Skip to main content
The British Journal of Ophthalmology logoLink to The British Journal of Ophthalmology
. 1984 May;68(5):310–315. doi: 10.1136/bjo.68.5.310

Balance between pattern and flicker sensitivities in the visual fields of ophthalmological patients.

D Regan, D Neima
PMCID: PMC1040329  PMID: 6712907

Abstract

We measured the balance between visual sensitivities to pattern and to flicker rather than measuring absolute sensitivities to pattern or flicker. The test target was a 2-cycle deg-1 sinewave grating that was counterphase modulated at 8 Hz. Seventeen points in the visual field were tested out to eccentricities of 24 degrees. We examined 10 control subjects, 6 patients with glaucoma 10 with ocular hypertension, and 10 with multiple sclerosis. For controls pattern sensitivity was lower than flicker sensitivity in central vision. The converse held in peripheral vision. The balance between pattern sensitivity and flicker sensitivity was markedly abnormal in part or all of the visual field for many patients. There were examples in all patient groups. In some patients flicker sensitivity was depressed relative to pattern. In others the converse was true. Of 10 patients with ocular hypertension and no perimetric field loss 8 had a significantly abnormal ratio between pattern sensitivity and flicker sensitivity at some point in the visual field. The balance between pattern and flicker sensitivity was more sensitive to visual pathology than absolute sensitivity to either pattern or flicker. We conclude that the relationship between pattern and flicker sensitivity may be more sensitive to visual field damage than is conventional perimetry or visual acuity perimetry.

Full text

PDF
310

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Atkin A., Wolkstein M., Bodis-Wollner I., Anders M., Kels B., Podos S. M. Interocular comparison of contrast sensitivities in glaucoma patients and suspects. Br J Ophthalmol. 1980 Nov;64(11):858–862. doi: 10.1136/bjo.64.11.858. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bodis-Wollner I., Hendley C. D., Kulikowski J. J. Electrophysiological and psychophysical responses to modulation of contrast of a grating pattern. Perception. 1972;1(3):341–349. doi: 10.1068/p010341. [DOI] [PubMed] [Google Scholar]
  3. Boycott B. B., Wässle H. The morphological types of ganglion cells of the domestic cat's retina. J Physiol. 1974 Jul;240(2):397–419. doi: 10.1113/jphysiol.1974.sp010616. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Burbeck C. A. Criterion-free pattern and flicker thresholds. J Opt Soc Am. 1981 Nov;71(11):1343–1350. doi: 10.1364/josa.71.001343. [DOI] [PubMed] [Google Scholar]
  5. Galvin R. J., Regan D., Heron J. R. Impaired temporal resolution of vision after acute retrobulbar neuritis. Brain. 1976 Jun;99(2):255–268. doi: 10.1093/brain/99.2.255. [DOI] [PubMed] [Google Scholar]
  6. Keesey U. T. Flicker and pattern detection: a comparison of thresholds. J Opt Soc Am. 1972 Mar;62(3):446–448. doi: 10.1364/josa.62.000446. [DOI] [PubMed] [Google Scholar]
  7. Kulikowski J. J. Effect of eye movements on the contrast sensitivity of spatio-temporal patterns. Vision Res. 1971 Mar;11(3):261–273. doi: 10.1016/0042-6989(71)90190-8. [DOI] [PubMed] [Google Scholar]
  8. Kulikowski J. J., Tolhurst D. J. Psychophysical evidence for sustained and transient detectors in human vision. J Physiol. 1973 Jul;232(1):149–162. doi: 10.1113/jphysiol.1973.sp010261. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Quigley H. A., Addicks E. M., Green W. R., Maumenee A. E. Optic nerve damage in human glaucoma. II. The site of injury and susceptibility to damage. Arch Ophthalmol. 1981 Apr;99(4):635–649. doi: 10.1001/archopht.1981.03930010635009. [DOI] [PubMed] [Google Scholar]
  10. Quigley H. A., Addicks E. M., Green W. R. Optic nerve damage in human glaucoma. III. Quantitative correlation of nerve fiber loss and visual field defect in glaucoma, ischemic neuropathy, papilledema, and toxic neuropathy. Arch Ophthalmol. 1982 Jan;100(1):135–146. doi: 10.1001/archopht.1982.01030030137016. [DOI] [PubMed] [Google Scholar]
  11. Quigley H. A., Green W. R. The histology of human glaucoma cupping and optic nerve damage: clinicopathologic correlation in 21 eyes. Ophthalmology. 1979 Oct;86(10):1803–1830. doi: 10.1016/s0161-6420(79)35338-6. [DOI] [PubMed] [Google Scholar]
  12. Regan D., Beverley K. I. Visual fields described by contrast sensitivity, by acuity, and by relative sensitivity to different orientations. Invest Ophthalmol Vis Sci. 1983 Jun;24(6):754–759. [PubMed] [Google Scholar]
  13. Schwartz B., Rieser J. C., Fishbein S. L. Fluorescein angiographic defects of the optic disc in glaucoma. Arch Ophthalmol. 1977 Nov;95(11):1961–1974. doi: 10.1001/archopht.1977.04450110055002. [DOI] [PubMed] [Google Scholar]
  14. Tolhurst D. J. Separate channels for the analysis of the shape and the movement of moving visual stimulus. J Physiol. 1973 Jun;231(3):385–402. doi: 10.1113/jphysiol.1973.sp010239. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Tyler C. W. Specific deficits of flicker sensitivity in glaucoma and ocular hypertension. Invest Ophthalmol Vis Sci. 1981 Feb;20(2):204–212. [PubMed] [Google Scholar]
  16. van Nes F. L., Koenderink J. J., Nas H., Bouman M. A. Spatiotemporal modulation transfer in the human eye. J Opt Soc Am. 1967 Sep;57(9):1082–1088. doi: 10.1364/josa.57.001082. [DOI] [PubMed] [Google Scholar]

Articles from The British Journal of Ophthalmology are provided here courtesy of BMJ Publishing Group

RESOURCES