Skip to main content

This is a preprint.

It has not yet been peer reviewed by a journal.

The National Library of Medicine is running a pilot to include preprints that result from research funded by NIH in PMC and PubMed.

bioRxiv logoLink to bioRxiv
[Preprint]. 2023 Jul 28:2023.07.27.550849. [Version 1] doi: 10.1101/2023.07.27.550849

Region-specific reversal of epidermal planar polarity in the fancy rosette mouse

Maureen Cetera, Rishabh Sharan, Gabriela Hayward-Lara, Brooke Phillips, Abhishek Biswas, Madalene Halley, Evalyn Beall, Bridgett vonHoldt, Danelle Devenport
PMCID: PMC10402159  PMID: 37546950

Abstract

The planar cell polarity (PCP) pathway collectively orients thousands of cells with respect to a body axis to direct cellular behaviors that are essential for embryonic morphogenesis. Hair follicles of the murine epidermis provide a striking readout of PCP activity in their uniform alignment along the entire skin surface. Here, we characterize, from the molecular to tissue-scale, PCP establishment in the rosette fancy mouse, a natural variant with posterior-specific whorls in its fur, to understand how epidermal polarity is coordinated across the tissue. We find that embryonic hair follicles of rosette mutants emerge with reversed orientations specifically in the posterior region, creating a mirror image of epidermal polarity. The rosette trait is associated with a missense mutation in the core PCP gene Fzd6 , which alters a consensus site for N-linked glycosylation and inhibits its membrane localization. Unexpectedly, this defect in Fzd6 trafficking, observed across the entire dorsal epidermis, does not interfere with the ability of other core PCP proteins to localize asymmetrically. Rather, the normally uniform axis of PCP asymmetry is disrupted and rotated in the posterior region such that polarity is reflected on either side of a transition zone. The result is a reversal of polarized cell movements that orient nascent follicles, specifically in the posterior of the embryo. Collectively, our multiscale analysis of epidermal polarity reveals PCP patterning can be regionally decoupled to produce the unique posterior whorls of the fancy rosette mouse.

Summary

Region-specific rotation of the Planar Cell Polarity axis reverses posterior hair follicles in the fancy rosette mouse.

Full Text Availability

The license terms selected by the author(s) for this preprint version do not permit archiving in PMC. The full text is available from the preprint server.


Articles from bioRxiv are provided here courtesy of Cold Spring Harbor Laboratory Preprints

RESOURCES