Abstract
目的
了解不同分期慢性肾脏病(CKD)患者骨质疏松与心血管钙化的情况,分析其与骨代谢标志物之间的相关性。
方法
选择2017年7月−2018年1月就诊于重庆医科大学附属第一医院和重庆市涪陵中心医院的368例CKD 3~5期患者,另选60例同期于本院和重庆市涪陵中心医院体检的健康者为对照组。收集所有研究对象入组时的年龄、性别、体质量指数(BMI);检测估算肾小球滤过率(eGFR)、血清钙(Ca)、磷(P)、白蛋白(ALB)、全段甲状旁腺素(iPTH)、骨性碱性磷酸酶(BALP)、Ⅰ型前胶原氨基端肽(PINP)和β-胶原特殊序列(β-CTX)水平,采用双能X线吸收法和心脏彩色多普勒超声心动图分别检测患者骨质疏松、血管钙化和心脏瓣膜钙化的发生情况;采用胸腹部CT评估所有纳入对象的主动脉及冠状动脉钙化情况。Pearson相关性分析eGFR、血清骨代谢标志物与骨质疏松、心血管钙化之间的相关性。
结果
与对照组相比,CKD 3~5期组患者血P、iPTH、BALP、PINP、β-CTX水平升高(P<0.05),eGFR、血Ca水平降低(P<0.05),且随着肾功能损害加重,上述指标变化更为明显(P<0.05);CKD 5期血液透析组患者血管钙化和心脏瓣膜钙化的发生率高于CKD 3~4期组和CKD 5期未透析组(P<0.05);CKD 3~5期患者的eGFR与血Ca呈正相关(P<0.05),与血P、iPTH、BALP、PINP和β-CTX呈负相关(P<0.05);CKD 3~5期患者骨质疏松、血管钙化、心脏瓣膜钙化的发生与eGFR和血Ca水平下降呈负相关(P<0.05),与血P、iPTH、BALP、PINP和β-CTX水平增加呈正相关(P<0.05)。
结论
血清骨代谢标志物和eGFR水平与CKD 3~5期患者骨质疏松和心血管钙化的发生密切相关。
Keywords: 骨代谢标志物, 估算肾小球滤过率, 慢性肾脏病, 矿物质和骨代谢异常
Abstract
Objective
To investigate the status of osteoporosis and cardiovascular calcification in patients with chronic kidney disease (CKD) with different stages, and analyze the correlation between the stages and markers of bone metabolism To correlation.
Methods
A total of 368 CKD patients at stage 3-5 who were treated in First Affiliated Hospital Affiliate to Chongqing Medical University and Chongqing Fuling Central Hospital from July 2017 to January 2018 were enrolled. A total of 60 healthy people who underwent physical examination in the hospital during the same period were enrolled as control group. Age, gender and body mass index (BMI) of all study objects at enrollment time were collected. The levels of estimate glomerular filtration rate (eGFR), serum calcium (Ca), phosphorus (P), albumin (ALB), intact parathyroid hormone (iPTH), bone alkaline phosphatase (BALP), procollagen Ⅰ N-terminal peptide (PINP) and β-crosslaps (β-CTX) were detected. The occurrence of osteoporosis, vascular calcification and heart valve calcification was detected. Pearson correlation analysis was applied to analyze correlation between eGFR, serum bone metabolism markers and osteoporosis, cardiovascular calcification.
Results
Compared with control group, levels of serum P, iPTH, BALP, PINP and β-CTX were significantly increased in CKD stage 3-5 group (P<0.05), while levels of eGFR and serum Ca were decreased (P<0.05). With the increase of CKD staging, changes of their levels were more significant (P<0.05). The incidence of vascular calcification and heart valve calcification in CKD stage 5 hemodialysis group was higher than that in CKD stage 3-4 group and CKD stage 5 without dialysis group (P<0.05). eGFR was positively correlated with serum Ca in CKD patients at stage 3-5 (P<0.05), while negatively correlated with serum P, iPTH, BALP, PINP and β-CTX (P<0.05). The occurrence of osteoporosis, vascular calcification and heart valve calcification was negatively correlated with increase of eGFR and serum Ca levels in CKD patients at stage 3-5 (P<0.05), while positively correlated with increase of levels of serum P, iPTH, BALP, PINP and β-CTX (P<0.05).
Conclusion
The levels of serum bone metabolism markers and eGFR are closely related to occurrence of osteoporosis and cardiovascular calcification in CKD patients at stage 3-5.
Keywords: Bone metabolism marker, Estimate glomerular filtration rate, Chronic kidney disease, Mineral and bone disorder
慢性肾脏病(chronic kidney diseases,CKD)是由多种原因引起的慢性肾脏结构和功能性障碍,并发症多,危害大[1]。矿物质和骨代谢异常(mineral and bone disorder,MBD)是CKD患者常见的并发症之一,主要表现为血清钙(calcium,Ca)、磷(phosphorus,P)代谢紊乱,全段甲状旁腺素(intact parathyroid hormone,iPTH)升高、骨骼病变等[2]。随着疾病的进展,CKD-MBD患者长期的钙磷沉积可进一步出现心血管钙化、骨质疏松等,严重影响患者的预后生存和生活质量[3]。因此,如何正确评估CKD-MBD的发生发展,纠正钙磷代谢紊乱,减少转移性钙化、骨骼病变以及心脑血管系统损害,受到了广泛关注。既往研究显示[4-5],血Ca、P、iPTH等水平变化与CKD患者心血管钙化、骨质疏松等的发生有关,但是关于不同CKD分期患者的CKD-MBD的变化报道较少,针对不同CKD分期的血清骨代谢标志物、骨质疏松和心血管钙化的变化尚未见报道。为此,本研究分析了CKD 3~5期患者的血清钙磷及iPTH水平变化与骨质疏松和心血管钙化之间的关系,旨在为临床CKD-MBD的治疗提供一定的理论依据。
1. 资料与方法
1.1. 一般资料
选择2017年7月−2018年1月就诊于重庆医科大学附属第一医院和重庆市涪陵中心医院的368例CKD 3~5期患者为研究对象。纳入标准:根据2002年美国K/DOQI指南[6]符合CKD临床分期3~5期。排除标准:肾病综合征、肾小管酸中毒者;合并恶性肿瘤、结核、库欣综合征者;原发性甲状旁腺功能亢进者;长期或目前正在使用糖皮质激素或选择性的雌激素受体调节剂者。另分别于重庆医科大学附属第一医院和重庆市涪陵中心医院选择30例同期健康体检者为对照组。所有研究对象均签署知情同意书,本研究设计经重庆医科大学附属第一医院伦理委员会通过(CQYKDXFSDYYY-2017-056)。
根据K/DOQI指南[7]按患者估算肾小球滤过率(estimate glomerular filtration rate,eGFR)的CKD分期分为4组。①CKD 3期组(38例):eGFR为30~59 mL/(min·1.73 m2),原发病为糖尿病肾病12例、高血压肾病9例、慢性肾小球肾炎12例、痛风性肾病1例、梗阻性肾病2例及多囊肾2例;合并症:高血压25例、贫血11例、高血脂12例、心脏疾病10例、糖尿病9例。②CKD 4期组(42例):eGFR为15~29 mL/(min·1.73 m2),原发病为糖尿病肾病14例、高血压肾病11例、慢性肾小球肾炎12例、痛风性肾病1例、梗阻性肾病2例及多囊肾2例;合并症:高血压25例、贫血12例、高血脂11例、心脏疾病11例、糖尿病10例。③CKD 5期未透析组(59例):eGFR<15 mL/(min·1.73 m2),原发病为糖尿病肾病18例、高血压肾病15例、慢性肾小球肾炎22例、痛风性肾病2例、梗阻性肾病1例、多囊肾1例;合并症:高血压24例、贫血12例、高血脂11例、心脏疾病10例、糖尿病12例。④CKD5期血液透析组(229例):原发病为糖尿病肾病60例、高血压肾病55例、慢性肾小球肾炎70例、痛风性肾病4例、梗阻性肾病19例、多囊肾17例、药物性肾损伤2例、原发性淀粉样变性1例及原发性干燥综合征1例;合并症:高血压132例、贫血72例、高血脂67例、心脏疾病60例、糖尿病65例。4组患者的原发病及合并症的分布差异无统计学意义(P>0.05)。
1.2. 主要仪器
雅培C16000全自动生化分析仪购自美国Abbott公司;iPTH 10-8000药盒购自美国DLS公司(16~62 pg/mL);Roche电化学发光分析仪(cobase602)及其配套试剂购自Roche公司;ASY-00409双能X线骨密度检测仪购自美国HOLOGIC公司。
1.3. 观测指标
收集所有研究对象入组时的年龄、性别、体质量指数(body mass index,BMI)。采集清晨透析前患者空腹静脉血,离心(3 500 r/min,10 min),分离上清。采用全自动生化分析仪检测患者血清Ca、Pi和白蛋白(albumin,ALB)水平;采用ELISA检测血清iPTH水平;采用罗氏化学发光法测定骨性碱性磷酸酶(bone alkaline phosphatase,BALP)、Ⅰ型前胶原氨基端肽(procollagen Ⅰ N-terminal peptide,PINP)、β-胶原特殊序列(β-collagen specific sequence,β-CTX)水平。
采用双能X线吸收法测量重庆市涪陵中心医院143例患者的骨密度,参照中国老年学学会骨质疏松委员会(osteoporosis committee of Chinese gerontology society,OCCGS)中骨质疏松的标准[8],−2.0SD或者骨量下降25%的患者为骨质疏松。采用胸腹部CT评估所有纳入对象的主动脉及冠状动脉钙化情况,血管CT值≥130提示血管钙化[9]。采用彩色多普勒超声检测评估所有纳入对象的心脏瓣膜钙化情况,主动脉瓣、二尖瓣或三尖瓣瓣叶或瓣环出现1个或1个以上大于1 mm的强回声提示心脏瓣膜钙化[10]。
1.4. 统计学方法
满足正态分布的计量资料均以
±s表示,采用单因素方差分析比较多组间差异,SNK-q比较两组间差异;计数资料均以例数(%)表示,采用χ2检验进行组间差异比较;采用Pearson相关性分析eGFR、血清骨代谢标志物与骨质疏松、心血管钙化之间的相关性,P<0.05为差异有统计学意义。
2. 结果
2.1. CKD 3~5期患者的一般资料
对照组和CKD 各组患者的年龄、性别比、BMI差异均无统计学意义(P>0.05);与对照组比较,CKD各组患者ALB水平降低,且随着肾功能损害的加重,ALB水平降低更为明显,CKD不同分期组间比较,差异有统计学意义(P<0.05)。见表1。
表 1. General information of patients with stage 3-5 CKD.
CKD 3~5期患者的一般资料
Group | n | Age/yr. | (Male/female)/case | BMI/(kg/m2) | ALB/(g/L) | eGFR/(mL/(min 1.73 m2)) |
*P<0.05, vs. control group; #P<0.05, vs. CKD stage 3 group;▲P<0.05, vs. CKD stage 4 group. | ||||||
Control | 60 | 55.35±8.14 | 38/22 | 22.76±2.57 | 40.34±4.20 | 97.21±14.52 |
CKD stage 3 | 38 | 54.81±8.54 | 21/17 | 23.84±2.75 | 39.63±4.32 | 42.83±6.74* |
CKD stage 4 | 42 | 55.26±7.68 | 26/16 | 24.26±2.82 | 36.81±4.65*,# | 21.54±4.21*,# |
CKD stage 5 without dialysis | 59 | 57.72±7.94 | 30/29 | 23.17±2.51 | 34.52±4.29*,#,▲ | 6.24±1.13*,#,▲ |
CKD stage 5 hemodialysis | 229 | 57.83±8.72 | 142/87 | 22.65±2.62 | 33.74±4.80*,#,▲ | 6.68±1.16*,#,▲ |
t/χ2 | 2.325 | 3.142 | 2.330 | 34.165 | 2 934.953 | |
P | 0.056 | 0.534 | 0.055 | <0.001 | <0.001 |
2.2. CKD 3~5期患者的血Ca、Pi和iPTH水平
由表2可见,与对照组相比,CKD 各组患者血P和iPTH水平升高(P<0.05),血Ca水平降低(P<0.05),且随着肾功能损害的加重,其上述指标变化更为明显,CKD不同分期组间比较,差异有统计学意义(P<0.05)。
表 2. Levels of blood Ca, P and iPTH in patients with stage 3-5 CKD.
CKD 3~5期患者的血Ca、P和iPTH水平
Group | n | Ca/(mmol/L) | P/(mmol/L) | iPTH/(ng/L) |
*P<0.05, vs. control group; #P<0.05, vs. CKD stage 3 group;▲P<0.05, vs. CKD stage 4 group. | ||||
Control | 60 | 2.32±0.22 | 1.02±0.10 | 37.25±4.66 |
CKD stage 3 | 38 | 2.22±0.25* | 1.34±0.12* | 145.93±26.04* |
CKD stage 4 | 42 | 2.14±0.24* | 1.57±0.13*,# | 231.26±31.87*# |
CKD stage 5 without dialysis | 59 | 2.05±0.23*,# | 2.04±0.16*,#,▲ | 417.06±58.69*,#,▲ |
CKD stage 5 hemodialysis | 229 | 2.08±0.21*,# | 1.96±0.15*,#,▲ | 408.33±54.72*,#,▲ |
t | 17.543 | 494.561 | 870.413 | |
P | <0.001 | <0.001 | <0.001 |
2.3. CKD 3~5期患者的其他骨代谢指标的变化
与对照组相比,CKD 各组患者血BALP、PINP和β-CTX水平升高(P<0.05);与CKD 3期组相比,CKD 4~5期组患者血BALP、PINP和β-CTX水平升高(P<0.05);与CKD 4期组相比,CKD 5期未透析组和血液透析组患者血BALP、PINP和β-CTX水平升高(P>0.05)。见表3。
表 3. Levels of BALP, PINP and β-CTX in patients with stage 3-5 CKD.
CKD 3~5期患者的BALP、PINP和β-CTX水平
Group | n | BALP/(U/L) | PINP/(ng/mL) | β-CTX/(ng/mL) |
*P<0.05, vs. control group; #P<0.05, vs. CKD stage 3 group;▲P<0.05, vs. CKD stage 4 group. | ||||
Control | 60 | 35.74±5.70 | 37.38±5.13 | 0.25±0.04 |
CKD stage 3 | 38 | 78.95±11.49* | 52.24±7.22* | 0.42±0.06* |
CKD stage 4 | 42 | 94.63±12.87*,# | 61.78±7.86*,# | 0.67±0.08*,# |
CKD stage 5 without dialysis | 59 | 137.51±19.34*,#,▲ | 79.43±8.54*,#,▲ | 1.28±0.18*,#,▲ |
CKD stage 5 hemodialysis | 229 | 143.62±21.55*,#,▲ | 81.34±8.80*,#,▲ | 1.34±0.17*,#,▲ |
t | 592.832 | 441.569 | 884.495 | |
P | <0.001 | <0.001 | <0.001 |
2.4. CKD 5期血液透析与未透析的患者各指标比较
CKD 5期患者中,血液透析组及未透析组患者年龄、性别、BMI及ALB、eGFR、Ca、P、iPTH、PINP水平差异无统计学意义(P>0.05),未透析组BALP及β-CTX水平均低于血液透析组(P<0.05),见表1~表3。
表 4. Osteoporosis in patients with stage 3-5 CKD.
CKD 3~5期患者的骨质疏松情况
Group | n | Osteoporosis/case (%) |
CKD stage 3 | 15 | 2 (13.33) |
CKD stage 4 | 18 | 3 (16.67) |
CKD stage 5 without dialysis | 22 | 5 (22.73) |
CKD stage 5 hemodialysis | 88 | 29 (32.95) |
χ 2 | 4.152 | |
P | 0.246 |
2.5. CKD 3~5期患者的eGFR与骨代谢标志物之间的相关性
CKD 3~5期患者的eEGFR与血Ca呈正相关(r=0.219,P<0.05),与血P、iPTH、BALP、PINP和β-CTX呈负相关(r=−0.439、−0.527、−0.518、−0.384、−0.417,P均<0.05)。
2.6. CKD 3~5期患者的骨质疏松情况
重庆市涪陵中心医院143例患者中CKD各期患者的骨质疏松发生率差异无统计学意义(P>0.05),见表4。
2.7. CKD 3~5期患者的血管钙化和心脏瓣膜钙化情况
CKD 5期血液透析组患者血管钙化和心脏瓣膜钙化的发生率高于CKD 3~4期组和CKD 5期未透析组(P<0.05),见表5。
表 5. Vascular calcification and cardiac valve calcification in patients with stage 3-5 CKD.
CKD 3~5期患者的血管钙化和心脏瓣膜钙化情况
Group | n | Vascular calcification/
case (%) |
Cardiac valve calcification/
case (%) |
#P<0.05, vs. CKD stage 3-4 group; ▲P<0.05, vs. CKD stage 5 non-dialysis group. | |||
CKD stage 3-4 | 80 | 31 (38.75) | 9 (11.25) |
CKD stage 5 without dialysis | 59 | 26 (44.07) | 11 (18.64) |
CKD stage 5 hemodialysis | 229 | 142 (62.01)#,▲ | 84 (36.68)#,▲ |
χ 2 | 16.350 | 22.520 | |
P | <0.001 | <0.001 |
2.8. CKD 3~5期患者的eGFR、骨代谢标志物与骨质疏松、心血管钙化之间的相关性
采用变量赋值,合并骨质疏松=1,无骨质疏松=0;合并血管钙化=1,无血管钙化=0;合并心脏瓣膜钙化=1,无心脏瓣膜钙化=0。CKD 3~5期患者骨质疏松、血管钙化、心脏瓣膜钙化的发生与eGFR和血Ca水平增加呈负相关(P<0.05),与血P、iPTH、BALP、PINP和β-CTX水平增加呈正相关(P<0.05)。见表6。
表 6. Correlation between eGFR, bone metabolic markers, osteoporosis and cardiovascular calcification in patients with stage 3-5 CKD.
CKD 3~5期患者的eGFR、骨代谢标志物与骨质疏松、心血管钙化之间的相关性
Item | Osteoporosis
(r/P) |
Vascular
calcification (r/P) |
Cardiac valve
calcification (r/P) |
eGFR | −0.382/<0.001 | −0.641/<0.001 | −0.421/<0.001 |
Ca | −0.244/0.023 | −0.327/0.002 | −0.273/0.008 |
P | 0.303/<0.001 | 0.495/<0.001 | 0.420/<0.001 |
iPTH | 0.457/<0.001 | 0.695/<0.001 | 0.583<0.001 |
BALP | 0.441/<0.001 | 0.683/<0.001 | 0.526/<0.001 |
PINP | 0.333/<0.001 | 0.512/<0.001 | 0.442/<0.001 |
β-CTX | 0.359/<0.001 | 0.471/<0.001 | 0.428/<0.001 |
3. 讨论
CKD-MBD是CKD疾病进展后的最严重的并发症之一,肾性骨病可增加患者骨折、骨骼畸形等风险,严重影响了患者的生存质量,而长期的钙磷沉积则可引起心血管钙化,增加CKD患者并发心血管疾病死亡的风险[11]。但是目前关于CKD不同分期患者继发骨质疏松和心血管钙化的情况及其早期损伤评估的生物标志物,尚不清楚。
骨活检是临床诊断CKD-MBD的金标准,但其为有创性检查,对机体损伤较大,目前多采用相关骨代谢指标进行疾病评估与诊断[12]。K/DOQI指南推荐CKD3期(儿童从CKD2期)开始监测血清Ca、P、PTH和ALP的水平变化,以期监测CKD-MBD疾病的进展,指导临床治疗,减少心血管钙化、骨骼病变的发生[13]。既往研究[14]显示,血清Ca、P、PTH水平变化与血液透析患者的预后有关,但对不同分期CKD患者血Ca、P、PTH水平变化,及其与CKD-MBD疾病进程之间的相关性尚不清楚。本研究显示,从CKD3期开始,患者血Ca水平即开始明显下降,Pi和iPTH水平开始明显升高。这是由于随着CKD患者的肾小球滤过功能下降,尿磷排泄减少,血磷水平升高,进一步导致血钙下降,刺激PTH的释放,引发继发性的甲状旁腺功能亢进[15]。其中PTH是反映甲状旁腺功能的常见指标之一,由甲状旁腺主细胞分泌,可作用于破骨细胞,调节钙磷代谢[16]。GAO等[17]研究显示,生理状况下,血P、Ca以及PTH之间存在动态平衡,但是在CKD患者,一旦这种平衡被破坏,可引起钙磷代谢异常,引起继发甲状腺功能亢进,PTH可在一定程度上促进骨钙重吸收,引起细胞内Ca超载和间质纤维化,引起骨痛、骨质疏松、骨折、甚至转移性钙化,加速血管钙化,增加患者心血管钙化和骨质疏松的风险。
本研究中,我们进一步发现,随着CKD疾病的进展,CKD患者血清BALP、PINP、β-CTX水平明显升高。进一步研究显示,CKD患者血清Ca、P、iPTH、BALP、PINP、β-CTX水平与其eGFR具有明显的相关性,提示患者血清骨代谢指标水平与其肾小球滤过功能下降有关,肾小球滤过功能越低,机体矿物质和骨代谢紊乱越明显。其中,BALP是一种由成骨细胞分泌的糖蛋白,主要经肝胆系统排泄,其水平不受肾小球滤过率的影响,可以促进体内钙化的发生,是骨转换的特异性标志物[18];PINP则是反映了Ⅰ型胶原的合成和转换的另一种骨形成标志物;而β-CTX则是破骨细胞在骨吸收过程中降解产生的特异性产物,为首选骨吸收标志物[19]。研究[20]显示,PINP和β-CTX与骨折的发生有关,其水平升高,可增加患者骨折的风险。本研究也发现,随着CKD疾病进展,eGFR逐渐下降,患者的骨质疏松的发生率有升高趋势(尽管差异无统计学意义),而且,CKD患者eGFR、血Ca、P、iPTH、BALP、PINP、β-CTX水平均与其骨质疏松的发生具有明显的相关性,提示CKD患者在CKD3期即存在有不同程度的骨骼病变,早期监测CKD患者的骨代谢相关指标的变化,有望及时评估CKD患者骨骼病变的风险。
心血管事件是CKD患者的主要死亡原因,除导致骨质疏松外,心血管钙化是CKD-MBD的最重要的临床表现之一,也是影响患者生存质量和生存时间的主要因素[21]。因此,分析患者的肾功能和骨代谢相关指标与患者骨质疏松和心血管钙化之间的相关性,正确评估疾病的进展,对指导临床治疗具有重要意义。本研究也发现,随着CKD疾病进展肾功能的下降,从CKD 3~4期开始,CKD患者的血管钙化和心脏瓣膜钙化的发生率即开始增加,至CKD 5期尤其是透析患者这种转移性钙化更加明显。进一步研究发现,CKD患者eGFR、血Ca、P、iPTH、BALP、PINP、β-CTX水平均与其血管钙化和心脏瓣膜钙化的发生具有明显的相关性,尤其以iPTH和BALP的相关性最好,提示机体的矿物质和骨代谢指标水平变化与血管钙化和心脏瓣膜钙化的发生密切相关,临床上可优先选择iPTH和BALP来评估患者CKD-MBD的病情进展,预估骨质疏松、血管钙化和心脏瓣膜钙化发生的风险,指导临床治疗。
综上所述,CKD 3~5期患者随着CKD疾病的进展,肾功能明显下降,钙磷代谢明显紊乱,iPTH、BALP、PINP、β-CTX水平明显升高,血管钙化和心脏瓣膜钙化的发生率明显升高,且eGFR和骨代谢相关指标水平变化与骨质疏松、血管钙化和心脏瓣膜钙化的发生具有明显的相关性。临床上可通过监测CKD 3~5期患者eGFR和骨代谢相关指标的变化,评估患者CKD-MBD的病情进展,预估骨质疏松、心血管钙化发生的风险,指导临床治疗。
Funding Statement
重庆市自然科学基金面上项目(No. cstc2019jcyj-msxmX0504)资助
Contributor Information
志岳 蔡 (Zhi-yue CAI), Email: 25214843@qq.com.
晓刚 杜 (Xiao-gang DU), Email: cqmudxg@163.com.
References
- 1.SIWY J, ZURBIG P, ARGILES A, et al Noninvasive diagnosis of chronic kidney diseases using urinary proteome analysis. Nephrol Dial Transplant. 2016;32(12):2079–2089. doi: 10.1093/ndt/gfw337. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 2.OZKAN G, ULUSOY S, GUVERCIN B, et al A new player in chronic kidney disease mineral and bone disorder: Tenascin-C. Int J Artif Organs. 2015;38(9):481–487. doi: 10.5301/ijao.5000436. [DOI] [PubMed] [Google Scholar]
- 3.ALEXANDER A, JAHANGIR D, LAZARUS M, et al Imaging in chronic kidney disease‐metabolic bone disease. Semin Dial. 2017;30(4):361–368. doi: 10.1111/sdi.12598. [DOI] [PubMed] [Google Scholar]
- 4.SPRAGUE S, BELLORIN-FONT E, JORGETTI V, et al Diagnostic accuracy of bone turnover markers and bone histology in patients with CKD treated by dialysis. Am J Kidney Dis. 2015;67(4):559–566. doi: 10.1053/j.ajkd.2015.06.023. [DOI] [PubMed] [Google Scholar]
- 5.BOVER J, UREÑA-TORRES P, LLORET M J, et al Integral pharmacological management of bone mineral disorders in chronic kidney disease (part Ⅱ): from treatment of phosphate imbalance to control of PTH and prevention of progression of cardiovascular calcification. Expert Opin Pharmacother. 2016;17(10):1363–1373. doi: 10.1080/14656566.2016.1182985. [DOI] [PubMed] [Google Scholar]
- 6.National Kidney Foundation K/DOQI clinical practice guidelines for bone metabolism and disease in chronic kidney disease. Am J Kidney Dis. 2003;42(4 Suppl 3):S1–S201. [PubMed] [Google Scholar]
- 7.EKNOYAN G, LEVIN N W K/DOQI clinical practice guidelines for chronic kidney disease: evaluation, classification, and stratification. Am J Kidney Dis. 2002;39(2 Suppl 1):S1–266. [PubMed] [Google Scholar]
- 8.张智海,刘忠厚, 李娜, 等 中国人骨质疏松症诊断标准专家共识(第三稿 2014版). 中国骨质疏松杂志. 2014;20(9):1007–1010. doi: 10.3969/j.issn.1006-7108.2014.09.001. [DOI] [Google Scholar]
- 9.WILKIESON T, RAHMAN M, GANGJI A, et al Coronary artery calcification, cardiovascular events, and death: a prospective cohort study of incident patients on hemodialysis. Can J Kidney Health Dis. 2015;2(1):29–36. doi: 10.1186/s40697-015-0065-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 10.ELLOUALI F, BERKCHI F, ELHOUSSNI S, et al Evaluation of the effect of duration on dialysis on echocardiographic parameters: a preliminary study. Saudi J Kidney Dis. 2015;26(1):83–89. doi: 10.4103/1319-2442.148748. [DOI] [PubMed] [Google Scholar]
- 11.KANJEVAC T, BIJELIC B, BRAJKOVIC D, et al Impact of chronic kidney disease mineral and bone disorder on jaw and alveolar bone metabolism: a narrative review. Oral Health Prev Dent. 2018;16(1):79–85. doi: 10.3290/j.ohpd.a39858. [DOI] [PubMed] [Google Scholar]
- 12.GRACIOLLI F G, NEVES K R, BARRETO F, et al The complexity of chronic kidney disease–mineral and bone disorder across stages of chronic kidney disease. Kidney Int. 2017;91(6):1436–1446. doi: 10.1016/j.kint.2016.12.029. [DOI] [PubMed] [Google Scholar]
- 13.BOVER J, UREÑA P, AGUILAR A, et al Alkaline Phosphatases in the Complex Chronic Kidney Disease-Mineral and Bone Disorders. Calcif Tissue Int. 2018;103(6):1–14. doi: 10.1007/s00223-018-0399-z. [DOI] [PubMed] [Google Scholar]
- 14.ULUSOY S, OZKAN G, GUVERCIN B, et al The relation between variability of intact parathyroid hormone, calcium, and cardiac mortality in hemodialysis patients. Artif Organs. 2016;40(11):1078–1085. doi: 10.1111/aor.12690. [DOI] [PubMed] [Google Scholar]
- 15.WANNER C, HERZOG C, TURAKHIA M Chronic kidney disease and arrhythmias: highlights from a kidney disease: improving global outcomes (KDIGO) controversies conference. Kidney Int. 2018;94(2):231–234. doi: 10.1016/j.kint.2018.05.005. [DOI] [PubMed] [Google Scholar]
- 16.PHELPS R K, MASON D L, STOTE K S Phosphate homeostasis, parathyroid hormone, and fibroblast growth factor 23 in stages 3 and 4 chronic kidney disease. Clin Nephrol. 2016;85(5):251–261. doi: 10.5414/CN108686. [DOI] [PubMed] [Google Scholar]
- 17.GAO Z, LI X, MIAO J, et al Impacts of parathyroidectomy on calcium and phosphorus metabolism disorder, arterial calcification and arterial stiffness in haemodialysis patients. Asian J Surg. 2019;42(1):6–10. doi: 10.1016/j.asjsur.2018.04.001. [DOI] [PubMed] [Google Scholar]
- 18.DE RECHTER S, BACCHETTA J, GODEFROID N, et al Evidence for bone and mineral metabolism alterations in children with autosomal dominant polycystic kidney disease. J Clin Endocrinol Metab. 2017;102(11):4210–4217. doi: 10.1210/jc.2017-01157. [DOI] [PubMed] [Google Scholar]
- 19.SONG B, LI X, ZHOU Q, et al Application of bone turnover markers PICP and β-CTX in the diagnosis and treatment of breast cancer with bone metastases. Clin Lab. 2018;64(1):11–16. doi: 10.7754/Clin.Lab.2017.161021. [DOI] [PubMed] [Google Scholar]
- 20.WANG Y, ZHAO J, KONG L, et al Involvement of bone-specific alkaline phosphatase and procollagen I carboxy-terminal propeptide as predictors of early fracture risk in Chinese Children with juvenile osteoporosis: an interventional clinical trial. Bangladesh J Pharmacol. 2018;13(2):164–167. doi: 10.3329/bjp.v13i2.35620. [DOI] [Google Scholar]
- 21.WU L, BAI Y H, CHEN T, et al The relation of calcium-phosphorus metabolism-related indexes with cardiac damages. Eur Rev Med Pharmacol Sci. 2016;20(15):3244–3248. [PubMed] [Google Scholar]