Skip to main content
Journal of Sichuan University (Medical Sciences) logoLink to Journal of Sichuan University (Medical Sciences)
. 2021 Jan 20;52(1):45–49. [Article in Chinese] doi: 10.12182/20210160202

肿瘤相关巨噬细胞的脂质代谢重编程

A Review of the Lipid Metabolism Reprogramming in Tumor Associated Macrophages

Kun ZHAO 1, Rong-chen SHI 1, Hong-ming MIAO 1,*
PMCID: PMC10408937  PMID: 33474888

Abstract

肿瘤相关巨噬细胞(tumor associated macrophages,TAMs)是实质肿瘤中最常见的间质细胞类型之一,且与肿瘤微环境的免疫抑制状态有着紧密联系,并促进肿瘤的恶性进展。TAMs内的代谢发生了重编程,并且参与调控其自身的极化以及相应的功能表型。本文详细论述了TAMs中包括三酰甘油、脂肪酸及其衍生物、胆固醇和磷脂在内的脂质代谢重编程以及它们对肿瘤进展的调控。然而,肿瘤细胞与肿瘤微环境间质细胞的代谢极具异质性。肿瘤细胞与间质细胞之间脂代谢重编程的异同点以及重编程如何调控细胞活性的机制值得深入探索。同时,综合考虑肿瘤不同的组织类型、不同的发展阶段,精准靶向干预TAMs脂质代谢重编程,促进TAMs向M1样巨噬细胞极化,将成为代谢调节肿瘤免疫治疗的新策略。

Keywords: 肿瘤相关巨噬细胞, 免疫抑制, 脂质代谢重编程, 肿瘤进展


肿瘤相关巨噬细胞(tumor associated macrophages,TAMs),一般指实体肿瘤微环境中的巨噬细胞,在实体肿瘤内浸润的髓源细胞中占有最大比例,并与癌症患者的不良预后密切相关。TAMs具有很强的可塑性,容易被其所处的环境诱导而极化成不同的类型。在肿瘤环境的应激驯化下,TAMs大多表现为促癌作用,如刺激肿瘤细胞增殖、转移和血管生成。代谢重编程是巨噬细胞活化的基础。肿瘤微环境TAMs往往发生代谢重编程,以确保自身存活和肿瘤的恶性进展。近年来,TAMs代谢重编程具体机制的研究取得了一定进展。本文将着重对TAMs脂质代谢重编程的进展进行阐述,并对其未来的研究方向进行展望。

1. TAMs与肿瘤微环境的免疫抑制

巨噬细胞在白介素(interleukin,IL)-12、肿瘤坏死因子α(tumor necrosis factor-α,TNF-α)和干扰素γ(interferon-γ,IFN-γ)、细菌脂多糖(lipopolysaccharide,LPS)等刺激下表现为M1型,并具有促炎、抗瘤效应。相反,IL-4、IL-10、集落刺激因子1、转化生长因子β1(transforming growth factor-β1,TGF-β1)等因子促进巨噬细胞极化为M2型,发挥抗炎、促瘤作用[1]。然而,受所处环境动态、持续性的影响,巨噬细胞表型和功能极具异质性,难以极化为理想的M1、M2型[2]。TAMs可以迅速适应肿瘤微环境的变化,在功能上接近但不完全等同M2样巨噬细胞表型,并促进微环境免疫抑制与肿瘤进展[3]。TAMs介导的免疫抑制主要与微环境中浸润的T细胞的种类、功能相关。TAMs可通过至少3种机制直接抑制细胞毒性T淋巴细胞(cytotoxic T lymphocytes,CTL)的免疫功能介导免疫抑制[4]:①通过表达免疫检查点如程序性细胞死亡配体1(programmed cell death 1 ligand 1,PD-L1)、B7-H4(B7家族的重要成员,又称为含V-set域T细胞激活抑制因子1)与CTL相互作用,负性调控CTL的免疫功能,削弱其抗瘤效应;②分泌免疫抑制因子IL-10、TGF-β造成CTL失能;③通过代谢途径调节某些能影响CTL活性的代谢产物的表达,如TAMs高表达精氨酸酶1用以分解CTL发挥抗瘤活性所必须的L-精氨酸。除此之外,TAMs还可以通过招募免疫抑制细胞(如Treg细胞)、限制树突状细胞抗原递呈功能、调节血管结构以及细胞外基质来阻碍CTL向微环境的募集等间接途径,影响CTL发挥免疫功能,从而造成肿瘤细胞的免疫逃逸与微环境的免疫抑制[4]

2. TAMs三酰甘油代谢重编程与肿瘤进展

三酰甘油的分解涉及以下几个重要的酶:脂肪三酰甘油脂肪酶(adipose triglyceride lipase,ATGL)、ATGL共激活因子5(abhydrolase domain containing 5,ABHD5)、激素敏感性脂肪酶(hormone-sensitive lipase,HSL)和单甘油酯脂肪酶(monoglyceride lipase,MGLL)[5]。研究指出,相比于脾脏来源的巨噬细胞,结直肠癌TAMs中ABHD5显著高表达,通过C/EBPε信号通路,抑制自身亚精胺合酶表达,导致亚精胺的产生减少,从而消除TAMs来源的亚精胺对结直肠癌细胞的增殖抑制作用[6]。出乎意料的是,单细胞测序表明结直肠癌TAMs中ABHD5的表达存在异质性。高表达ABHD5的TAMs促进肿瘤的生长(促进转移的能力不明显),而低表达ABHD5的TAMs则倾向于促进肿瘤细胞的转移。机制研究表明,结直肠癌TAMs中ABHD5通过核因子(neuclear factor,NF)-κB通路,导致基质金属蛋白酶9表达降低,从而抑制结直肠癌细胞肺转移[5]。还有研究发现,MGLL,在结直肠癌TAMs中低表达,直接造成TAMs内脂质积聚。2-花生四烯醇甘油(2-arachidonoylglycerol,2-AG)是内源性大麻素2(cannabinoid 2,CB2)受体的配体,也是MGLL催化分解的底物。CB2和Toll样受体4(Toll like receptors 4,TLR4)在TAMs中于空间上相互靠近,存在着蛋白-蛋白相互作用。当CB2信号被2-AG激活时,TAMs中TLR4信号途径可以被CB2-TLR4蛋白间相互作用抑制。因此,TAMs的MGLL低表达,2-AG分解受限,堆积的2-AG激活CB2信号,从而阻遏了TLR4信号,导致TAMs向M2样表型极化[7]。ABHD5除具有辅助激活ATGL的作用外,也被定义为一种抑癌因子,在结直肠癌细胞中呈低表达,通过增强无氧糖酵解和上皮间质转化促进癌细胞恶性进展[8]。而在结直肠癌TAMs中,ABHD5的表达上调,通过抑制亚精胺这一中间介质的表达来促进肿瘤的发展。因此,肿瘤微环境中肿瘤细胞与TAMs在脂代谢方面拥有相反的脂质代谢重编程。看似矛盾,在肿瘤微环境反而恰到好处,反映了TAMs被肿瘤细胞成功“策反”。通过代谢重编程,TAMs一方面避免了在营养匮乏的微环境中参与营养物质“争夺”;另一方面则“被动”地改变功能表型,更倾向于朝着具有促瘤效应的M2型极化。

3. TAMs脂肪酸及其衍生物的代谢重编程与肿瘤进展

M1型巨噬细胞更加倾向于糖酵解快速提供能量,并分泌大量的乳酸。然而M2型巨噬细胞往往表现出增强的脂肪酸氧化磷酸化能力,产生大量ATP作为重要的能量来源[1]。TAMs通常具有M2样巨噬细胞的表型,其内在的脂肪酸代谢重编程需要进一步探索。研究表明[9],来源于人类黑色素瘤以及结直肠癌的TAMs通过清道夫受体CD36摄取大量脂质来维持增强的脂肪酸氧化,并以此作为细胞能量代谢的主要来源。增强的脂肪酸氧化又通过STAT6磷酸化促进Mrc1、Tgm2、Arg1等基因的表达以维持TAMs的M2样表型,从而促进肿瘤进展。过氧化物酶体增殖物激活受体(peroxisome proliferator activated receptor,PPAR)信号通路可促进巨噬细胞的脂肪酸氧化[10-11]。WU等[12]发现肝细胞癌TAMs受体相互作用蛋白激酶3 (receptor interacting protein kinase 3,RIPK3)表达下调,通过抑制半胱氨酸天冬氨酸蛋白酶1切割PPAR,导致PPAR通路激活,增强脂肪酸氧化能力,促进TAMs向M2样巨噬细胞活化。国内学者还发现卵巢癌干细胞可通过PPARγ/NF-κB促进TAMs向M2极化[13]。此外,TAMs增强的脂肪酸氧化还可以促进肿瘤细胞的侵袭力。研究人员发现肝细胞癌来源的TAMs通过产生活性氧(reactive oxygen species,ROS)促进IL-1β分泌,从而支持肝癌细胞体外侵袭能力,而阻断脂肪酸氧化可以削弱TAMs的这一效应[14]

多不饱和脂肪酸(如花生四烯酸)衍生物如前列腺素、血栓噁烷等,具有很强的生物活性。大量研究表明,前列腺素与肿瘤细胞的增殖、转移、免疫逃逸等密切相关[15-17]。程序性细胞死亡受体1(programmed cell death 1,PD-1)及其配体PD-L1所介导的免疫抑制在肿瘤进展中起着关键作用[18]。PRIMA等[19]发现膀胱肿瘤来源的TAMs高表达PD-L1,进一步分析表明前列腺素E2(prostaglandin E2,PGE2)形成酶(cyclooxygenase 2,COX2)和微粒体PGE2合酶1(microsomal PGE2 synthase 1,mPGES1)在TAMs中显著高表达,并分泌大量的PGE2。通过药物抑制COX2、mPGES1或者在TAMs过表达PGE2降解酶15-羟基前列腺素脱氢酶可以抑制TAMs PD-L1的表达[19]。因此,靶向PGE2代谢有助于缓解TAMs PD-L1介导的免疫抑制。BIANCHINI等[20]也发现COX2在人类原位黑色素瘤TAMs中呈高表达,并可作为黑色素瘤进展的有效生物标记。白三烯也是一种重要的脂肪酸衍生物,5-脂氧合酶(5-lipoxygenase,5-LO)是白三烯合成的关键酶。研究发现,人类乳腺癌TAMs中5-LO 表达降低,造成白三烯合成减少,招募效应T细胞的能力下降,从而有利于肿瘤进展[21]。此外,15-脂氧合酶-2(15-lipoxygenase-2,15-LOX2)在人肾细胞癌TAMs表达上调。15(S)-羟基二十碳四烯酸〔15(S)-hydroxyeicosatetraenoic acid, 15(S)-HETE〕是15-LOX2的代谢产物。TAMs通过15-LOX2/15(S)-HETE通路产生大量的免疫抑制性细胞因子IL-10。抑制15-LOX2活性可显著降低肾细胞癌TAMs中IL-10的表达,从而削弱TAMs介导的免疫抑制[22]

脂肪酸结合蛋白(fatty acid binding protein,FABP)在脂肪酸的代谢、细胞内定位等方面起着重要作用,并且也参与肿瘤(如恶性胶质瘤)的发生发展[23-24]。FABP在TAMs中的表达及其与肿瘤的进展也有相关报道。有研究指出,表皮脂肪酸结合蛋白(epidermalfatty acid binding protein,E-FABP)在小鼠乳腺癌TAMs中显著高表达,并且以调控脂滴形成的方式促进IFN-β的产生,从而招募效应细胞(特别是NK细胞),抑制肿瘤进展[25]。与此一致的是,一种名为EI-05的化合物作为新型E-FABP激活剂可显著促进TAMs脂滴的形成和IFN-β的产生,提高TAMs的肿瘤抗原递呈能力以及CD4+T、CD8+T细胞的浸润能力,并抑制小鼠E0771乳腺肿瘤进展[26]。此外,脂肪细胞/巨噬细胞脂肪酸结合蛋白(adipocyte/macrophage fatty acid binding protein,A-FABP)特异性地在小鼠/人类乳腺癌F4/80+CD11b+MHCⅡLy6CTAMs中呈高表达,通过NF-κB/miR-29b/IL-6/STAT3通路促进乳腺癌细胞增殖与转移[27]。由此看来,不同的脂肪酸结合蛋白在肿瘤发生发展方面具有不同的生物学功能,其中具体的机制有待更深入地阐明。

4. TAMs胆固醇代谢重编程与肿瘤进展

膜胆固醇主要参与脂质筏这一结构的组成,在调控信号传导及随后的细胞功能方面发挥关键作用[28]。例如,高密度脂蛋白介导小鼠和人类原代巨噬细胞膜胆固醇被动耗竭和脂质筏结构破坏,可通过激活PKC/NF-κB/STAT1轴增强TLR诱导的信号传导,从而增加巨噬细胞炎症细胞因子(如TNF-α)的表达[28]。胆固醇代谢重编程在TAMs中的表现近年来也有研究。GOOSSENS等[29]发现,卵巢癌细胞通过透明质酸介导TAMs膜胆固醇外流,以依赖STAT6以及PI3K的方式促进TAMs向M2样巨噬细胞活化与肿瘤进展。另外,三磷酸腺苷结合盒转运蛋白G1(ATP binding cassette transporter,ABCG1)是调节细胞胆固醇稳态的ABC转运蛋白家族的成员,也可以介导膜胆固醇外流[30]。研究发现在MB49膀胱癌或B16F1黑色素瘤来源的TAMs中ABCG1表达缺失,并通过NF-κB p65通路促进TAMs向M1样巨噬细胞活化,表现出对肿瘤细胞增强的细胞毒作用,抑制肿瘤增殖[31]。因此,耗竭TAMs膜胆固醇含量介导TAMs向M1样巨噬细胞活化,也许会成为未来肿瘤治疗的新方向。除膜胆固醇的外流,胆固醇代谢物27-羟基胆固醇(27-hydroxycholesterol,27-HC)在TAMs的活化方面也有一定作用。27-HC合酶CYP27A1在小鼠乳腺癌来源的TAMs中显著上调,导致27-HC显著高表达。27-HC不仅可以促进雌激素受体阳性乳腺癌细胞增殖,还可以促进TAMs分泌CCL2等趋化因子招募更多的单核细胞。后者在肿瘤细胞的影响下极化为M2样巨噬细胞(TAMs)并高表达27-HC,进一步上调肿瘤微环境中27-HC的含量,从而形成恶性的正反馈[32]。总之,肿瘤微环境中胆固醇相关代谢重编程值得进一步探索。

5. TAMs磷脂代谢重编程与肿瘤进展

磷脂可分为甘油磷脂和鞘磷脂两大类,参与细胞结构的组成以及充当某些通路中的信号分子。巨噬细胞磷脂代谢的变化也影响它们的功能表型。例如,1-磷酸鞘氨醇能通过IL-4信号介导巨噬细胞M2样极化[33]。再者,磷脂酰丝氨酸的氧化产物(ox-phosphatidylserine,ox-PS)可以通过抑制LPS诱导的JNK磷酸化和NF-κB核转位减弱巨噬细胞炎症信号[34]。那么,TAMs中磷脂代谢又会发生怎样的重编程呢?溶血磷脂酸(lysophosphatidic acid,LPA)可由分泌型磷脂酶A1或A2(secretory phospholipaseA1/A2,sPLA1或sPLA2)及溶血磷脂酶Autotaxin(ATX)介导产生,在肿瘤的生长、侵袭、转移等方面具有重要作用[35-37]。研究发现,晚期浆液性卵巢癌患者腹水中LPA含量明显上调,并与患者早期疾病复发密切相关。卵巢癌TAMs来源的LPA是腹水中LPA含量升高的主要贡献者,得益于TAMs磷脂酶PLA2以及ATX显著表达,而升高的LPA又进一步增强了卵巢癌细胞的侵袭能力[35]。我们之前的研究也发现[38]:LPA还可以通过TAMs上的LPA受体1/3经p38/p65途径促进TAMs向M1样巨噬细胞活化。在这项研究中,具有将LPA代谢为磷脂酸功能的溶血磷脂酸酰基转移酶δ,也称为酰基甘油-3-磷酸-O-酰基转移酶4(acylglycerol-3-phosphate O-acyltransferase 4,Agpat4),其在结肠癌细胞高表达,引起肿瘤微环境中LPA含量降低,导致TAMs向M1样极化的刺激信号缺乏,最终促进肿瘤恶性进展。另外,磷脂合成与TAMs促瘤活性也有一定关系。RABOLD等[39]发现甲状腺癌和神经母细胞瘤TAMs中鞘磷脂和磷脂酰乙醇胺合成增加,并且M2样巨噬细胞表型的标志(CD206、CD163和MerTK)以及ROS表达上升。ROS被认为有助于维持甲状腺细胞癌变后续阶段基因组的不稳定性[40],从而促进甲状腺癌的发展。抑制甲状腺癌TAMs的脂肪酸合酶,导致鞘磷脂和磷脂酰乙醇胺合成减少,同时也显著抑制TAMs来源的ROS产生,因此减弱了TAMs的促瘤活性[39]。目前TAMs磷脂代谢重编程的相关报道较少,但磷脂代谢与TAMs活化之间的相互作用仍然是广大科研工作者的研究热点。

6. 展望

综上所述,TAMs脂代谢重编程可以调节自身的表型与功能,从而表现促瘤或者抗瘤的效应。因此,干预脂代谢促进TAMs向M1样巨噬细胞极化有望成为一种极具潜力的肿瘤治疗策略。然而,这一干预策略的实施还有诸多问题需要进一步解决。首先,肿瘤及肿瘤微环境细胞的代谢极具异质性。同一条代谢通路或者同一个代谢靶点,在不同的细胞中实施干预,可能具有一致或者完全相反的肿瘤干预效果。其次,在不同肿瘤类型之间或者同一肿瘤不同亚型、甚至同一肿瘤不同发展阶段,脂代谢的特征也不尽相同。再次,肿瘤细胞及间质细胞如何发生脂代谢重编程以及重编程调控细胞活性的机制,还有待更全面深入的探究。因此,迫切需要在TAMs与肿瘤细胞之间,甚至是微环境中其他间质细胞之间挖掘更精准的靶向TAMs代谢途径的新方法,从而更好地发挥代谢重编程在肿瘤治疗方面的作用。

Funding Statement

国家自然科学基金(No. 81872028)资助

References

  • 1.VITALE I, MANIC G, COUSSENS L M, et al Macrophages and metabolism in the tumor microenvironment. Cell Metab. 2019;30(1):36–50. doi: 10.1016/j.cmet.2019.06.001. [DOI] [PubMed] [Google Scholar]
  • 2.MEHLA K, SINGH P K Metabolic regulation of macrophage polarization in cancer. Trends Cancer. 2019;5(12):822–834. doi: 10.1016/j.trecan.2019.10.007. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 3.RABOLD K, NETEA M G, ADEMA G J, et al Cellular metabolism of tumor-associated macrophages—functional impact and consequences. FEBS Lett. 2017;591(19):3022–3041. doi: 10.1002/1873-3468.12771. [DOI] [PubMed] [Google Scholar]
  • 4.DENARDO D G, RUFFELL B Macrophages as regulators of tumour immunity and immunotherapy. Nat Rev Immunol. 2019;19(6):369–382. doi: 10.1038/s41577-019-0127-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 5.SHANG S, JI X, ZHANG L, et al Macrophage ABHD5 suppresses NFkappaB-dependent matrix metalloproteinase expression and cancer metastasis. Cancer Res. 2019;79(21):5513–5526. doi: 10.1158/0008-5472.CAN-19-1059. [DOI] [PubMed] [Google Scholar]
  • 6.MIAO H, OU J, PENG Y, et al. Macrophage ABHD5 promotes colorectal cancer growth by suppressing spermidine production by SRM. Nat Commun, 2016, 7: 11716[2020-11-03]. https://www.nature.com/articles/ncomms11716. doi: 10.1038/ncomms11716.
  • 7.XIANG W, SHI R, KANG X, et al Monoacylglycerol lipase regulates cannabinoid receptor 2-dependent macrophage activation and cancer progression. Nat Commun. 2018;9(1):2574–2586. doi: 10.1038/s41467-018-04999-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 8.OU J, MIAO H, MA Y, et al Loss of ABHD5 promotes colorectal tumor development and progression by inducing aerobic glycolysis and epithelial-mesenchymal transition. Cell Rep. 2014;9(5):1798–1811. doi: 10.1016/j.celrep.2014.11.016. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 9.SU P, WANG Q, BI E, et al Enhanced lipid accumulation and metabolism are required for the differentiation and activation of tumor-associated macrophages. Cancer Res. 2020;80(7):1438–1450. doi: 10.1158/0008-5472.CAN-19-2994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 10.VATS D, MUKUNDAN L, ODEGAARD J I, et al Oxidative metabolism and PGC-1beta attenuate macrophage-mediated inflammation. Cell Metab. 2006;4(1):13–24. doi: 10.1016/j.cmet.2006.05.011. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 11.MARÉCHAL L, LAVIOLETTE M, RODRIGUE-WAY A, et al The CD36-PPARγ pathway in metabolic disorders. Int J Mol Sci. 2018;19(5):1529–1544. doi: 10.3390/ijms19051529. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 12.WU L, ZHANG X, ZHENG L, et al RIPK3 orchestrates fatty acid metabolism in tumor-associated macrophages and hepatocarcinogenesis. Cancer Immunol Res. 2020;8(5):710–721. doi: 10.1158/2326-6066.CIR-19-0261. [DOI] [PubMed] [Google Scholar]
  • 13.DENG X, ZHANG P, LIANG T, et al Ovarian cancer stem cells induce the M2 polarization of macrophages through the PPARgamma and NF-kappaB pathways. Int J Mol Med. 2015;36(2):449–454. doi: 10.3892/ijmm.2015.2230. [DOI] [PubMed] [Google Scholar]
  • 14.ZHANG Q, WANG H, MAO C, et al. Fatty acid oxidation contributes to IL-1β secretion in M2 macrophages and promotes macrophage-mediated tumor cell migration. Mol Immunol, 2018, 94: 27-35[2020-11-03]. https://pubmed.ncbi.nlm.nih.gov/29248877/. doi: 10.1016/j.molimm.2017.12.011.
  • 15.ZELENAY S, VAN DER VEEN A G, BÖTTCHER J P, et al Cyclooxygenase-dependent tumor growth through evasion of immunity. Cell. 2015;162(6):1257–1270. doi: 10.1016/j.cell.2015.08.015. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 16.CEN B, LANG J D, DU Y, et al. Prostaglandin E2 induces miR675-5p to promote colorectal tumor metastasis via modulation of p53 expression. Gastroenterology, 2020, 158(4): 971-984.e10[2020-11-03]. https://pubmed.ncbi.nlm.nih.gov/31734182/. doi: 10.1053/j.gastro.2019.11.013.
  • 17.WANG D, DUBOIS R N Role of prostanoids in gastrointestinal cancer. J Clin Invest. 2018;128(7):2732–2742. doi: 10.1172/JCI97953. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 18.FENG M, JIANG W, KIM B Y S, et al Phagocytosis checkpoints as new targets for cancer immunotherapy. Nature Reviews Cancer. 2019;19(10):568–586. doi: 10.1038/s41568-019-0183-z. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 19.PRIMA V, KALIBEROVA L N, KALIBEROV S, et al COX2/mPGES1/PGE2 pathway regulates PD-L1 expression in tumor-associated macrophages and myeloid-derived suppressor cells. Proc Natl Acad Sci U S A. 2017;114(5):1117–1122. doi: 10.1073/pnas.1612920114. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 20.BIANCHINI F, MASSI D, MARCONI C, et al Expression of cyclo-oxygenase-2 in macrophages associated with cutaneous melanoma at different stages of progression. Prostaglandins Other Lipid Mediat. 2007;83(4):320–328. doi: 10.1016/j.prostaglandins.2007.03.003. [DOI] [PubMed] [Google Scholar]
  • 21.RINGLEB J, STRACK E, ANGIONI C, et al Apoptotic cancer cells suppress 5-lipoxygenase in tumor-associated macrophages. J Immunol. 2018;200(2):857–868. doi: 10.4049/jimmunol.1700609. [DOI] [PubMed] [Google Scholar]
  • 22.DAURKIN I, ERUSLANOV E, STOFFS T, et al Tumor-associated macrophages mediate immunosuppression in the renal cancer microenvironment by activating the 15-lipoxygenase-2 pathway. Cancer Res. 2011;71(20):6400–6409. doi: 10.1158/0008-5472.CAN-11-1261. [DOI] [PubMed] [Google Scholar]
  • 23.MCKILLOP I H, GIRARDI C A, THOMPSON K J. Role of fatty acid binding proteins (FABPs) in cancer development and progression. Cell Signal, 2019, 62: 109336[2020-11-03]. https://pubmed.ncbi.nlm.nih.gov/31170472/. doi: 10.1016/j.cellsig.2019.06.001.
  • 24.ELSHERBINY M E, EMARA M, GODBOUT R Interaction of brain fatty acid-binding protein with the polyunsaturated fatty acid environment as a potential determinant of poor prognosis in malignant glioma. Prog Lipid Res. 2013;52(4):562–570. doi: 10.1016/j.plipres.2013.08.004. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 25.ZHANG Y, SUN Y, RAO E, et al Fatty acid-binding protein E-FABP restricts tumor growth by promoting IFN-β responses in tumor-associated macrophages. Cancer Res. 2014;74(11):2986–2998. doi: 10.1158/0008-5472.CAN-13-2689. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 26.RAO E, SINGH P, ZHAI X, et al Inhibition of tumor growth by a newly-identified activator for epidermal fatty acid binding protein. Oncotarget. 2015;6(10):7815–7827. doi: 10.18632/oncotarget.3485. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 27.HAO J, YAN F, ZHANG Y, et al Expression of adipocyte/macrophage fatty acid-binding protein in tumor-associated macrophages promotes breast cancer progression. Cancer Res. 2018;78(9):2343–2355. doi: 10.1158/0008-5472.CAN-17-2465. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 28.VAN DER VORST E P C, THEODOROU K, WU Y, et al High-density lipoproteins exert pro-inflammatory effects on macrophages via passive cholesterol depletion and PKC-NF-kappaB/STAT1-IRF1 signaling. Cell Metab. 2017;25(1):197–207. doi: 10.1016/j.cmet.2016.10.013. [DOI] [PubMed] [Google Scholar]
  • 29.GOOSSENS P, RODRIGUEZ-VITA J, ETZERODT A, et al. Membrane cholesterol efflux drives tumor-associated macrophage reprogramming and tumor progression. Cell Metab, 2019, 29(6): 1376−1389.e4[2020-11-03]. https://pubmed.ncbi.nlm.nih.gov/30930171/. doi: 10.1016/j.cmet.2019.02.016.
  • 30.WANG N, LAN D, CHEN W, et al ATP-binding cassette transporters G1 and G4 mediate cellular cholesterol efflux to high-density lipoproteins. Proc Natl Acad Sci U S A. 2004;101(26):9774–9779. doi: 10.1073/pnas.0403506101. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 31.SAG D, CEKIC C, WU R, et al. The cholesterol transporter ABCG1 links cholesterol homeostasis and tumour immunity. Nat Commun, 2015, 6: 6354[2020-11-03]. https://www.nature.com/articles/ncomms7354. doi: 10.1038/ncomms7354.
  • 32.SHI S Z, LEE E J, LIN Y J, et al Recruitment of monocytes and epigenetic silencing of intratumoral CYP7B1 primarily contribute to the accumulation of 27-hydroxycholesterol in breast cancer. Am J Cancer Res. 2019;9(10):2194–2208. [PMC free article] [PubMed] [Google Scholar]
  • 33.PARK S J, LEE K P, KANG S, et al Sphingosine 1-phosphate induced anti-atherogenic and atheroprotective M2 macrophage polarization through IL-4. Cell Signal. 2014;26(10):2249–2258. doi: 10.1016/j.cellsig.2014.07.009. [DOI] [PubMed] [Google Scholar]
  • 34.MACIEL E, NEVES B M, MARTINS J, et al. Oxidized phosphatidylserine mitigates LPS-triggered macrophage inflammatory status through modulation of JNK and NF-kB signaling cascades. Cell Signal, 2019, 61: 30-38.
  • 35.REINARTZ S, LIEBER S, PESEK J, et al Cell type-selective pathways and clinical associations of lysophosphatidic acid biosynthesis and signaling in the ovarian cancer microenvironment. Mol Oncol. 2019;13(2):185–201. doi: 10.1002/1878-0261.12396. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 36.BIAN D, SU S, MAHANIVONG C, et al Lysophosphatidic acid stimulates ovarian cancer cell migration via a Ras-MEK kinase 1 pathway. Cancer Res. 2004;64(12):4209–4217. doi: 10.1158/0008-5472.CAN-04-0060. [DOI] [PubMed] [Google Scholar]
  • 37.HOUBEN A J, MOOLENAAR W H Autotaxin and LPA receptor signaling in cancer. Cancer Metastasis Rev. 2011;30(3/4):557–565. doi: 10.1007/s10555-011-9319-7. [DOI] [PubMed] [Google Scholar]
  • 38.ZHANG D, SHI R, XIANG W, et al The Agpat4/LPA axis in colorectal cancer cells regulates antitumor responses via p38/p65 signaling in macrophages. Signal Transduct Target Ther. 2020;5(1):24–36. doi: 10.1038/s41392-020-0117-y. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 39.RABOLD K, ASCHENBRENNER A, THIELE C, et al. Enhanced lipid biosynthesis in human tumor-induced macrophages contributes to their protumoral characteristics. J Immunother Cancer, 2020, 8(2): e000638[2020-11-03]. https://pubmed.ncbi.nlm.nih.gov/32943450/. doi: 10.1136/jitc-2020-000638.
  • 40.EMANUELE S, D'ANNEO A, CALVARUSO G, et al The double-edged sword profile of redox signaling: oxidative events as molecular switches in the balance between cell physiology and cancer. Chem Res Toxicol. 2018;31(4):201–210. doi: 10.1021/acs.chemrestox.7b00311. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Sichuan University (Medical Sciences) are provided here courtesy of Editorial Board of Journal of Sichuan University (Medical Sciences)

RESOURCES