Skip to main content
Journal of Zhejiang University (Medical Sciences) logoLink to Journal of Zhejiang University (Medical Sciences)
. 2016 Mar 25;45(2):141–146. [Article in Chinese] doi: 10.3785/j.issn.1008-9292.2016.03.06

三维打印技术在骨缺损修复和椎间盘组织工程中的研究进展

Research advances of three-dimension printing technology in vertebrae and intervertebral disc tissue engineering

Zechuan YANG 1, Chunde LI 1,*, Haolin SUN 1
PMCID: PMC10400838  PMID: 27273987

Abstract

三维打印技术具有"由内向外"的堆叠制造特点,与传统支架制造技术比较,该技术具有个性化和高精度的制造优势。采用三维打印技术制造的骨与椎间盘支架,在外形和内部结构上能做到极度仿生和自由构建。三维生物打印技术能够做到支架材料和种子细胞或细胞因子的精确共沉积。但由于目前材料和打印技术的限制,三维生物打印尚处于早期研究阶段,支架打印材料的选择和共打印技术的精确和完善是未来研究发展的方向。利用三维生物打印技术构建个性化和极度仿生的支架有利于骨缺损修复和椎间盘的重建。相信随着三维打印技术的进步和发展,该技术将在骨和椎间盘的重建中做出更大的贡献。


三维打印(three-dimension printing)又称为快速成型(rapid prototyping),从1986年Charles Hull发明第一套三维打印装置——立体光刻设备起,该技术出现至今已有30余年。与传统制造工艺的“由外向内”切削生产方式不同,三维打印是“由内向外”进行堆叠制造,能够生产出具有复杂空间结构的产品,因此个性化和高精度是三维打印的最大优势 [ 1] 。传统的组织工程技术在骨缺损修复和椎间盘的构建中做了很多的尝试,并取得了重要成果 [ 2- 4] 。组织工程支架的构建十分复杂,支架的外形、机械力学特性、组成材料、降解特性、内部结构(孔隙率、表面积/体积比、孔隙大小、形状、孔隙交联特点)等都是支架构建时需要考虑的因素 [ 5] 。既往采用传统方式制造的支架为内部空泡样的随机结构,并且内部孔径大小无法精确控制,难以在支架外形和内部结构上取得进一步的突破。三维打印和三维生物打印技术在支架构造、复合装置构建中将生物材料和细胞以微米的精度沉积在所需的位置,在骨缺损修复和椎间盘的生物重建中具有良好的前景。本文就三维打印技术在骨缺损修复和椎间盘组织生物工程研究中的现状及前景进行简要综述。

目前以三维打印技术为基础的组织工程技术有如下两种组织构建方式:其一采用三维打印技术制造出符合条件的支架,然后将种子细胞接种到制备支架中进行分化诱导和培养。该方式优越于传统制造方式的是:在技术条件允许下能对支架内部结构和外形进行自由可控的构建,但缺点是无法精确地控制随后接种的细胞、细胞因子的沉积。由于目前材料、打印技术等方面的限制,其仍然是当前的主要应用方式。其二直接将需要打印的细胞、细胞因子与生物材料混合组成的生物墨水,采用三维打印技术直接打印所需要的复合装置,该构造方法称为三维生物打印技术 [ 6] 。与单纯采用三维打印技术来构建支架不同的是,三维生物打印技术能用同一设备沉积不同的材料(能在沉积结构材料的同时或随后沉积细胞、细胞因子) [ 7] 。由于目前生物材料和生物相容性打印技术的限制,该类技术尚处于早期研究阶段,细胞相容性好的墨水材料的选择和打印过程中如何保证细胞活力是目前研究的瓶颈。三维生物打印目前可以通过以激光为基础、以喷出为基础和以喷墨为基础的三种打印方式来完成,其中以喷出为基础的生物打印方式在打印过程中对细胞产生的剪切应力较小,是目前对细胞最“友好”的生物打印方式 [ 8]

在骨组织的重建方面,目前三维打印最常用的支架材料为生物陶瓷或其与多聚物材料组成的复合材料。生物陶瓷材料具有极好的生物活性、骨诱导性,并具有机械强度高、与骨组成相似等优点,羟基磷灰石类无机盐材料是目前应用最多的生物材料 [ 9] 。但陶瓷材料生物降解性能差,并且三维打印条件苛刻,因此较难采用生物打印技术将生物活性分子或细胞与支架材料同步打印。此外,陶瓷材料还具有脆性高、剪切应力差的缺点 [ 9] 。聚合材料支架具有成型简单、可控生物降解等优点,但该材料存在机械性能差、骨诱导性差的缺点。聚合材料与陶瓷材料的复合材料则结合了两种材料的优点,不同的配比既能提供合适的力学强度(接近于骨松质强度),又具有较强的骨诱导性,支架降解性能也得以大幅提升,因此表面包被生物活性分子的混合材料是骨组织工程支架材料的最佳选择 [ 9- 10]

除了材料的选择外,支架材料打印的孔径也可以通过影响细胞的增殖分化、新生血管的长入、支架机械特性等来影响最终的成骨活性,综合血管化、机械性能和成骨性等各方面来考虑,直径300~350 μm的孔隙大小(与成熟骨松质约270 μm的直径相近)最适合骨组织再生 [ 11]

与其他组织不同,骨缺损周围的正常骨组织能为缺损部位的骨再生提供种子细胞,因此可以仅采用支架填充来完成缺损的修复 [ 12] 。该方式能避免许多细胞支架复合体构建所面临的难题,并且其可行性也已被动物实验和临床实践证实。Tarafder等 [ 13] 将三维打印并烧结成型的磷酸钙支架植入股骨缺损的大鼠体内,2周后组织学检查结果显示有骨样组织形成。Inzana等 [ 14] 采用磷酸钙类陶瓷与胶原组成的混合材料,通过三维打印技术来构建外形特异的支架并植入鼠股骨缺损部位,9周后组织学检查结果显示,磷酸钙类支架骨诱导作用与同种异体骨效果相当。Xu等 [ 15] 采用三维打印的钛合金人工椎体行颈2椎体肿瘤切除及椎体置换术,由于外形结构相似,术后1年随访结果显示,金属椎体位置良好且其中有骨组织长入并整合。尽管目前只有上述一例临床应用的报道,但是相信三维打印技术及其制造的生物相容性更佳的支架会逐渐被应用。

与传统技术制造的支架比较,三维打印制造的成骨支架具有如下优点:①孔径大小、形状等内部微结构高度有序,这一结构特点能减小受力支架的应力屏蔽效应,并最终防止内植物塌陷 [ 16] ;②较大的孔隙密度能使骨—支架接触面增大,能促进新骨组织的长入 [ 17] ;③能通过计算机辅助模型的设计来构造个性化的支架外形,植入体内后能增加骨、支架的接触面积和黏附性,促进骨桥的形成并增加结构的稳定性。

单纯采用支架来修复骨缺损,需要诱导周围的骨组织长入支架之中,因此理论上来说,该方式适合于较小的骨缺损。Kruyt等 [ 18] 比较了不同浓度骨髓间充质干细胞种植的支架的骨诱导性能,结果证实骨形成是由外周向支架内迁移;而且与无细胞支架比较,种植了细胞的支架成骨活性明显更强。Konopnicki等 [ 19] 采用磷酸钙和聚己内酯组成的混合材料来打印支架,种植种子细胞组与未种植种子细胞组在支架外围的成骨量相当,但在支架中心,种植种子细胞组的成骨量更多。该实验结果证明,细胞支架复合体较单纯支架修复骨缺损时成骨活性更强。因此,有学者甚至认为细胞在骨缺损的修复中必不可少 [ 20]

目前还有许多研究采用三维打印技术制造的支架通过局部释放药物或生长因子来促进疾病的治疗或骨愈合。如在骨结核、非特异性细菌感染和骨肿瘤等疾病经手术清除后残留骨缺损时,采用支架中包埋抗菌或抗肿瘤药物进行修复。这样在修复局部骨组织的同时,因手术局部区域持续有效的药物维持可增强手术效果。Zhu等 [ 21] 在支架材料中包埋较大剂量的异烟肼和利福平,并最终通过三维打印技术打印出合适的组织工程支架,动物实验结果显示,该支架能很好地促进局部骨组织长入和再生,并能在感染局部维持12周以上的杀菌药物浓度,同时还能维持较低的血药浓度,以避免对动物肝肾功能的损害。Martinez-Vazquez等 [ 22] 将万古霉素包埋在凝胶中,与羟基磷灰石组成混合材料,体外实验结果显示,通过低温三维打印出的支架既能促进成骨细胞的再生,又能在局部释放药物而起到杀菌作用。这些研究显示,三维打印的陶瓷支架在骨组织工程中是十分有价值的药物释放载体,但还需要更多的研究关注控制药物或细胞因子的包被以及如何从支架的释放。

传统的组织工程学方法构建椎间盘的相关研究为三维打印技术在椎间盘组织工程中的应用带来很多值得借鉴的经验 [ 23- 25] ,三维打印技术能克服传统椎间盘构建方法的缺点。

首先,在椎间盘个性化外形的构建方面,传统技术难以达到要求。而外形不合适的椎间盘替代物植入体内后会导致很多问题。如Pickett等 [ 26] 和Hallab等 [ 27] 的研究均显示,非个性化外形的椎间盘假体替换后会导致假体位置不稳以及由其带来的假体破损,最终可能会引起移位并影响假体的寿命。Van Uden等 [ 28] 采用显微CT扫描获得了拟构建椎间盘的断层图像,通过计算机软件的处理最后重建了该节段椎间盘的三维模型,以聚己内酯材料为原料,通过三维打印技术制造出了与该椎间盘外形一致的人工椎间盘;进一步将该椎间盘与反向构建的椎骨进行测试,显示椎间盘与周围椎骨契合良好。虽然并未进一步行体内实验,但该类个性化外形的椎间盘至少能够避免传统组织工程技术制造的椎间盘因外形不合适而带来的移位及相关并发症。

其次,由于三维打印的制造特点,其可以对支架的内部结构进行自由构建,而这一点在传统的组织工程技术中难以做到。Whatley等 [ 29] 以可降解的聚亚安酯(PU)为原材料,采用FDM模式通过特制超微打印头制作出了内部极高分辨率、仿生的层状纤维环结构,体外机械性能测试显示其机械性能及弹性模量均与天然椎间盘相近;体外种植软骨细胞后,细胞开始沿着层状结构进行伸展,19天后细胞形成平行结构,与天然椎间盘相似 [ 29] 。该研究结果显示,三维打印技术在纤维环内部结构构造中能做到无与伦比的结构仿生,随着三维打印技术的进一步发展和精度的进一步提高,制作显微结构仿生的器官并非遥不可及。

最后,构建外形个性化和内部结构仿生的椎间盘支架仅仅只利用了三维打印技术的部分潜能。种子细胞、活性因子与支架材料共打印的三维生物制造技术能做到对种子细胞和生物材料同时精确沉积,是三维生物打印技术相比传统制造技术最大的优势所在,对椎间盘的重建起着至关重要的作用。由于目前尚未找到一种既具有合适机械强度,又能包被种子细胞,并且打印制造过程对细胞无害,打印完成后还能保证一定通透性且能满足细胞营养需求的生物材料,因此,考虑采用三维生物打印的两类材料——可熔的硬性多聚物材料和软性生物材料来进行互补以满足上述要求。Shim等 [ 30] 进行了该方面的尝试。他们采用多打印头打印机同时打印聚已内酯和包被有细胞的凝胶两种材料。两种打印头位置相对固定,最后打印出的支架机械强度主要由聚已内酯提供,而海藻酸盐用于保存细胞的活性和营养渗透。该类研究初步做到了三维生物打印,相比传统的组织工程技术,无论是在构建支架的外形,还是在内部结构上都具有极大的优势。但无论打印头多少,由于打印头之间的位置相对固定,最终导致打印的各种材料位置相对固定,这与天然的组织结构仍然不甚符合。无论如何,该类研究在三维生物打印技术方面做出了探索,相信多打印头生物打印技术是未来的研究热点。但如何克服打印过程中各打印头间位置相对固定的这一弊端,可能还需要计算机软件等技术的进步。

Bowles等 [ 31- 32] 将制作好的椎间盘移植到无胸腺的大鼠尾部脊柱内,6个月后组织工程椎间盘能维持椎间隙的高度、再次产生细胞外基质并与椎骨整合牢固,组成完整的运动节段并且与原始的椎间盘的动态机械性能相似 [ 33] 。该研究证实了通过组织工程学椎间盘来恢复脊柱运动节段的可行性,异体椎间盘移植成功增强了我们的信心 [ 34] :随着技术的进步,三维生物打印技术制作的极度仿生的椎间盘应用于椎间盘置换手术,有望避免异体移植的排斥反应以及椎间盘外形不符等问题。

目前,已能采用三维打印来制造比较复杂的组织支架,但是支架材料、种子细胞、细胞因子的共打印才是三维生物打印的目标。如何让打印支架既具有合适的生物力学性能,又能保存包被的细胞、细胞因子的活性?这是目前三维生物打印在技术和材料方面需要攻克的难题。此外,三维生物打印的精度和分辨率还需要进一步提高,以保证构建组织器官的仿生性。由于髓核和纤维环内并无较大的血管,因此椎间盘的构建尚无需考虑血管构建的相关问题。但是大块骨组织的构建则需要考虑血管的同步重建,否则难以保证构建骨组织的活力,而血管的同步构建仍然是目前的技术难点。随着三维打印技术的进步与发展,相信该技术未来在骨与椎间盘的重建中能做出更大的贡献。

References

  • 1.HORN T J, HARRYSSON O L. Overview of current additive manufacturing technologies and selected applications. Sci Prog. 2012;95(Pt3):255–282. doi: 10.3184/003685012X13420984463047. [HORN T J, HARRYSSON O L. Overview of current additive manufacturing technologies and selected applications[J]. Sci Prog, 2012,95(Pt3): 255-282.] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 2.PARK S H, GIL E S, CHO N, et al. Intervertebral disk tissue engineering using biphasic silk composite scaffolds. Tissue Eng Part A. 2012;18(5-6):447–458. doi: 10.1089/ten.tea.2011.0195. [PARK S H, GIL E S, CHO N,et al. Intervertebral disk tissue engineering using biphasic silk composite scaffolds[J]. Tissue Eng Part A, 2012,18(5-6): 447-458.] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 3.CHOY A T, CHAN B P. A structurally and functionally biomimetic biphasic scaffold for intervertebral disc tissue engineering. PLoS One. 2015;10(6):e0131827. doi: 10.1371/journal.pone.0131827. [CHOY A T, CHAN B P. A structurally and functionally biomimetic biphasic scaffold for intervertebral disc tissue engineering[J].PLoS One, 2015,10(6): e0131827.] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 4.XU B, XU H, WU Y, et al. Intervertebral disc tissue engineering with natural extracellular matrix-derived biphasic composite scaffolds. PLoS One. 2015;10(4):e0124774. doi: 10.1371/journal.pone.0124774. [XU B, XU H, WU Y, et al. Intervertebral disc tissue engineering with natural extracellular matrix-derived biphasic composite scaffolds[J].PLoS One, 2015,10(4): e0124774.] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 5.VELASCO M A, NARVÁEZ-TOVAR C A, GARZÓN-ALVARADO D A. Design, materials, and mechanobiology of biodegradable scaffolds for bone tissue engineering. Biomed Res Int. 2015;2015:729076. doi: 10.1155/2015/729076. [VELASCO M A, NARVÁEZ-TOVAR C A, GARZÓN-ALVARADO D A. Design, materials, and mechanobiology of biodegradable scaffolds for bone tissue engineering[J]. Biomed Res Int, 2015,2015: 729076.] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 6.DERBY B. Bioprinting: inkjet printing proteins and hybrid cell-containing materials and structures. J Mater Chem. 2008;18(47):5717–5721. doi: 10.1039/b807560c. [DERBY B. Bioprinting: inkjet printing proteins and hybrid cell-containing materials and structures[J]. J Mater Chem, 2008, 18(47): 5717-5721.] [DOI] [Google Scholar]
  • 7.BIASE M D, SAUNDERS R E, TIRELLIA N, et al. Inkjet printing and cell seeding thermoreversible photocurable gel structures. Soft Matter. 2011;7(6):2639–2646. doi: 10.1039/c0sm00996b. [BIASE M D, SAUNDERS R E, TIRELLIA N, et al. Inkjet printing and cell seeding thermoreversible photocurable gel structures[J].Soft Matter, 2011,7(6): 2639-2646.] [DOI] [Google Scholar]
  • 8.FERMEIRO J B L, CALADO M R A, CORREIA I J S. State of the art and challenges in bioprinting technologies, contribution of the 3D bioprinting in Tissue Engineering. Bioengineering. 2015;2015:1–6. [FERMEIRO J B L, CALADO M R A, CORREIA I J S. State of the art and challenges in bioprinting technologies, contribution of the 3D bioprinting in Tissue Engineering[J]. Bioengineering, 2015,2015:1-6.] [Google Scholar]
  • 9.HUTMACHER D W, SCHANTZ J T, LAM C X, et al. State of the art and future directions of scaffold-based bone engineering from a biomaterials perspective. J Tissue Eng Regen Med. 2007;1(4):245–260. doi: 10.1002/(ISSN)1932-7005. [HUTMACHER D W, SCHANTZ J T, LAM C X, et al. State of the art and future directions of scaffold-based bone engineering from a biomaterials perspective[J].J Tissue Eng Regen Med , 2007, 1(4): 245-260.] [DOI] [PubMed] [Google Scholar]
  • 10.YUNUS BASHA R, SAMPATH KUMAR T S, DOBLE M. Design of biocomposite materials for bone tissue regeneration. Mater Sci Eng C Mater Biol Appl. 2015;57:452–463. doi: 10.1016/j.msec.2015.07.016. [YUNUS BASHA R,SAMPATH KUMAR T S, DOBLE M. Design of biocomposite materials for bone tissue regeneration[J].Mater Sci Eng C Mater Biol Appl, 2015, 57: 452-463.] [DOI] [PubMed] [Google Scholar]
  • 11.BOCCACCINI A R, VERRIER S. Bioactive composite materials for bone tissue engineering scaffolds. Expert Rev Med Devices. 2005;2(3):303–317. doi: 10.1586/17434440.2.3.303. [BOCCACCINI A R, VERRIER S. Bioactive composite materials for bone tissue engineering scaffolds[J]. Expert Rev Med Devices, 2005,2(3): 303-317.] [DOI] [PubMed] [Google Scholar]
  • 12.RICCI J L, CLARK E A, MURRIKY A, et al. Three-dimensional printing of bone repair and replacement materials: impact on craniofacial surgery. J Craniofac Surg. 2012;23(1):304–308. doi: 10.1097/SCS.0b013e318241dc6e. [RICCI J L, CLARK E A, MURRIKY A, et al. Three-dimensional printing of bone repair and replacement materials: impact on craniofacial surgery[J].J Craniofac Surg, 2012, 23(1): 304-308.] [DOI] [PubMed] [Google Scholar]
  • 13.TARAFDER S, BALLA V K, DAVIES N M, et al. Microwave-sintered 3D printed tricalcium phosphate scaffolds for bone tissue engineering. J Tissue Eng Regen Med. 2013;7(8):631–641. doi: 10.1002/term.v7.8. [TARAFDER S, BALLA V K, DAVIES N M, et al. Microwave-sintered 3D printed tricalcium phosphate scaffolds for bone tissue engineering[J].J Tissue Eng Regen Med, 2013,7(8): 631-641.] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 14.INZANA J A, OLVERA D, FULLER S M, et al. 3D printing of composite calcium phosphate and collagen scaffolds for bone regeneration. Biomaterials. 2014;35(13):4026–4034. doi: 10.1016/j.biomaterials.2014.01.064. [INZANA J A, OLVERA D, FULLER S M, et al. 3D printing of composite calcium phosphate and collagen scaffolds for bone regeneration[J].Biomaterials, 2014,35(13): 4026-4034.] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 15.XU N, WEI F, LIU X, et al. Reconstruction of the upper cervical spine using a personalized 3D-printed vertebral body in an adolescent with ewing sarcoma. Spine (Phila Pa 1976) 2016;41(1):E50–E54. doi: 10.1097/BRS.0000000000001179. [XU N, WEI F, LIU X, et al. Reconstruction of the upper cervical spine using a personalized 3D-printed vertebral body in an adolescent with ewing sarcoma[J].Spine (Phila Pa 1976), 2016, 41(1): E50-E54.] [DOI] [PubMed] [Google Scholar]
  • 16.MOHAMMADSHAHI M H, NIKOLAOU V S, GIANNITSIOS D, et al. The effect of angular mismatch between vertebral endplate and vertebral body replacement endplate on implant subsidence. J Spinal Disord Tech. 2013;26(5):268–273. doi: 10.1097/BSD.0b013e3182425eab. [MOHAMMADSHAHI M H, NIKOLAOU V S, GIANNITSIOS D, et al. The effect of angular mismatch between vertebral endplate and vertebral body replacement endplate on implant subsidence[J].J Spinal Disord Tech, 2013, 26(5): 268-273.] [DOI] [PubMed] [Google Scholar]
  • 17.XUE W, KRISHNA B V, BANDYOPADHYAY A, et al. Processing and biocompatibility evaluation of laser processed porous titanium. Acta Biomater. 2007;3(6):1007–1018. doi: 10.1016/j.actbio.2007.05.009. [XUE W, KRISHNA B V, BANDYOPADHYAY A, et al. Processing and biocompatibility evaluation of laser processed porous titanium[J].Acta Biomater, 2007,3(6): 1007-1018.] [DOI] [PubMed] [Google Scholar]
  • 18.KRUYT M, DE BRUIJN J, ROUWKEMA J, et al. Analysis of the dynamics of bone formation, effect of cell seeding density, and potential of allogeneic cells in cell-based bone tissue engineering in goats. Tissue Eng Part A. 2008;14(6):1081–1088. doi: 10.1089/ten.tea.2007.0111. [KRUYT M, DE BRUIJN J, ROUWKEMA J, et al. Analysis of the dynamics of bone formation, effect of cell seeding density, and potential of allogeneic cells in cell-based bone tissue engineering in goats[J].Tissue Eng Part A, 2008,14(6): 1081-1088.] [DOI] [PubMed] [Google Scholar]
  • 19.KONOPNICKI S, SHARAF B, RESNICK C, et al. Tissue-engineered bone with 3-dimensionally printed beta-tricalcium phosphate and polycaprolactone scaffolds and early implantation: an in vivo pilot study in a porcine mandible model . J Oral Maxillofac Surg. 2015;73(5):1016.e1–1016.e11. doi: 10.1016/j.joms.2015.01.021. [KONOPNICKI S, SHARAF B, RESNICK C, et al. Tissue-engineered bone with 3-dimensionally printed beta-tricalcium phosphate and polycaprolactone scaffolds and early implantation: an in vivo pilot study in a porcine mandible model[J]. J Oral Maxillofac Surg, 2015,73(5): 1016.e1-1016.e11. ] [DOI] [PubMed] [Google Scholar]
  • 20.PIARD C M, CHEN Y, FISHER J P. Cell-laden 3D printed scaffolds for bone tissue engineering. Clin Rev Bone Miner Metabol. 2015;13(4):245–255. doi: 10.1007/s12018-015-9198-5. [PIARD C M, CHEN Y, FISHER J P. Cell-laden 3D printed scaffolds for bone tissue engineering[J].Clin Rev Bone Miner Metabol, 2015,13(4): 245-255.] [DOI] [Google Scholar]
  • 21.ZHU M, LI K, ZHU Y, et al. 3D-printed hierarchical scaffold for localized isoniazid/rifampin drug delivery and osteoarticular tuberculosis therapy. Acta Biomater. 2015;16:145–155. doi: 10.1016/j.actbio.2015.01.034. [ZHU M, LI K, ZHU Y, et al. 3D-printed hierarchical scaffold for localized isoniazid/rifampin drug delivery and osteoarticular tuberculosis therapy[J].Acta Biomater, 2015,16: 145-155.] [DOI] [PubMed] [Google Scholar]
  • 22.MARTÍNEZ-VÁZQUEZ F J, CABAÑAS M V, PARIS J L, et al. Fabrication of novel Si-doped hydroxyapatite/gelatine scaffolds by rapid prototyping for drug delivery and bone regeneration. Acta Biomater. 2015;15:200–209. doi: 10.1016/j.actbio.2014.12.021. [MARTÍNEZ-VÁZQUEZ F J, CABAÑAS M V, PARIS J L, et al. Fabrication of novel Si-doped hydroxyapatite/gelatine scaffolds by rapid prototyping for drug delivery and bone regeneration[J].Acta Biomater, 2015, 15: 200-209.] [DOI] [PubMed] [Google Scholar]
  • 23.MIZUNO H, ROY A K, VACANTI C A, et al. Tissue-engineered composites of anulus fibrosus and nucleus pulposus for intervertebral disc replacement. Spine (Phila Pa 1976) 2004;29(12):1290–1298. doi: 10.1097/01.BRS.0000128264.46510.27. [MIZUNO H, ROY A K, VACANTI C A, et al. Tissue-engineered composites of anulus fibrosus and nucleus pulposus for intervertebral disc replacement[J].Spine (Phila Pa 1976), 2004,29(12): 1290-1298.] [DOI] [PubMed] [Google Scholar]
  • 24.MIZUNO H, ROY A K, ZAPOROJAN V, et al. Biomechanical and biochemical characterization of composite tissue-engineered intervertebral discs. Biomaterials. 2006;27(3):362–370. doi: 10.1016/j.biomaterials.2005.06.042. [MIZUNO H, ROY A K, ZAPOROJAN V, et al. Biomechanical and biochemical characterization of composite tissue-engineered intervertebral discs[J].Biomaterials, 2006, 27(3): 362-370.] [DOI] [PubMed] [Google Scholar]
  • 25.NERURKAR N L, SEN S, HUANG A H, et al. Engineered disc-like angle-ply structures for intervertebral disc replacement. Spine (Phila Pa 1976) 2010;35(8):867–873. doi: 10.1097/BRS.0b013e3181d74414. [NERURKAR N L, SEN S, HUANG A H, et al. Engineered disc-like angle-ply structures for intervertebral disc replacement[J].Spine (Phila Pa 1976), 2010, 35(8): 867-873.] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 26.PICKETT G E, SEKHON LH, SEARS W R, et al. Complications with cervical arthroplasty. J Neurosurg Spine. 2006;4(2):98–105. doi: 10.3171/spi.2006.4.2.98. [PICKETT G E, SEKHON LH, SEARS W R, et al. Complications with cervical arthroplasty[J].J Neurosurg Spine, 2006,4(2): 98-105.] [DOI] [PubMed] [Google Scholar]
  • 27.HALLAB N, LINK H D, MCAFEE P C. Biomaterial optimization in total disc arthroplasty. Spine (Phila Pa 1976) 2003;28(20):S139–S152. doi: 10.1097/01.BRS.0000092214.87225.80. [HALLAB N, LINK H D, MCAFEE P C. Biomaterial optimization in total disc arthroplasty[J].Spine (Phila Pa 1976), 2003,28(20): S139-S152.] [DOI] [PubMed] [Google Scholar]
  • 28.VAN UDEN S, SILVA-CORREIA J, CORRELO V M, et al. Custom-tailored tissue engineered polycaprolactone scaffolds for total disc replacement. Biofabrication. 2015;7(1):015008. doi: 10.1088/1758-5090/7/1/015008. [VAN UDEN S, SILVA-CORREIA J, CORRELO V M, et al. Custom-tailored tissue engineered polycaprolactone scaffolds for total disc replacement[J].Biofabrication, 2015,7(1): 015008.] [DOI] [PubMed] [Google Scholar]
  • 29.WHATLEY B R, KUO J, SHUAI C, et al. Fabrication of a biomimetic elastic intervertebral disk scaffold using additive manufacturing. Biofabrication. 2011;3(1):015004. doi: 10.1088/1758-5082/3/1/015004. [WHATLEY B R, KUO J, SHUAI C, et al. Fabrication of a biomimetic elastic intervertebral disk scaffold using additive manufacturing[J]. Biofabrication, 2011,3(1): 015004.] [DOI] [PubMed] [Google Scholar]
  • 30.SHIM J H, LEE J S, KIM J Y, et al. Bioprinting of a mechanically enhanced three-dimensional dual cell-laden construct for osteochondral tissue engineering using a multi-head tissue/organ building system. J Micromech Microeng. 2012;22(8):085014. doi: 10.1088/0960-1317/22/8/085014. [SHIM J H, LEE J S, KIM J Y, et al. Bioprinting of a mechanically enhanced three-dimensional dual cell-laden construct for osteochondral tissue engineering using a multi-head tissue/organ building system[J]. J Micromech Microeng, 2012,22(8): 085014.] [DOI] [Google Scholar]
  • 31.BOWLES R D, GEBHARD H H, DYKE J P, et al. Image-based tissue engineering of a total intervertebral disc implant for restoration of function to the rat lumbar spine. NMR Biomed. 2012;25(3):443–451. doi: 10.1002/nbm.v25.3. [BOWLES R D, GEBHARD H H, DYKE J P, et al. Image-based tissue engineering of a total intervertebral disc implant for restoration of function to the rat lumbar spine[J].NMR Biomed, 2012,25(3): 443-451.] [DOI] [PubMed] [Google Scholar]
  • 32.BOWLES R D, WILLIAMS R M, ZIPFEL W R, et al. Self-assembly of aligned tissue-engineered annulus fibrosus and intervertebral disc composite via collagen gel contraction. Tissue Eng Part A. 2010;16(4):1339–1348. doi: 10.1089/ten.tea.2009.0442. [BOWLES R D, WILLIAMS R M, ZIPFEL W R, et al. Self-assembly of aligned tissue-engineered annulus fibrosus and intervertebral disc composite via collagen gel contraction[J].Tissue Eng Part A, 2010,16(4): 1339-1348.] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 33.BOWLES R D, GEBHARD H H, HÄRTL R, et al. Tissue-engineered intervertebral discs produce new matrix, maintain disc height, and restore biomechanical function to the rodent spine. Proc Natl Acad Sci U S A. 2011;108(32):13106–13111. doi: 10.1073/pnas.1107094108. [BOWLES R D, GEBHARD H H, HÄRTL R, et al. Tissue-engineered intervertebral discs produce new matrix, maintain disc height, and restore biomechanical function to the rodent spine[J].Proc Natl Acad Sci U S A, 2011,108(32): 13106-13111.] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 34.RUAN D, HE Q, DING Y, et al. Intervertebral disc transplantation in the treatment of degenerative spine disease: a preliminary study. Lancet. 2007;369(9566):993–999. doi: 10.1016/S0140-6736(07)60496-6. [RUAN D, HE Q, DING Y, et al. Intervertebral disc transplantation in the treatment of degenerative spine disease: a preliminary study[J]. Lancet, 2007,369(9566): 993-999.] [DOI] [PubMed] [Google Scholar]

Articles from Journal of Zhejiang University (Medical Sciences) are provided here courtesy of Zhejiang University Press

RESOURCES