Skip to main content
Journal of Clinical Otorhinolaryngology Head and Neck Surgery logoLink to Journal of Clinical Otorhinolaryngology Head and Neck Surgery
. 2023 Apr 3;37(4):318–322. [Article in Chinese] doi: 10.13201/j.issn.2096-7993.2023.04.017

儿童肥胖与阻塞性睡眠呼吸暂停的相关性研究进展

Research progress on correlation between childhood obesity and obstructive sleep apnea

李 晶 1, 杨 屈扬 1, 许 莹 1, 韩 富根 1, 赵 靖 2,*
PMCID: PMC10406584  PMID: 36987967

Abstract

儿童肥胖的患病率正在逐渐增加,在世界范围内女童的肥胖患病率为5.6%,男童为7.8%。这同时导致肥胖相关疾病发病率也相应增加,尤其是阻塞性睡眠呼吸暂停(obstructive sleep apnea,OSA)。肥胖是儿童OSA的独立危险因素和调节因子。儿童OSA和肥胖之间存在一种双向因果关系。在儿童OSA和肥胖之间的联系中,涉及的因素包括炎症反应、氧化应激和肠道菌群等。然而,肥胖相关的炎症反应与OSA发病机制之间的因果关系仍需进一步研究,本综述就儿童肥胖与OSA的相关性进行探讨。

Keywords: 阻塞性睡眠呼吸暂停, 儿童, 肥胖


全球范围内儿童和青少年的肥胖患病率和严重程度急剧增加,肥胖相关疾病发病率也相应增加,尤其是儿童阻塞性睡眠呼吸暂停(obstructive sleep apnea,OSA)。2017年柳叶刀发表文章阐明1975—2016年肥胖的全球趋势,在儿童和青少年中,肥胖患儿女性和男性的患病率分别从0.7%、0.9%上升至5.6%、7.8%[1]。肥胖是儿童OSA的重要发病因素,二者之间有共同发病机制,本文就儿童肥胖与OSA的相关性进行综述。

1. 儿童肥胖、OSA的定义

体重指数(BMI)是一种简单且经济有效的衡量儿童肥胖的方法。2004年,国际生命科学学会中国肥胖问题工作组建立了中国学龄儿童青少年超重、肥胖筛查BMI分类标准:24 kg/m2(超重)和28 kg/m2(肥胖)的BMI界值点。年龄为7~18岁[2]。2010年,李辉等[3]构建了2~18岁儿童青少年超重和肥胖BMI筛查标准,并在18岁时与成人超重(24 kg/m2)、肥胖(28 kg/m2)的界值点接轨。目前公认的是按照儿童年龄与性别BMI标准,85%百分位数 < BMI≤95%百分位数为超重;BMI>95%百分位数为肥胖。

儿童OSA是指儿童睡眠过程中频繁发生部分或完全上气道阻塞,干扰儿童的正常通气和睡眠结构而引起的一系列病理生理变化[4]。2020年,我国制定了中国儿童OSA的诊断和治疗指南。多导睡眠监测(PSG)是诊断儿童OSA的标准方法[4]

2. 肥胖与OSA互为因果

2.1. 肥胖引起OSA

扁桃体腺样体肥大并不总是导致肥胖儿童OSA的主要促进因素,肥胖作为OSA的一个独立危险因素,本身更易导致OSA。肥胖会改变上呼吸道的结构和功能,从而引起气道塌陷,减少静息肺容积,扰乱呼吸驱动和负荷补偿之间的关系。与肥胖相关的脂肪组织堆集在上气道周围引起颈围增加,这些变化降低了咽腔内口径,增加咽腔外组织压力,导致咽部结构的机械负荷升高。由于肥胖患者上气道塌陷较严重,腹部和胸部脂肪沉积降低胸壁顺应性,引起肺容量进一步降低,导致肥胖患者存在OSA严重程度增加的风险[5]。Andersen等[6]研究表明,肥胖儿童的OSA患病率明显高于正常体重儿童,BMI的增加与AHI增加相关。Dayyat等[7]发现,尽管肥胖儿童扁桃体和腺样体增大程度较小,但比非肥胖儿童更易发生上气道闭合,并且患有OSA的肥胖儿童腺样体扁桃体切除术后残留OSA的风险更高。在对伴和不伴OSA的肥胖儿童的病例对照研究中发现,患OSA的肥胖儿童上气道淋巴样组织普遍增生过度,这也解释了脂肪分布和颈部解剖结构对OSA的影响[8]。因此,肥胖是发生上气道阻塞的重要诱因[9]

与幼年儿童相比,青少年儿童中肥胖对OSA的影响更为显著。有研究发现这种影响随着年龄的增长而增加,特别是对于12岁以上患儿,这可能是由于年龄较大的儿童上气道张力下降,导致气道更容易塌陷[10]

另外,与外周性肥胖相比,腹部肥胖对上气道功能的影响更大。腹型肥胖对OSA的影响更多来自于内脏脂肪组织。已有研究证明脂肪组织缺氧会发生在肥胖人群中[11],由脂肪组织产生的瘦素,进一步影响气道通气导致OSA加重。因此,腰围应作为OSA的重要危险因素。

2.2. OSA引起肥胖

OSA可因体力活动减少、胰岛素抵抗、脂肪因子水平变化等多种因素引起肥胖[12]。OSA与瘦素、胃饥饿素和食欲素水平的变化有关[13]。由脂肪组织产生的瘦素可以抑制饮食,控制体重和脂肪分布。瘦素可能参与了低通气障碍的发病机制,其在体外持续缺氧可激活转录[14]。肥胖与瘦素抵抗[15]有关,瘦素生物利用度的降低与高碳酸血症反应的减少以及肥胖患者肺泡通气不足的机制有关。在OSA患者中,瘦素水平的升高通常与AHI相关,而与体脂含量无关。OSA与瘦素抵抗有关,反过来可能导致食欲增加和肥胖[16]。胃饥饿素可以调节食欲和体重。与对照组患者相比,OSA患者的胃饥饿素水平显著升高。胃饥饿素刺激食欲的作用有助于增加OSA患者的热量摄入和体重增加,从而导致肥胖[17]。促食欲素是另一种刺激食欲的神经肽,它参与控制进食、睡眠、清醒、神经内分泌稳态和自主调节。Sakurai等[18]研究发现AHI和食欲素水平呈正相关,这可能解释了OSA患者体重增加的趋势。

另外,OSA还参与交感神经激活、睡眠破碎、睡眠无效,导致肥胖的加重。一项涉及3万名儿童的研究指出,睡眠无效导致儿童肥胖风险增加89%,OSA使个体更易肥胖[19]

3. 肥胖与炎性因子

OSA和肥胖有共同的发生机制,如缺氧、炎症激活、氧化应激和交感神经活性增加。最近的研究表明,人体组织的氧气供应不足是肥胖型OSA患者慢性炎症的重要诱因。间歇性缺氧是OSA的特征性表现,其优先激活促炎转录因子,如NF-kB和AP-1,进而激活炎性细胞,尤其是淋巴细胞和单核细胞,促炎介质表达,导致内皮功能障碍[20]。此外,与OSA相关的间歇性缺氧是脂肪组织产生炎性细胞因子的原因[21]。同时,脂肪细胞缺氧在与肥胖相关的代谢紊乱中也发挥重要作用[22]。肥胖与脂肪组织功能受损有关,这会导致脂肪细胞肥大、缺氧和脂肪组织内炎症过程的激活[23]

许多研究证实,肥胖与OSA在代谢过程中都以氧化应激为特征,氧化应激会影响它们的发展[24]。特别是OSA患者的间歇性缺氧-再氧合可导致ATP消耗和黄嘌呤氧化酶激活,产生氧自由基,并由此导致炎症反应[25]。同时,肥胖中的氧化应激和炎症会增强OSA。

4. 肥胖与肠道微生物群

近年来,人类肠道微生物群已成为肥胖和OSA发展的关键因素[26]。许多研究证实,作为黏膜免疫系统一部分的肺和肠道之间存在密切关系:其中一个器官的炎症反应会影响彼此的体内平衡[27]。高脂肪饮食可能是造成肠道微生物群失调的原因,这可能在轻微炎症反应的发展中起关键作用[28]。此外,在OSA中,间歇性缺氧和睡眠剥夺进一步影响肠道微生物群,导致全身炎症反应,以及心血管和代谢疾病。因此呼吸系统、脂肪组织和肠道之间所谓的相互“器官串扰”也可以解释OSA与肥胖之间的复杂关系。

5. 肥胖儿童OSA的特点

5.1. 白天嗜睡与睡眠碎片化

与单纯扁桃体腺样体肥大表型相关的OSA患儿相比,肥胖OSA患儿白天嗜睡(excessive daytime sleepiness,EDS)更突出[29]。EDS在肥胖儿童中普遍存在,随着BMI的增加,EDS显著增加[30]。在一项对50名习惯性打鼾儿童的研究中,通过Epworth嗜睡评分和多重睡眠潜伏期测试,与非肥胖OSA儿童相比,肥胖儿童日间嗜睡比非肥胖儿童明显增多[31]。此外,Gozal等[31]也发现,肥胖、习惯性打鼾儿童的睡眠潜伏期延迟显著减少,OSA更易引起肥胖儿童睡眠碎片化。肥胖儿童习惯性打鼾和睡眠呼吸障碍的临床表现与非肥胖儿童不同,肥胖儿童出现EDS症状应进一步评估OSA的严重程度。有研究表明,儿童和青少年的超重和肥胖风险不仅与睡眠时间短有关,还与睡眠结构的变化有关[33]。Liu等[33]也将儿童和青少年超重风险的增加归因于REM期睡眠[34]的减少。因此,肥胖儿童更容易受到睡眠碎片化的影响,睡眠碎片化在肥胖儿童白天过度嗜睡中发挥重要作用[31]

5.2. 高血压

肥胖的OSA儿童更易出现血压升高。在一项对96名儿童接受PSG和动态血压监测的前瞻性研究中,AHI和BMI升高都与睡眠期间舒张压升高有关[35]。Reade等[36]对一组90名接受PSG的儿童进行回顾性研究,其中肥胖和高血压在OSA患儿中更为常见。此外,与不伴OSA的肥胖儿童相比,肥胖且有高血压的儿童更有可能患OSA。在一项回顾性研究中[37],患有高血压的肥胖受试者与肥胖但血压正常的受试者相比,OSA发生率和AHI严重程度显著更高,伴OSA的肥胖儿童患高血压的风险增加。一项纵向研究分析揭示了儿童期血压升高可进展为成年后的高血压[38]。这可能依赖于缺氧诱导的交感神经兴奋,儿茶酚胺分泌增多和肾素-血管紧张素-醛固酮通路的增强。除了高血压外,患有重度OSA的肥胖儿童在睡眠期间频繁的缺氧将导致肺动脉压力的持续升高,进一步引起肺源性心脏病的可能[39]

5.3. 精神心理

大量证据表明,OSA和肥胖都会导致部分儿童的生活质量显著下降,尤其是当肥胖和OSA同时存在时。与OSA相关的睡眠障碍也可能会增加疲劳,导致易怒、情绪低落、注意力不集中和对日常活动的兴趣降低,这些日常功能的障碍可能反过来会干扰孩子生活的其他方面,包括与家庭、学校和同龄人的关系[40]。因此,可能形成恶性循环,导致生活质量更差,出现更多的抑郁症状。

5.4. 治疗

尽管扁桃体腺样体切除术是儿童OSA的主要治疗方法[41],但是手术在治疗肥胖儿童OSA方面仍存在局限性。O'Brien等[42]评估了69例OSA患儿,其中29例为肥胖儿童,术后PSG显示肥胖儿童持续异常,77%的正常体重儿童症状有所改善,而肥胖儿童的症状改善比例仅为45%。美国儿科学会已经确定肥胖是术后呼吸道并发症的危险因素之一,并建议扁桃体腺样体切除术后行睡眠监测。因此,肥胖OSA儿童的诊断和治疗不应该仅基于临床标准,肥胖儿童术前应进行PSG,以预测术后发生呼吸和心脏损害的潜在危险因素。此外,由于肥胖儿童术后更有可能发生残留的OSA,术后随访PSG评估是合理和必要的,以确定是否需要进一步干预。

无创通气治疗是肥胖儿童OSA可选择的治疗方法。经鼻持续正压通气(nasal continuous positive airway pressure,nCPAP)已被证明可有效降低儿童的AHI[43],并且用于治疗肥胖儿童的一些与OSA相关的疾病,如高血压和高脂血症[44]。肥胖儿童如果体重减轻,nCPAP有可能短期应用,这与成人有所不同[45]。多学科减肥干预在治疗肥胖儿童OSA中也很重要。在两项前瞻性研究中,通过行为干预治疗包括饮食限制、体育锻炼和心理支持等,OSA的严重程度也明显降低[46]。一项meta分析表明,多学科减肥干预可改善青少年肥胖患者OSA的严重程度和睡眠时间[47]

此外,肥胖儿童更易发生肥胖低通气综合征(obesity hypoventilation syndrome,OHS)。与OSA不同,OHS以肺泡低通气、严重睡眠呼吸障碍、嗜睡和多种合并症为临床特点,它的特征是清醒时存在通气不足和高碳酸血症(PaCO2>45 mmHg)[48]。Bingol等[49]研究表明,与正常肥胖组相比,OHS组的发病率较高,生活质量较低,医疗费用较高,肺动脉高压和死亡率更高。虽然两者有明显差别,但是OSA患者常同时合并OHS。美国的一项研究评估OHS在正常人群中的患病率为0.15%~3.00%[50],在OSA患者中,OHS的患病率在10%~20%。因此,在临床上应更加重视肥胖患儿OHS的诊断,以免延误治疗。

6. 小结

儿童肥胖和OSA之间相互作用相互影响,形成恶性循环,对个体和社会产生严重的不良后果。肥胖OSA儿童临床表现更加多样和隐匿,临床医生应重视儿童肥胖与OSA的早诊断、早治疗,提高儿童生活质量,避免引起严重并发症。

Funding Statement

河南省医学科技攻关计划联合共建项目(No: LHGJ20200656); 国家呼吸系统疾病临床医学研究中心呼吸专项(No: HXZX-20210201); 北京市医院管理中心“登峰”计划专项经费资助(No: DFL20191201)

Footnotes

利益冲突  所有作者均声明不存在利益冲突

References

  • 1.NCD Risk Factor Collaboration(NCD-RisC) Worldwide trends in body-mass index, underweight, overweight, and obesity from 1975 to 2016:a pooled analysis of 2416 population-based measurement studies in 128.9 million children, adolescents, and adults. Lancet. 2017;390(10113):2627–2642. doi: 10.1016/S0140-6736(17)32129-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 2.季 成叶. 中国学龄儿童青少年超重、肥胖筛查体重指数BMI值分类标准. 中华流行病学杂志. 2004;25(2):10–15. [Google Scholar]
  • 3.李 辉, 宗 心南, 季 成叶, et al. 中国2~18岁儿童青少年超重和肥胖筛查体重指数界值点的研究. 中华流行病学杂志. 2010;31(6):616–620. doi: 10.3760/cma.j.issn.0254-6450.2010.06.004. [DOI] [PubMed] [Google Scholar]
  • 4.倪 鑫. 中国儿童阻塞性睡眠呼吸暂停诊断与治疗指南(2020) 中国循证医学杂志. 2020;20(8):883–900. [Google Scholar]
  • 5.Kositanurit W, Muntham D, Udomsawaengsup S, et al. Prevalence and associated factors of obstructive sleep apnea in morbidly obese patients undergoing bariatric surgery. Sleep Breath. 2018;22(1):251–256. doi: 10.1007/s11325-017-1500-y. [DOI] [PubMed] [Google Scholar]
  • 6.Andersen IG, Holm JC, Homøe P. Obstructive sleep apnea in children and adolescents with and without obesity. Eur Arch Otorhinolaryngol. 2019;276(3):871–878. doi: 10.1007/s00405-019-05290-2. [DOI] [PubMed] [Google Scholar]
  • 7.Dayyat E, Kheirandish-Gozal L, Sans Capdevila O, et al. Obstructive sleep apnea in children: relative contributions of body mass index and adenotonsillar hypertrophy. Chest. 2009;136(1):137–144. doi: 10.1378/chest.08-2568. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 8.Arens R, Sin S, Nandalike K, et al. Upper airway structure and body fat composition in obese children with obstructive sleep apnea syndrome. Am J Respir Crit Care Med. 2011;183(6):782–787. doi: 10.1164/rccm.201008-1249OC. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 9.Bitners AC, Arens R. Evaluation and Management of Children with Obstructive Sleep Apnea Syndrome. Lung. 2020;198(2):257–270. doi: 10.1007/s00408-020-00342-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 10.Kohler MJ, Thormaehlen S, Kennedy JD, et al. Differences in the association between obesity and obstructive sleep apnea among children and adolescents. J Clin Sleep Med. 2009;5(6):506–511. doi: 10.5664/jcsm.27649. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 11.Ye J, Gao Z, Yin J, et al. Hypoxia is a potential risk factor for chronic inflammation and adiponectin reduction in adipose tissue of ob/ob and dietary obese mice. Am J Physiol Endocrinol Metab. 2007;293(4):E1118–1128. doi: 10.1152/ajpendo.00435.2007. [DOI] [PubMed] [Google Scholar]
  • 12.Unnikrishnan D, Jun J, Polotsky V. Inflammation in sleep apnea: an update. Rev Endocr Metab Disord. 2015;16(1):25–34. doi: 10.1007/s11154-014-9304-x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 13.St-Onge MP. The role of sleep duration in the regulation of energy balance: effects on energy intakes and expenditure. J Clin Sleep Med. 2013;9(1):73–80. doi: 10.5664/jcsm.2348. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 14.Malli F, Papaioannou AI, Gourgoulianis KI, et al. The role of leptin in the respiratory system: an overview. Respir Res. 2010;11(1):152. doi: 10.1186/1465-9921-11-152. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 15.Myers MG Jr, Leibel RL, Seeley RJ, et al. Obesity and leptin resistance: distinguishing cause from effect. Trends Endocrinol Metab. 2010;21(11):643–651. doi: 10.1016/j.tem.2010.08.002. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 16.Phillips BG, Kato M, Narkiewicz K, et al. Increases in leptin levels, sympathetic drive, and weight gain in obstructive sleep apnea. Am J Physiol Heart Circ Physiol. 2000;279(1):H234–237. doi: 10.1152/ajpheart.2000.279.1.H234. [DOI] [PubMed] [Google Scholar]
  • 17.Spruyt K, Sans Capdevila O, Serpero LD, et al. Dietary and physical activity patterns in children with obstructive sleep apnea. J Pediatr. 2010;156(5):724–730. doi: 10.1016/j.jpeds.2009.11.010. [DOI] [PubMed] [Google Scholar]
  • 18.Sakurai S, Nishijima T, Arihara Z, et al. Plasma orexin-A levels in obstructive sleep apnea-hypopnea syndrome. Chest. 2004;125(5):1963–1964. doi: 10.1378/chest.125.5.1963. [DOI] [PubMed] [Google Scholar]
  • 19.Cappuccio FP, Taggart FM, Kandala NB, et al. Meta-analysis of short sleep duration and obesity in children and adults. Sleep. 2008;31(5):619–626. doi: 10.1093/sleep/31.5.619. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 20.Bhattacharjee R, Kim J, Kheirandish-Gozal L, et al. Obesity and obstructive sleep apnea syndrome in children: a tale of inflammatory cascades. Pediatr Pulmonol. 2011;46(4):313–323. doi: 10.1002/ppul.21370. [DOI] [PubMed] [Google Scholar]
  • 21.Bleau C, Karelis AD, St-Pierre DH, et al. Crosstalk between intestinal microbiota, adipose tissue and skeletal muscle as an early event in systemic low-grade inflammation and the development of obesity and diabetes. Diabetes Metab Res Rev. 2015;31(6):545–561. doi: 10.1002/dmrr.2617. [DOI] [PubMed] [Google Scholar]
  • 22.Bonsignore MR, Eckel J. ERS Meeting Report.Metabolic aspects of obstructive sleep apnoea syndrome. Eur Respir Rev. 2009;18(112):113–124. doi: 10.1183/09059180.00000109. [DOI] [PubMed] [Google Scholar]
  • 23.Blüher M. Adipose tissue dysfunction in obesity. Exp Clin Endocrinol Diabetes. 2009;117(6):241–250. doi: 10.1055/s-0029-1192044. [DOI] [PubMed] [Google Scholar]
  • 24.Manna P, Jain SK. Obesity, Oxidative Stress, Adipose Tissue Dysfunction, and the Associated Health Risks: Causes and Therapeutic Strategies. Metab Syndr Relat Disord. 2015;13(10):423–444. doi: 10.1089/met.2015.0095. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 25.Uygur F, Tanriverdi H, Can M, et al. The Impact of Obstructive Sleep Apnoea and Nasal Continuous Positive Airway Pressure on Circulating Ischaemia-Modified Albumin Concentrations. Mediators Inflamm. 2016;2016:8907314. doi: 10.1155/2016/8907314. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 26.Zhang X, Ji X, Wang Q, et al. New insight into inter-organ crosstalk contributing to the pathogenesis of non-alcoholic fatty liver disease(NAFLD) Protein Cell. 2018;9(2):164–177. doi: 10.1007/s13238-017-0436-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 27.Budden KF, Gellatly SL, Wood DL, et al. Emerging pathogenic links between microbiota and the gut-lung axis. Nat Rev Microbiol. 2017;15(1):55–63. doi: 10.1038/nrmicro.2016.142. [DOI] [PubMed] [Google Scholar]
  • 28.Durgan DJ, Ganesh BP, Cope JL, et al. Role of the Gut Microbiome in Obstructive Sleep Apnea-Induced Hypertension. Hypertension. 2016;67(2):469–474. doi: 10.1161/HYPERTENSIONAHA.115.06672. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 29.Capdevila OS, Kheirandish-Gozal L, Dayyat E, et al. Pediatric obstructive sleep apnea: complications, management, and long-term outcomes. Proc Am Thorac Soc. 2008;5(2):274–282. doi: 10.1513/pats.200708-138MG. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 30.Panossian LA, Veasey SC. Daytime sleepiness in obesity: mechanisms beyond obstructive sleep apnea-a review. Sleep. 2012;35(5):605–615. doi: 10.5665/sleep.1812. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 31.Gozal D, Kheirandish-Gozal L. Obesity and excessive daytime sleepiness in prepubertal children with obstructive sleep apnea. Pediatrics. 2009;123(1):13–18. doi: 10.1542/peds.2008-0228. [DOI] [PubMed] [Google Scholar]
  • 32.Bianchi MT, Cash SS, Mietus J, et al. Obstructive sleep apnea alters sleep stage transition dynamics. PLoS One. 2010;5(6):e11356. doi: 10.1371/journal.pone.0011356. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 33.Liu X, Forbes EE, Ryan ND, et al. Rapid eye movement sleep in relation to overweight in children and adolescents. Arch Gen Psychiatry. 2008;65(8):924–932. doi: 10.1001/archpsyc.65.8.924. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 34.张 香侠, 厉 雪艳, 陈 贵海, et al. REM相关阻塞性睡眠呼吸暂停的临床研究进展. 临床耳鼻咽喉头颈外科杂志. 2022;36(2):145–148. doi: 10.13201/j.issn.2096-7993.2022.02.015. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 35.Leung LC, Ng DK, Lau MW, et al. Twenty-four-hour ambulatory BP in snoring children with obstructive sleep apnea syndrome. Chest. 2006;130(4):1009–1017. doi: 10.1016/S0012-3692(15)51134-3. [DOI] [PubMed] [Google Scholar]
  • 36.Reade EP, Whaley C, Lin JJ, et al. Hypopnea in pediatric patients with obesity hypertension. Pediatr Nephrol. 2004;19(9):1014–1120. doi: 10.1007/s00467-004-1513-1. [DOI] [PubMed] [Google Scholar]
  • 37.Li AM, Au CT, Sung RY, et al. Ambulatory blood pressure in children with obstructive sleep apnoea: a community based study. Thorax. 2008;63(9):803–809. doi: 10.1136/thx.2007.091132. [DOI] [PubMed] [Google Scholar]
  • 38.Sun SS, Grave GD, Siervogel RM, et al. Systolic blood pressure in childhood predicts hypertension and metabolic syndrome later in life. Pediatrics. 2007;119(2):237–246. doi: 10.1542/peds.2006-2543. [DOI] [PubMed] [Google Scholar]
  • 39.Tauman R, Gozal D. Obesity and obstructive sleep apnea in children. Paediatr Respir Rev. 2006;7(4):247–259. doi: 10.1016/j.prrv.2006.08.003. [DOI] [PubMed] [Google Scholar]
  • 40.Crabtree VM, Varni JW, Gozal D. Health-related quality of life and depressive symptoms in children with suspected sleep-disordered breathing. Sleep. 2004;27(6):1131–1138. doi: 10.1093/sleep/27.6.1131. [DOI] [PubMed] [Google Scholar]
  • 41.中国医师协会耳鼻咽喉头颈外科医师分会 儿童扁桃体腺样体低温等离子射频消融术规范化治疗临床实践指南. 临床耳鼻咽喉头颈外科杂志. 2021;35(3):193–199. doi: 10.13201/j.issn.2096-7993.2021.03.001. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 42.O'Brien LM, Sitha S, Baur LA, et al. Obesity increases the risk for persisting obstructive sleep apnea after treatment in children. Int J Pediatr Otorhinolaryngol. 2006;70(9):1555–1560. doi: 10.1016/j.ijporl.2006.04.003. [DOI] [PubMed] [Google Scholar]
  • 43.Hawkins S, Huston S, Campbell K, et al. High-Flow, Heated, Humidified Air Via Nasal Cannula Treats CPAP-Intolerant Children With Obstructive Sleep Apnea. J Clin Sleep Med. 2017;13(8):981–989. doi: 10.5664/jcsm.6700. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 44.Amini Z, Kotagal S, Lohse C, et al. Effect of Obstructive Sleep Apnea Treatment on Lipids in Obese Children. Children(Basel) 2017;4(6):44. doi: 10.3390/children4060044. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 45.赵 靖, 张 亚梅, 申 昆玲. 无创通气治疗儿童阻塞性睡眠呼吸暂停低通气综合征的临床观察. 中华耳鼻咽喉头颈外科杂志. 2006;41(2):85–88. doi: 10.3760/j.issn:1673-0860.2006.02.002. [DOI] [PubMed] [Google Scholar]
  • 46.Andersen IG, Holm JC, Homøe P. Impact of weight-loss management on children and adolescents with obesity and obstructive sleep apnea. Int J Pediatr Otorhinolaryngol. 2019;123:57–62. doi: 10.1016/j.ijporl.2019.04.031. [DOI] [PubMed] [Google Scholar]
  • 47.Roche J, Isacco L, Masurier J, et al. Are obstructive sleep apnea and sleep improved in response to multidisciplinary weight loss interventions in youth with obesity? A systematic review and meta-analysis. Int J Obes(Lond) 2020;44(4):753–770. doi: 10.1038/s41366-019-0497-7. [DOI] [PubMed] [Google Scholar]
  • 48.Olson AL, Zwillich C. The obesity hypoventilation syndrome. Am J Med. 2005;118(9):948–956. doi: 10.1016/j.amjmed.2005.03.042. [DOI] [PubMed] [Google Scholar]
  • 49.Bingol Z, Pıhtılı A, Cagatay P, et al. Clinical predictors of obesity hypoventilation syndrome in obese subjects with obstructive sleep apnea. Respir Care. 2015;60(5):666–672. doi: 10.4187/respcare.03733. [DOI] [PubMed] [Google Scholar]
  • 50.Littleton SW, Mokhlesi B. The pickwickian syndrome-obesity hypoventilation syndrome. Clin Chest Med. 2009;30(3):467-478, vii-viii. doi: 10.1016/j.ccm.2009.05.004. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Clinical Otorhinolaryngology, Head, and Neck Surgery are provided here courtesy of Editorial Department of Journal of Clinical Otorhinolaryngology Head and Neck Surgery

RESOURCES