例 [ 4] 。希特林蛋白缺乏致新生儿肝内胆汁淤积症是临床高危筛查遗传代谢疾病中最多的疾病。患儿常在出生后2~3个月因胆汁淤积导致瓜氨酸增多,推测新生儿期可能存在漏筛。希特林蛋白缺乏致新生儿肝内胆汁淤积症治疗效果好,症状通常在一年内消失,但也有患儿出现严重肝损伤,需要肝移植治疗 [ 16, 18]

甲硫氨酸循环障碍以甲硫氨酸腺苷转移酶缺乏症Ⅰ型和胱硫醚β-合酶缺乏症常见。西班牙甲硫氨酸腺苷转移酶缺乏症的患病率为1:22 874 [ 24] ,欧洲胱硫醚β-合酶缺乏症的患病率为1:6400~1:15 500 [ 25] 。本文资料甲硫氨酸腺苷转移酶缺乏症Ⅰ型的患病率为1:109 400,均未经治疗,患儿智力和体格发育正常,50%为 MAT1A基因c.791G>A杂合突变,该突变位点是显性遗传,无临床症状 [ 26] 。Chadwick等 [ 26] 的资料提示,69%的患儿为 MAT1A基因c.791G>A杂合突变,随访13年发育正常。本研究仅确诊1例胱硫醚β-合酶缺乏症。胱硫醚β-合酶缺乏症患儿蛋氨酸增高不明显,尤其吡哆醇反应型采用蛋氨酸筛查该病至少50%漏筛 [ 25- 26] ,增加同型半胱氨酸及胱硫醚和蛋氨酸比率可提高该病的检出率。

枫糖尿症在国外的患病率约为1:180 000,但其在美国门诺派(Mennonite)人群中的患病率高达1:176 [ 27] 。本研究中枫糖尿症的患病率为1:206 660,仅1例确诊前无症状,治疗随访期间患儿发育良好;其他患儿均在出生后4~7 d以抽搐脑病入院,6例新生儿期死亡,2例失访。新生儿筛查确诊时未发病的枫糖尿症患儿一般预后良好 [ 28] ,而已经发病的患儿多数为智力、运动发育落后,甚至死亡 [ 29- 30]

综上所述,氨基酸代谢疾病多数治疗效果良好。枫糖尿症患儿预后较差,应加强产前诊断,避免出生缺陷的发生。氨基酸代谢疾病筛查存在一定数量的漏筛,需要增加特异性筛查指标、优化新生儿筛查方案,从而提高筛查效率。

Funding Statement

国家自然科学基金(81172681,81600817);浙江省医药卫生科技计划(2014KYB142);浙江省公益性技术应用研究计划(2016C33148)

References

  • 1.NIU D M, CHIEN Y H, CHIANG C C, et al. Nationwide survey of extended newborn screening by tandem mass spectrometry in Taiwan. http://www.ncbi.nlm.nih.gov/pubmed/20567911. J Inherit Metab Dis. 2010;33(Suppl 2):S295–S305. doi: 10.1007/s10545-010-9129-z. [NIU D M, CHIEN Y H, CHIANG C C, et al. Nationwide survey of extended newborn screening by tandem mass spectrometry in Taiwan[J]. J Inherit Metab Dis, 2010, 33(Suppl 2):S295-S305.] [DOI] [PubMed] [Google Scholar]
  • 2.杨 楠, 韩 连书, 叶 军, et al. 新生儿期氨基酸、有机酸及脂肪酸氧化代谢病疾病谱分析. http://www.cnki.com.cn/Article/CJFDTOTAL-LCAK201209003.htm. 临床儿科杂志. 2012;30(9):805–808. [杨楠, 韩连书, 叶军, 等.新生儿期氨基酸、有机酸及脂肪酸氧化代谢病疾病谱分析[J].临床儿科杂志, 2012, 30(9):805-808] [Google Scholar]
  • 3.赵 正言. 新生儿遗传代谢病筛查进展. http://www.cnki.com.cn/Article/CJFDTOTAL-WSCY201617035.htm. 中国实用儿科杂志. 2014;29(8):587–589. [赵正言.新生儿遗传代谢病筛查进展[J].中国实用儿科杂志, 2014, 29(8):587-589] [Google Scholar]
  • 4.KASPER D C, RATSCHMANN R, METZ T F, et al. The national Austrian newborn screening program-eight years experience with mass spectrometry. past, present, and future goals. Wien Klin Wochenschr. 2010;122(21-22):607–613. doi: 10.1007/s00508-010-1457-3. [KASPER D C, RATSCHMANN R, METZ T F, et al. The national Austrian newborn screening program-eight years experience with mass spectrometry. past, present, and future goals[J]. Wien Klin Wochenschr, 2010, 122(21-22):607-613.] [DOI] [PubMed] [Google Scholar]
  • 5.VILARINHO L, ROCHA H, SOUSA C, et al. Four years of expanded newborn screening in Portugal with tandem mass spectrometry. https://www.ncbi.nlm.nih.gov/pubmed/20177789. J Inherit Metab Dis. 2010;33(Suppl 3):S133–S138. doi: 10.1007/s10545-010-9048-z. [VILARINHO L, ROCHA H, SOUSA C, et al. Four years of expanded newborn screening in Portugal with tandem mass spectrometry[J]. J Inherit Metab Dis, 2010, 33 Suppl 3:S133-S138.] [DOI] [PubMed] [Google Scholar]
  • 6.ZYTKOVICZ T H, FITZGERALD E F, MARSDEN D, et al. Tandem mass spectrometric analysis for amino, organic, and fatty acid disorders in newborn dried blood spots:a two-year summary from the New England Newborn Screening Program. https://www.ncbi.nlm.nih.gov/pubmed/11673361#. Clin Chem. 2001;47(11):1945–1955. [ZYTKOVICZ T H, FITZGERALD E F, MARSDEN D, et al. Tandem mass spectrometric analysis for amino, organic, and fatty acid disorders in newborn dried blood spots:a two-year summary from the New England Newborn Screening Program[J]. Clin Chem, 2001, 47(11):1945-1955.] [PubMed] [Google Scholar]
  • 7.NIU D M, CHIEN Y H, CHIANG C C, et al. Nationwide survey of extended newborn screening by tandem mass spectrometry in Taiwan. http://www.ncbi.nlm.nih.gov/pubmed/20567911. J Inherit Metab Dis. 2010;33(Suppl 2):S295–S305. doi: 10.1007/s10545-010-9129-z. [NIU D M, CHIEN Y H, CHIANG C C, et al. Nationwide survey of extended newborn screening by tandem mass spectrometry in Taiwan[J]. J Inherit Metab Dis, 2010, 33(Suppl 2):S295-S305.] [DOI] [PubMed] [Google Scholar]
  • 8.FRAZIER D M, MILLINGTON D S, MCCANDLESS S E, et al. The tandem mass spectrometry newborn screening experience in North Carolina:1997-2005. J Inherit Metab Dis. 2006;29(1):76–85. doi: 10.1007/s10545-006-0228-9. [FRAZIER D M, MILLINGTON D S, MCCANDLESS S E, et al. The tandem mass spectrometry newborn screening experience in North Carolina:1997-2005[J]. J Inherit Metab Dis, 2006, 29(1):76-85.] [DOI] [PubMed] [Google Scholar]
  • 9.HARDELID P, CORTINA-BORJA M, MUNRO A, et al. The birth prevalence of PKU in populations of European, South Asian and sub-Saharan African ancestry living in South East England. https://www.ncbi.nlm.nih.gov/pubmed/18184144#. Ann Hum Genet. 2008;72(Pt 1):65–71. doi: 10.1111/j.1469-1809.2007.00389.x. [HARDELID P, CORTINA-BORJA M, MUNRO A, et al. The birth prevalence of PKU in populations of European, South Asian and sub-Saharan African ancestry living in South East England[J]. Ann Hum Genet, 2008, 72(Pt 1):65-71.] [DOI] [PubMed] [Google Scholar]
  • 10.OZBEN T. Expanded newborn screening and confirmatory follow-up testing for inborn errors of metabolism detected by tandem mass spectrometry. https://www.ncbi.nlm.nih.gov/pubmed/23183752. Clin Chem Lab Med. 2013;51(1):157–176. doi: 10.1515/cclm-2012-0472. [OZBEN T. Expanded newborn screening and confirmatory follow-up testing for inborn errors of metabolism detected by tandem mass spectrometry[J]. Clin Chem Lab Med, 2013, 51(1):157-176.] [DOI] [PubMed] [Google Scholar]
  • 11.DE BRAEKELEER M, LAROCHELLE J. Genetic epidemiology of hereditary tyrosinemia in Quebec and in Saguenay-Lac-St-Jean. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1683702/ Am J Hum Genet. 1990;47(2):302–307. [DE BRAEKELEER M, LAROCHELLE J. Genetic epidemiology of hereditary tyrosinemia in Quebec and in Saguenay-Lac-St-Jean[J]. Am J Hum Genet, 1990, 47(2):302-307.] [PMC free article] [PubMed] [Google Scholar]
  • 12.RUSSO P A, MITCHELL G A, TANGUAY R M. Tyrosinemia:a review. Pediatr Dev Pathol. 2001;4(3):212–221. doi: 10.1007/s100240010146. [RUSSO P A, MITCHELL G A, TANGUAY R M. Tyrosinemia:a review[J]. Pediatr Dev Pathol, 2001, 4(3):212-221.] [DOI] [PubMed] [Google Scholar]
  • 13.ALLARD P, GRENIER A, KORSON M S, et al. Newborn screening for hepatorenal tyrosinemia by tandem mass spectrometry:analysis of succinylacetone extracted from dried blood spots. Clin Biochem. 2004;37(11):1010–1015. doi: 10.1016/j.clinbiochem.2004.07.006. [ALLARD P, GRENIER A, KORSON M S, et al. Newborn screening for hepatorenal tyrosinemia by tandem mass spectrometry:analysis of succinylacetone extracted from dried blood spots[J]. Clin Biochem, 2004, 37(11):1010-1015.] [DOI] [PubMed] [Google Scholar]
  • 14.HÄBERLE J, BODDAERT N, BURLINA A, et al. Suggested guidelines for the diagnosis and management of urea cycle disorders. Orphanet J Rare Dis. 2012;7:32. doi: 10.1186/1750-1172-7-32. [HÄBERLE J, BODDAERT N, BURLINA A, et al. Suggested guidelines for the diagnosis and management of urea cycle disorders[J]. Orphanet J Rare Dis, 2012, 7:32.] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 15.TUCHMAN M, LEE B, LICHTER-KONECKI U, et al. Cross-sectional multicenter study of patients with urea cycle disorders in the United States. Mol Genet Metab. 2008;94(4):397–402. doi: 10.1016/j.ymgme.2008.05.004. [TUCHMAN M, LEE B, LICHTER-KONECKI U, et al. Cross-sectional multicenter study of patients with urea cycle disorders in the United States[J]. Mol Genet Metab, 2008, 94(4):397-402.] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 16.CAVICCHI C, MALVAGIA S, LA M G, et al. Hypocitrullinemia in expanded newborn screening by LC-MS/MS is not a reliable marker for ornithine transcarbamylase deficiency. J Pharm Biomed Anal. 2009;49(5):1292–1295. doi: 10.1016/j.jpba.2009.03.001. [CAVICCHI C, MALVAGIA S, LA M G, et al. Hypocitrullinemia in expanded newborn screening by LC-MS/MS is not a reliable marker for ornithine transcarbamylase deficiency[J]. J Pharm Biomed Anal, 2009, 49(5):1292-1295.] [DOI] [PubMed] [Google Scholar]
  • 17.JANZEN N, TERHARDT M, SANDER S, et al. Towards newborn screening for ornithine transcarbamylase deficiency:fast non-chromatographic orotic acid quantification from dried blood spots by tandem mass spectrometry. Clin Chim Acta. 2014;430:28–32. doi: 10.1016/j.cca.2013.12.020. [JANZEN N, TERHARDT M, SANDER S, et al. Towards newborn screening for ornithine transcarbamylase deficiency:fast non-chromatographic orotic acid quantification from dried blood spots by tandem mass spectrometry[J]. Clin Chim Acta, 2014, 430:28-32.] [DOI] [PubMed] [Google Scholar]
  • 18.MEW N A, LANPHER B C, GROPMAN A, et al. Gene reviews. Seattle: University of Washington; 2003. pp. 1–15. [MEW N A, LANPHER B C, GROPMAN A, et al. Gene reviews[M]. Seattle:University of Washington, 2003:1-15.] [Google Scholar]
  • 19.LEE B H, KIM Y M, HEO S H, et al. High prevalence of neonatal presentation in Korean patients with citrullinemia type 1, and their shared mutations. Mol Genet Metab. 2013;108(1):18–24. doi: 10.1016/j.ymgme.2012.11.011. [LEE B H, KIM Y M, HEO S H, et al. High prevalence of neonatal presentation in Korean patients with citrullinemia type 1, and their shared mutations[J]. Mol Genet Metab, 2013, 108(1):18-24.] [DOI] [PubMed] [Google Scholar]
  • 20.MARCÃO A, FONSECA H, SOUSA C, et al. Two cases of late-onset argininosuccinic aciduria with normal results at newborn screening. Ana Marcao spdm. 2015;2(6):1–2. [MARCÃO A, FONSECA H, SOUSA C, et al. Two cases of late-onset argininosuccinic aciduria with normal results at newborn screening[J]. Ana Marcao spdm, 2015, 2(6):1-2.] [Google Scholar]
  • 21.EDWARDS R L, MOSELEY K, WATANABE Y, et al. Long-term neurodevelopmental effects of early detection and treatment in a 6-year-old patient with argininaemia diagnosed by newborn screening. https://www.ncbi.nlm.nih.gov/pubmed/19562505. J Inherit Metab Dis. 2009;32(Suppl 1):S197–S200. doi: 10.1007/s10545-009-1148-2. [EDWARDS R L, MOSELEY K, WATANABE Y, et al. Long-term neurodevelopmental effects of early detection and treatment in a 6-year-old patient with argininaemia diagnosed by newborn screening[J]. J Inherit Metab Dis, 2009, 32 Suppl 1:S197-S200.] [DOI] [PubMed] [Google Scholar]
  • 22.JAIN-GHAI S, NAGAMANI S C, BLASER S, et al. Arginase Ⅰ deficiency:severe infantile presentation with hyperammonemia:more common than reported? Mol Genet Metab. 2011;104(1-2):107–111. doi: 10.1016/j.ymgme.2011.06.025. [JAIN-GHAI S, NAGAMANI S C, BLASER S, et al. Arginase Ⅰ deficiency:severe infantile presentation with hyperammonemia:more common than reported?[J]. Mol Genet Metab, 2011, 104(1-2):107-111.] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 23.LU Y B, KOBAYASHI K, USHIKAI M, et al. Frequency and distribution in East Asia of 12 mutations identified in the SLC25A13 gene of Japanese patients with citrin deficiency. J Hum Genet. 2005;50(7):338–346. doi: 10.1007/s10038-005-0262-8. [LU Y B, KOBAYASHI K, USHIKAI M, et al. Frequency and distribution in East Asia of 12 mutations identified in the SLC25A13 gene of Japanese patients with citrin deficiency[J]. J Hum Genet, 2005, 50(7):338-346.] [DOI] [PubMed] [Google Scholar]
  • 24.COUCE M L, BÓVEDA M D, GARCÍA-JIMÉMEZ C, et al. Clinical and metabolic findings in patients with methionine adenosyltransferase Ⅰ/Ⅲ deficiency detected by newborn screening. Mol Genet Metab. 2013;110(3):218–221. doi: 10.1016/j.ymgme.2013.08.003. [COUCE M L, BÓVEDA M D, GARCÍA-JIMÉMEZ C, et al. Clinical and metabolic findings in patients with methionine adenosyltransferase Ⅰ/Ⅲ deficiency detected by newborn screening[J]. Mol Genet Metab, 2013, 110(3):218-221.] [DOI] [PubMed] [Google Scholar]
  • 25.JANOSÍK M, SOKOLOVÁ J, JANOSÍKOVÁ B, et al. Birth prevalence of homocystinuria in Central Europe:frequency and pathogenicity of mutation c.1105C>T (p.R369C) in the cystathionine beta-synthase gene. J Pediatr. 2009;154(3):431–437. doi: 10.1016/j.jpeds.2008.09.015. [JANOSÍK M, SOKOLOVÁ J, JANOSÍKOVÁ B, et al. Birth prevalence of homocystinuria in Central Europe:frequency and pathogenicity of mutation c.1105C>T (p.R369C) in the cystathionine beta-synthase gene[J]. J Pediatr, 2009, 154(3):431-437.] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 26.CHADWICK S, FITZGERALD K, WEISS B, et al. Thirteen patients with MAT1A mutations detected through newborn screening:13 years' experience. http://www.ncbi.nlm.nih.gov/pubmed/24445979. JIMD Rep. 2014;14:71–76. doi: 10.1007/8904_2013_286. [CHADWICK S, FITZGERALD K, WEISS B, et al. Thirteen patients with MAT1A mutations detected through newborn screening:13 years' experience[J]. JIMD Rep, 2014, 14:71-76.] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 27.NELLIS M M, DANNER D J. Gene preference in maple syrup urine disease. Am J Hum Genet. 2001;68(1):232–237. doi: 10.1086/316950. [NELLIS M M, DANNER D J. Gene preference in maple syrup urine disease[J]. Am J Hum Genet, 2001, 68(1):232-237.] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 28.MYERS K A, REEVES M, WEI X C, et al. Cerebral edema in maple syrup urine disease despite newborn screening diagnosis and early initiation of treatment. JIMD Rep. 2012;3:103–106. doi: 10.1007/978-3-642-24936-5. [MYERS K A, REEVES M, WEI X C, et al. Cerebral edema in maple syrup urine disease despite newborn screening diagnosis and early initiation of treatment[J]. JIMD Rep, 2012, 3:103-106.] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 29.李 溪远, 丁 圆, 刘 玉鹏, et al. 枫糖尿症患儿13例临床、生化及基因研究. http://d.wanfangdata.com.cn/Periodical/syeklczz201608003. 中国实用儿科临床杂志. 2016;31(8):569–572. [李溪远, 丁圆, 刘玉鹏, 等.枫糖尿症患儿13例临床、生化及基因研究[J].中国实用儿科临床杂志, 2016, 31(8):569-572] [Google Scholar]
  • 30.COUCE M L, RAMOS F, BUENO M A, et al. Evolution of maple syrup urine disease in patients diagnosed by newborn screening versus late diagnosis. Eur J Paediatr Neurol. 2015;19(6):652–659. doi: 10.1016/j.ejpn.2015.07.009. [COUCE M L, RAMOS F, BUENO M A, et al. Evolution of maple syrup urine disease in patients diagnosed by newborn screening versus late diagnosis[J]. Eur J Paediatr Neurol, 2015, 19(6):652-659.] [DOI] [PubMed] [Google Scholar]

Articles from Journal of Zhejiang University (Medical Sciences) are provided here courtesy of Zhejiang University Press

RESOURCES