Abstract
儿童自身炎症性疾病(AID)是难治性疾病之一,发病机制尚未完全明确。近年来大量研究表明,NLRP3炎症小体失调在儿童AID的发生、发展中具有重要作用。NLRP3炎症小体是细胞内的一种多蛋白复合物,它能激活半胱氨酸天冬氨酸特异蛋白酶1(caspase-1),进一步促进炎症因子IL-1β和IL-18的成熟和分泌,从而促进细胞凋亡,调节固有免疫应答。IL-1受体拮抗剂(Anakinra)和IL-1β单克隆抗体(Canakinumab)治疗儿童AID取得了较好的疗效。本文就NLRP3炎症小体在该类疾病发病机制中的研究进展作一综述。
Abstract
Autoinflammatory diseases (AID) in childhood is one of refractory diseases, whose pathogenesis is not completely clear. In recent years, a large number of studies have shown that NLRP3 inflammasome plays an important role in the development of AIDs in children. Inflammasome is a cytosolic multiprotein complex that can activate cysteinyl aspartate-specific protease-1 (caspase-1), to further promote the maturation and secretion of proinflammatory cytokines IL-1β and IL-18 as well as pyroptosis and regulate innate immune response. IL-1 receptor antagonist (Anakinra) and IL-1β monoclonal antibody (Canakinumab) have good therapeutic effects in children with AIDs. This article reviews the research progress of NLRP3 inflammasome in the pathogenesis of autoinflammatory diseases.
Keywords: Multiprotein complexes, Autoimmune diseases, Interleukin-1 beta, Chromosome disorders, Review
儿童自身炎症性疾病(autoinflammatory diseases,AID)通常是指一组由固有免疫参与介导的遗传性疾病,但近年来发现有些AID不具有明确的遗传史,受多种基因和环境因素共同作用 [ 1] 。儿童AID主要包括①遗传性周期热综合征:冷炎素相关周期热综合征(cryopyrin-associated periodic syndromes,CAPS,包括家族性寒冷性自身炎症综合征、Muckle-Wells综合征、新生儿期发病的多系统炎性疾病),家族性地中海热(familial mediteranean fever,FMF),高IgD伴周期热综合征,TNF受体相关周期热综合征 [ 2] ;②化脓性(非感染性)疾病:无菌性化脓性关节炎、坏疽性脓皮病、痤疮综合征(PAPA综合征)、Majeed综合征;③免疫介导的肉芽肿疾病:Blau综合征、克罗恩病;④特发性发热综合征:幼年特发性关节炎(juvenile idiopathic arthritis,JIA)、白塞综合征等 [ 3] 。该组疾病表现为反复的发热、皮疹、关节痛、关节炎等全身炎症反应,IL-1家族细胞因子(主要包括IL-1β和IL-18)水平升高 [ 4] 。NLRP3炎症小体是由受体蛋白(NLR蛋白)、接头蛋白[凋亡相关斑点样蛋白(apoptosis associated speck-like protein containing a caspase recruitment domain,ASC)]和效应蛋白(pro-caspase-1)构成的多蛋白复合物 [ 5] ,它通过激活半胱氨酸天冬氨酸特异性蛋白酶1(caspase-1),促进IL-1β和IL-18的成熟和分泌,参与炎症反应 [ 6] 。近些年关于NLRP3炎症小体与AID关系的研究逐渐增多。已有研究显示,IL-1受体拮抗剂(Anakinra)和IL-1β单克隆抗体(Canakinumab)对儿童AID患者取有较好的疗效 [ 7] 。本文就NLRP3炎症小体参与儿童AID发病机制的研究进展作一综述。
CAPS为常染色体显性遗传病,系NLRP3基因获得性功能突变所致 [ 8] 。NLRP3基因定位于1号染色体短臂上(即1q44),编码NLRP3蛋白(又称冷炎素,cryopyrin) [ 9] 。目前NLRP3基因共有177种突变,多位于3号外显子或4号内含子上 [ 10] 。其中,T348M、D303N突变与CAPS病情严重程度相关 [ 11] 。有些患者生殖细胞中没有NLRP3突变,但是体细胞嵌合体中存在NLRP3突变 [ 12] 。家族性寒冷性自身炎症综合征患者外周血白细胞中NLRP3杂合突变使NLRP3炎症小体过度激活,进而起病 [ 13] 。Muckle-Wells综合征是由于NLRP3 NACHT结构域的错义突变导致NLRP3蛋白功能增强使NLRP3炎症小体持续活化。研究显示,NLRP3 T348M基因参与Muckle-Wells综合征的发生 [ 14] 。中国汉族一例Muckle-Wells综合征患者NLRP3中p.D31V基因突变促进NLRP3炎症小体的激活 [ 15] 。新生儿期发病的多系统炎性疾病患者脑脊液可检测到NLRP3基因突变,但其血清中未检测到。测序整个NLRP3基因发现外显子4(G755R、G755A)和外显子6(Y859C)的错义突变参与CAPS的发病 [ 16] 。此外,Yu等 [ 17] 发现NLRP3炎症小体缺陷小鼠模型IL-1产生过剩,导致CAPS炎症症状。
CAPS的诊断主要依据典型临床表现,基因检测有助于诊断。Anakinra治疗Muckle-Wells综合征和新生儿期发病的多系统炎性疾病疗效显著,但伴有关节严重破坏的CAPS患者对Anakinra应答不佳 [ 18] ;IL-1β单克隆抗体Canakinumab可使97%的CAPS患者症状改善 [ 19] 。
FMF是由编码Pyrin蛋白的MEFV基因突变引起的常染色体隐性遗传病 [ 20] 。Pyrin主要表达于中性粒细胞和单核细胞的细胞质中,其热蛋白结构域(PYD)可竞争性地与ASC分子PYD结合,从而减少NLRP3与ASC结合,抑制NLRP3炎症小体形成。MVEF突变系功能缺失性突变,可导致Pyrin数量减少或功能改变,致使NLRP3炎症小体过度活化。Repa等 [ 21] 发现,FMF患者新分离的白细胞中NLRP3和caspase-1表达水平较对照组下降。Mitroulis等 [ 22] 发现无症状FMF患者中性粒细胞NLRP3 mRNA水平降低。除MEFV基因突变外,Timerman等 [ 23] 在FMF样周期性发热综合征患者中还发现了NLRP3基因突变,猜测其为多基因遗传病。Chae等 [ 24] 的FMF动物模型也证实,单核细胞分泌IL-1β是通过NLRP3介导的。
基因检查有助于FMF的诊断。治疗首选秋水仙碱。但Manukyan等 [ 25] 发现使用秋水仙碱治疗一些难治性FMF时,NLRP3和MEFV的表达量较健康对照组增加,这可能是秋水仙碱疗效不佳的原因。此外,随机对照研究结果显示,Anakinra和Canakinumab治疗秋水仙碱抵抗的FMF患者安全、有效 [ 26] 。
JIA是最常见的儿童风湿性疾病之一,共七个亚型,其中全身型JIA是最严重的亚型。NLRP3基因突变在全身型JIA的发生发展中具有调控作用 [ 27] 。Tadaki等 [ 28] 通过研究50例全身型JIA患者发现,NLRP基因19q13.42从头重复突变与全身型JIA相关。急性活动期全身型JIA患者单个核细胞微阵列分析结果提示IL-1β以及IL-1受体基因表达上调 [ 29] 。在日本发现一例3岁JIA患儿存在NLRP3 E378K位点基因突变,且血清IL-1β、IL-6和IL-18水平明显升高 [ 30] 。中国台湾的一项研究表明,携带NLRP3 rs4353135 G等位基因增加了少关节型或多关节型JIA发生的风险,该基因与高水平的CRP和红细胞沉降率正相关,而rs4353135、rs2043211单核苷酸多态性与全身型JIA患者易感性不相关 [ 31] 。Day等 [ 32] 研究结果显示,银屑病性关节炎与MEFV SNP rs224204( P=0.025)和NLRP3 SNP rs3806265( P=0.04)存在显著的相关性。Lamot等 [ 33] 研究结果表明,NLRP3和TLR4是全身性自身炎症性疾病最重要的基因,CXCR4和PTPN12共同参与附着点相关性关节炎的病理生理机制。随机双盲对照研究结果显示,Canakinumab治疗全身型JIA是安全、有效的,全身型JIA患者早期使用Anakinra或Canakinumab可延长疾病的稳定期 [ 34] 。
Majeed综合征是新生儿期常染色体隐性遗传病,为脂质2(LPIN2)基因突变所致,可编码LPIN2蛋白 [ 35] 。正常情况下,LPIN2通过抑制嘌呤能离子通道型受体7(P2X 7R)来抑制NLRP3炎症小体的活化。Majeed综合征患者LPIN2基因突变,抑制作用减弱,炎症小体活化增强 [ 35] 。Scianaro等 [ 36] 的研究结果显示,慢性反复性多发性骨髓炎活动期NLRP3 mRNA表达水平较健康对照组和疾病缓解期组明显升高。治疗上,Herlin等 [ 37] 的研究结果显示,IL-1阻滞剂(Anakinra或Canakinumab)治疗Majeed综合征疗效显著,患者的临床症状及实验室检查结果明显改善。
PAPA综合征是罕见的常染色体显性遗传病,是由PSTPIPI基因突变所致,后者又称CD2结合蛋白1(CD2BP1)。PSTPIPI基因突变(A230T、E250Q)可致CD2BP1的过度磷酸化,增强Pyrin-CD2BP1的结合,干扰Pyrin对NLRP3炎症小体的负性抑制作用,导致促炎细胞因子过度产生,从而引起PAPA综合征 [ 38] 。伴有骨破坏的PAPA综合征患者经Anakinra治疗后临床症状改善,6个月后影像学表现明显改善 [ 39] 。
除上述AID外,NLRP3还参与其他AID的发病机制。如在自身炎症性神经系统疾病的家系中通过基因测序检测到NLRP3 c.864C>G(p.I288M)上存在突变 [ 40] ;也有报道儿童Schnitzler综合征患者出现NLRP3 V198M突变 [ 41] 。
综上所述,大量研究证实NLRP3炎症小体与多种AID相关,但发病机制尚未完全明确。NLRP3炎症通路上任何蛋白表达失调都会影响疾病的发生、发展。期待能有更多的研究来证实该炎症小体在AID中的作用,为AID的治疗提供新的方案。
Funding Statement
浙江省科学技术厅公益性技术应用研究计划(2013C37025)
References
- 1.ÁLVAREZ-ERRICO D, VENTO-TORMO R, BALLESTAR E. Genetic and epigenetic determinants in autoinflammatory diseases. https://www.frontiersin.org/articles/10.3389/fimmu.2017.00318/full. Front Immunol. 2017;8:318. doi: 10.3389/fimmu.2017.00318. [ÁLVAREZ-ERRICO D, VENTO-TORMO R, BALLESTAR E. Genetic and epigenetic determinants in autoinflammatory diseases[J]. Front Immunol, 2017, 8:318.] [DOI] [PMC free article] [PubMed] [Google Scholar]
- 2.PARK H, BOURLA A B, KASTNER D L, et al. Lighting the fires within:the cell biology of autoinflammatory diseases. Nat Rev Immunol. 2012;12(8):570–580. doi: 10.1038/nri3261. [PARK H, BOURLA A B, KASTNER D L, et al.Lighting the fires within:the cell biology of autoinflammatory diseases[J]. Nat Rev Immunol, 2012, 12(8):570-580.] [DOI] [PMC free article] [PubMed] [Google Scholar]
- 3.李 冀, 宋 红梅. 自身炎症性疾病分类. http://www.doc88.com/p-6716651205217.html. 协和医学杂志. 2014;5(4):450–454. [李冀, 宋红梅.自身炎症性疾病分类[J].协和医学杂志, 2014, 5(4):450-454] [Google Scholar]
- 4.HOFFMAN H M, BRODERICK L. The role of the inflammasome in patients with autoinflammatory diseases. J Allergy Clin Immunol. 2016;138(1):3–14. doi: 10.1016/j.jaci.2016.05.001. [HOFFMAN H M, BRODERICK L. The role of the inflammasome in patients with autoinflammatory diseases[J]. J Allergy Clin Immunol, 2016, 138(1):3-14.] [DOI] [PubMed] [Google Scholar]
- 5.TONG Y, DING Z H, ZHAN F X, et al. The NLRP3 inflammasome and stroke. https://www.ncbi.nlm.nih.gov/pmc/articles/pmid/26131053/ Int J Clin Exp Med. 2015;8(4):4787–4794. [TONG Y, DING Z H, ZHAN F X, et al. The NLRP3 inflammasome and stroke[J]. Int J Clin Exp Med, 2015, 8(4):4787-4794.] [PMC free article] [PubMed] [Google Scholar]
- 6.KANG M J, JO S G, KIM D J, et al. NLRP3 inflammasome mediates interleukin-1beta production in immune cells in response to Acinetobacter baumannii and contributes to pulmonary inflammation in mice. Immunology. 2017;150(4):495–505. doi: 10.1111/imm.2017.150.issue-4. [KANG M J, JO S G, KIM D J, et al.NLRP3 inflammasome mediates interleukin-1beta production in immune cells in response to Acinetobacter baumannii and contributes to pulmonary inflammation in mice[J]. Immunology, 2017, 150(4):495-505.] [DOI] [PMC free article] [PubMed] [Google Scholar]
- 7.CUSH J J. Autoinflammatory syndromes. Dermatol Clin. 2013;31(3):471–480. doi: 10.1016/j.det.2013.05.001. [CUSH J J. Autoinflammatory syndromes[J]. Dermatol Clin, 2013, 31(3):471-480.] [DOI] [PMC free article] [PubMed] [Google Scholar]
- 8.AKSENTIJEVICH I, NOWAK M, MALLAH M, et al. De novo CIAS1 mutations, cytokine activation, and evidence for genetic heterogeneity in patients with neonatal-onset multisystem inflammatory dis-ease (NOMID):a new member of the expanding family of pyrin-associated autoinflammatory diseases. Arthritis Rheum. 2012;46(12):3340–3348. doi: 10.1002/art.10688. [AKSENTIJEVICH I, NOWAK M, MALLAH M, et al. De novo CIAS1 mutations, cytokine activation, and evidence for genetic heterogeneity in patients with neonatal-onset multisystem inflammatory dis-ease (NOMID):a new member of the expanding family of pyrin-associated autoinflammatory diseases[J]. Arthritis Rheum, 2012, 46(12):3340-3348.] [DOI] [PMC free article] [PubMed] [Google Scholar]
- 9.EROGLU F K, KASAPCOPUR O, BEŞBAŞN, et al. Genetic and clinical features of cryopyrin-associated periodic syndromes in Turkish children. https://www.ncbi.nlm.nih.gov/pubmed/27191192. Clin Exp Rheumatol. 2016;34(6 Suppl 102):S115–S120. [EROGLU F K, KASAPCOPUR O, BEŞBAŞN, et al. Genetic and clinical features of cryopyrin-associated periodic syndromes in Turkish children[J]. Clin Exp Rheumatol, 2016, 34(6 Suppl 102):S115-S120.] [PubMed] [Google Scholar]
- 10.SARRABAY G, GRANDEMANGE S, TOUITOU I. Diagnosis of cryopyrin-associated periodic syndrome:challenges, recommendations and emerging concepts. Expert Rev Clin Immunol. 2015;11(7):827–835. doi: 10.1586/1744666X.2015.1047765. [SARRABAY G, GRANDEMANGE S, TOUITOU I. Diagnosis of cryopyrin-associated periodic syndrome:challenges, recommendations and emerging concepts[J]. Expert Rev Clin Immunol, 2015, 11(7):827-835.] [DOI] [PubMed] [Google Scholar]
- 11.NAKAGAWA K, GONZALEZ-ROCA E, SOUTO A, et al. Somatic NLRP3 mosaicism in Muckle-Wells syndrome. A genetic mechanism shared by different phenotypes of cryopyrin-associated periodic syndromes. Ann Rheum Dis. 2015;74(3):603–610. doi: 10.1136/annrheumdis-2013-204361. [NAKAGAWA K, GONZALEZ-ROCA E, SOUTO A, et al. Somatic NLRP3 mosaicism in Muckle-Wells syndrome. A genetic mechanism shared by different phenotypes of cryopyrin-associated periodic syndromes[J]. Ann Rheum Dis, 2015, 74(3):603-610.] [DOI] [PubMed] [Google Scholar]
- 12.MENSA-VILARO A, TERESA B M, MAGRI G, et al. Brief report:late-onset cryopyrin-associated periodic syndrome due to myeloid-restricted somatic NLRP3 mosaicism. Arthritis Rheumatol. 2016;68(12):3035–3041. doi: 10.1002/art.39770. [MENSA-VILARO A, TERESA B M, MAGRI G, et al. Brief report:late-onset cryopyrin-associated periodic syndrome due to myeloid-restricted somatic NLRP3 mosaicism[J]. Arthritis Rheumatol, 2016, 68(12):3035-3041.] [DOI] [PubMed] [Google Scholar]
- 13.BRODERICK L, DE NARDO D, FRANKLIN B S, et al. The inflammasomes and autoinflammatory syndromes. Annu Rev Pathol. 2015;10:395–424. doi: 10.1146/annurev-pathol-012414-040431. [BRODERICK L, DE NARDO D, FRANKLIN B S, et al. The inflammasomes and autoinflammatory syndromes[J]. Annu Rev Pathol, 2015, 10:395-424.] [DOI] [PubMed] [Google Scholar]
- 14.NAZ V E, CARO G D, PINEDOi M F, et al. Muckle-Wells syndrome:a case report with an NLRP3 T348M mutation. Pediatr Dermatol. 2016;33(5):e311–e314. doi: 10.1111/pde.2016.33.issue-5. [NAZ V E, CARO G D, PINEDOiM F, et al. Muckle-Wells syndrome:a case report with an NLRP3 T348M mutation[J]. Pediatr Dermatol, 2016, 33(5):e311-e314.] [DOI] [PubMed] [Google Scholar]
- 15.HU J, ZHU Y, ZHANG J Z, et al. A novel mutation in the pyrin domain of the NOD-like receptor family pyrin domain containing protein 3 in Muckle-Wells syndrome. Chin Med J (Engl) 2017;130(5):586–593. doi: 10.4103/0366-6999.200537. [HU J, ZHU Y, ZHANG J Z, et al. A novel mutation in the pyrin domain of the NOD-like receptor family pyrin domain containing protein 3 in Muckle-Wells syndrome[J]. Chin Med J (Engl), 2017, 130(5):586-593.] [DOI] [PMC free article] [PubMed] [Google Scholar]
- 16.STOJANOV S, WEISS M, LOHSE P, et al. A novel CIAS1 mutation and plasma/cerebrospinal fluid cytokine profile in a German patient with neonatal-onset multisystem inflammatory disease responsive to methotrexate therapy. Pediatrics. 2004;114(1):e124–e127. doi: 10.1542/peds.114.1.e124. [STOJANOV S, WEISS M, LOHSE P, et al. A novel CIAS1 mutation and plasma/cerebrospinal fluid cytokine profile in a German patient with neonatal-onset multisystem inflammatory disease responsive to methotrexate therapy[J]. Pediatrics, 2004, 114(1):e124-e127.] [DOI] [PubMed] [Google Scholar]
- 17.YU J R, LESLIE K S. Cryopyrin-associated periodic syndrome:an update on diagnosis and treatment response. Curr Allergy Asthma Rep. 2011;11(1):12–20. doi: 10.1007/s11882-010-0160-9. [YU J R, LESLIE K S. Cryopyrin-associated periodic syndrome:an update on diagnosis and treatment response[J]. Curr Allergy Asthma Rep, 2011, 11(1):12-20.] [DOI] [PMC free article] [PubMed] [Google Scholar]
- 18.FINETTI M, OMENETTI A, FEDERICI S, et al. Chronic infantile neurological cutaneous and articular (CINCA) syndrome:a review. Orphanet J Rare Dis. 2016;11(1):167–177. doi: 10.1186/s13023-016-0542-8. [FINETTI M, OMENETTI A, FEDERICI S, et al. Chronic infantile neurological cutaneous and articular (CINCA) syndrome:a review[J]. Orphanet J Rare Dis, 2016, 11(1):167-177.] [DOI] [PMC free article] [PubMed] [Google Scholar]
- 19.NEVEN B, PRIEUR A M, QUARTIER DIT MAIRE P. Cryopyrinopathies:update on pathogenesis and treatment. Nat Clin Pract Rheumatol. 2008;4(9):481–489. doi: 10.1038/ncprheum0874. [NEVEN B, PRIEUR A M, QUARTIER DIT MAIRE P. Cryopyrinopathies:update on pathogenesis and treatment[J]. Nat Clin Pract Rheumatol, 2008, 4(9):481-489.] [DOI] [PubMed] [Google Scholar]
- 20.ALGHAMDI M. Familial Mediterranean fever, review of the literature. Clin Rheumatol. 2017;36(8):1707–1713. doi: 10.1007/s10067-017-3715-5. [ALGHAMDI M. Familial Mediterranean fever, review of the literature[J]. Clin Rheumatol, 2017, 36(8):1707-1713.] [DOI] [PubMed] [Google Scholar]
- 21.REPA A, BERTSIAS G K, PETRAKI E, et al. Dysregulated production of interleukin-1beta upon activation of the NLRP3 inflammasome in patients with familial Mediterranean fever. Hum Immunol. 2015;76(7):488–495. doi: 10.1016/j.humimm.2015.06.007. [REPA A, BERTSIAS G K, PETRAKI E, et al. Dysregulated production of interleukin-1beta upon activation of the NLRP3 inflammasome in patients with familial Mediterranean fever[J]. Hum Immunol, 2015, 76(7):488-495.] [DOI] [PubMed] [Google Scholar]
- 22.MITROULIS I, KOURTZELIS I, KAMBAS K, et al. Evidence for the involvement of mTOR inhibition and basal autophagy in familial Mediterranean fever phenotype. Hum Immunol. 2011;72(2):135–138. doi: 10.1016/j.humimm.2010.11.006. [MITROULIS I, KOURTZELIS I, KAMBAS K, et al. Evidence for the involvement of mTOR inhibition and basal autophagy in familial Mediterranean fever phenotype[J]. Hum Immunol, 2011, 72(2):135-138.] [DOI] [PubMed] [Google Scholar]
- 23.TIMERMAN D, FRANK N Y. Novel double heterozygous mutations in MEFV and NLRP3 genes in a patient with familial Mediterranean fever. J Clin Rheumatol. 2013;19(8):452–453. doi: 10.1097/RHU.0000000000000044. [TIMERMAN D, FRANK N Y. Novel double heterozygous mutations in MEFV and NLRP3 genes in a patient with familial Mediterranean fever[J]. J Clin Rheumatol, 2013, 19(8):452-453.] [DOI] [PubMed] [Google Scholar]
- 24.CHAE J J, CHO Y H, LEE G S, et al. Gain-of-function Pyrin mutations induce NLRP3 protein-independent interleukin-1β activation and severe autoinflammation in mice. Immunity. 2011;34(5):755–768. doi: 10.1016/j.immuni.2011.02.020. [CHAE J J, CHO Y H, LEE G S, et al. Gain-of-function Pyrin mutations induce NLRP3 protein-independent interleukin-1β activation and severe autoinflammation in mice[J]. Immunity, 2011, 34(5):755-768.] [DOI] [PMC free article] [PubMed] [Google Scholar]
- 25.MANUKYAN G, PETREK M, NAVRATILOVA Z, et al. Transcriptional activity of neutrophils exposed to high doses of colchicine:short communication. http://www.ncbi.nlm.nih.gov/pubmed/26634598. J Biol Regul Homeost Agents. 2015;29(1):125–130. [MANUKYAN G, PETREK M, NAVRATILOVA Z, et al. Transcriptional activity of neutrophils exposed to high doses of colchicine:short communication[J]. J Biol Regul Homeost Agents, 2015, 29(1):125-130.] [PubMed] [Google Scholar]
- 26.BEN-ZVI I, KUKUY O, GIAT E, et al. Anakinra for colchicine-resistant familial mediterranean fever:a randomized, double-blind, placebo-controlled trial. Arthritis Rheumatol. 2017;69(4):854–862. doi: 10.1002/art.v69.4. [BEN-ZVI I, KUKUY O, GIAT E, et al. Anakinra for colchicine-resistant familial mediterranean fever:a randomized, double-blind, placebo-controlled trial[J]. Arthritis Rheumatol, 2017, 69(4):854-862.] [DOI] [PubMed] [Google Scholar]
- 27.HERSH A O, PRAHALAD S. Immunogenetics of juvenile idiopathic arthritis:a com prehensive review. http://www.ncbi.nlm.nih.gov/pubmed/26305060. J Autoimmun. 2015;64(1):113–124. doi: 10.1016/j.jaut.2015.08.002. [HERSH A O, PRAHALAD S. Immunogenetics of juvenile idiopathic arthritis:a com prehensive review[J]. J Autoimmun, 2015, 64(1):113-124.] [DOI] [PMC free article] [PubMed] [Google Scholar]
- 28.TADAKI H, SAITSU H, NISHIMURA-TDAKI A, et al. De novo 19q13.42 duplications involving NLRP gene cluster in a patient with systemic-onset juvenile idiopathic arthritis. J Hum Genet. 2011;56(5):343–347. doi: 10.1038/jhg.2011.16. [TADAKI H, SAITSU H, NISHIMURA-TDAKI A, et al. De novo 19q13.42 duplications involving NLRP gene cluster in a patient with systemic-onset juvenile idiopathic arthritis[J]. J Hum Genet, 2011, 56(5):343-347.] [DOI] [PubMed] [Google Scholar]
- 29.HAYEM F, HAYEM G. Still's disease and the mitochondrion:the other face of an old friend? Med Hypotheses. 2012;79(2):136–137. doi: 10.1016/j.mehy.2012.04.009. [HAYEM F, HAYEM G. Still's disease and the mitochondrion:the other face of an old friend?[J]. Med Hypotheses, 2012, 79(2):136-137.] [DOI] [PubMed] [Google Scholar]
- 30.OHNISHI H, TERAMOTO T, IWATA H, et al. Characterization of NLRP3 variants in Japanese cryopyrin-associated periodic syndrome patients. J Clin Immunol. 2012;32(2):221–229. doi: 10.1007/s10875-011-9629-0. [OHNISHI H, TERAMOTO T, IWATA H, et al. Characterization of NLRP3 variants in Japanese cryopyrin-associated periodic syndrome patients[J]. J Clin Immunol, 2012, 32(2):221-229.] [DOI] [PubMed] [Google Scholar]
- 31.YANG C A, HUANG S T, CHANG B L. Association of NLRP3 and CARD8 genetic polymorphisms with juvenile idiopathic arthritis in a Taiwanese population. Scand J Rheumatol. 2014;43(2):146–152. doi: 10.3109/03009742.2013.834962. [YANG C A, HUANG S T, CHANG B L. Association of NLRP3 and CARD8 genetic polymorphisms with juvenile idiopathic arthritis in a Taiwanese population[J]. Scand J Rheumatol, 2014, 43(2):146-152.] [DOI] [PubMed] [Google Scholar]
- 32.DAY T G, RAMANAN A V, HINKS A, et al. Autoinflammatory genes and susceptibility to psoriatic juvenile idiopathic arthritis. Arthritis Rheum. 2008;58(7):2142–2146. doi: 10.1002/(ISSN)1529-0131. [DAY T G, RAMANAN A V, HINKS A, et al. Autoinflammatory genes and susceptibility to psoriatic juvenile idiopathic arthritis[J]. Arthritis Rheum, 2008, 58(7):2142-2146.] [DOI] [PMC free article] [PubMed] [Google Scholar]
- 33.LAMOT L, BOROVECKI F, TAMBIC B L, et al. Aberrant expression of shared master-key genes contributes to the immunopathogenesis in patients with juvenile spondyloarthritis. PLoS One. 2014;9(12):e115416. doi: 10.1371/journal.pone.0115416. [LAMOT L, BOROVECKI F, TAMBIC B L, et al. Aberrant expression of shared master-key genes contributes to the immunopathogenesis in patients with juvenile spondyloarthritis[J/OL]. PLoS One, 2014, 9(12):e115416.] [DOI] [PMC free article] [PubMed] [Google Scholar]
- 34.HORNEFF G, PEITZ J, KEKOW J, et al. Canakinumab for first line steroid-free treatment in a child with systemic-onset juvenile idiopathic arthritis. http://www.tandfonline.com/doi/full/10.1080/03009742.2017.1288827. Scand J Rheumatol. 2017:1–2. doi: 10.1080/03009742.2017.1288827. [HORNEFF G, PEITZ J, KEKOW J, et al.Canakinumab for first line steroid-free treatment in a child with systemic-onset juvenile idiopathic arthritis[J]. Scand J Rheumatol, 2017:1-2.] [DOI] [PubMed] [Google Scholar]
- 35.LORDEN G, GARCIA S I, PABLO N, et al. Lipin-2 regulates NLRP3 inflammasome by affecting P2X7 receptor activation. Exp Med. 2017;214(2):511–528. doi: 10.1084/jem.20161452. [LORDEN G, GARCIA S I, PABLO N, et al. Lipin-2 regulates NLRP3 inflammasome by affecting P2X7 receptor activation[J]. Exp Med, 2017, 214(2):511-528.] [DOI] [PMC free article] [PubMed] [Google Scholar]
- 36.SCIANARO R, INSALACO A, LAUDIERO L B, et al. Deregulation of the IL-1β axis in chronic recurrent multifocal osteomyelitis. https://ped-rheum.biomedcentral.com/articles/10.1186/1546-0096-12-30. Pediatr Rheumatol. 2014;12(30):1–6. doi: 10.1186/1546-0096-12-30. [SCIANARO R, INSALACO A, LAUDIERO L B, et al. Deregulation of the IL-1β axis in chronic recurrent multifocal osteomyelitis[J]. Pediatr Rheumatol, 2014, 12(30):1-6.] [DOI] [PMC free article] [PubMed] [Google Scholar]
- 37.HERLIN T, FⅡGAARD B, BJERRE M, et al. Efficacy of anti-IL-1 treatment in Majeed syndrome. Ann Rheum Dis. 2013;72(3):410–413. doi: 10.1136/annrheumdis-2012-201818. [HERLIN T, FⅡGAARD B, BJERRE M, et al.Efficacy of anti-IL-1 treatment in Majeed syndrome[J]. Ann Rheum Dis, 2013, 72(3):410-413.] [DOI] [PMC free article] [PubMed] [Google Scholar]
- 38.SHOHAM N G, CENTOLA M, MANSFIELD E, et al. Pyrin binds the PSTPIP1/CD2BP1 protein, defining familial Mediterranean fever and PAPA syndrome as disorders in the same pathway. Proc Natl Acad Sci U S A. 2003;100(23):13501–13506. doi: 10.1073/pnas.2135380100. [SHOHAM N G, CENTOLA M, MANSFIELD E, et al. Pyrin binds the PSTPIP1/CD2BP1 protein, defining familial Mediterranean fever and PAPA syndrome as disorders in the same pathway[J]. Proc Natl Acad Sci U S A, 2003, 100(23):13501-13506.] [DOI] [PMC free article] [PubMed] [Google Scholar]
- 39.CAORSI R, PICCO P, BUONCOMPAGNI A, et al. Osteolytic lesion in PAPA syndrome responding to anti-interleukin 1 treatment. J Rheumatol. 2014;41(11):2333–2334. doi: 10.3899/jrheum.140060. [CAORSI R, PICCO P, BUONCOMPAGNI A, et al. Osteolytic lesion in PAPA syndrome responding to anti-interleukin 1 treatment[J]. J Rheumatol, 2014, 41(11):2333-2334.] [DOI] [PubMed] [Google Scholar]
- 40.SALSANOL E, RIZZO A, BEDINI G, et al. An autoinflammatory neurological disease due to interleukin 6 hypersecretion. https://www.ncbi.nlm.nih.gov/pubmed/23432807. J Neuroinflammation. 2013;10(1):29–36. doi: 10.1186/1742-2094-10-29. [SALSANOL E, RIZZO A, BEDINI G, et al. An autoinflammatory neurological disease due to interleukin 6 hypersecretion[J]. J Neuroinflammation, 2013, 10(1):29-36.] [DOI] [PMC free article] [PubMed] [Google Scholar]
- 41.LOOCK J, LAMPRECHT P, TIMMANN C, et al. Genetic predisposition (NLRP3 V198M mutation) for IL-1-mediated inflammation in a patient with Schnitzler syndrome. J Allergy Clin Immunol. 2010;125(2):500–502. doi: 10.1016/j.jaci.2009.10.066. [LOOCK J, LAMPRECHT P, TIMMANN C, et al. Genetic predisposition (NLRP3 V198M mutation) for IL-1-mediated inflammation in a patient with Schnitzler syndrome[J]. J Allergy Clin Immunol, 2010, 125(2):500-502.] [DOI] [PubMed] [Google Scholar]
