Abstract
目的
探讨比较基因组杂交微阵列(array-based comparative genomic hybridization,a-CGH)技术在高龄孕妇产前诊断胎儿染色体异常中的临床意义。
方法
选取因单纯高龄因素孕期行羊膜腔穿刺采集羊水标本进行产前检查诊断的孕妇3 677例为研究对象,采用CGXTM(8X60K)芯片对采集的羊水标本进行a-CGH检测,并采用Genoglyphix®软件进行分析。
结果
3 677例孕妇羊水标本中,a-CGH分析共检出染色体异常75例,异常率为2.04%,其中非整倍体40例(21-三体22例,18-三体5例,XXY 8例,XYY 3例,X/XX 2例),占53.33%;致病性拷贝数变异(copy number variations,CNVs)24例(19例为微缺失,5例为微重复,片段大小为323~26 780 kb),占32.00%;可能致病CNVs 11例(4例为微缺失,7例为微重复,片段大小为358~16 873 kb),占14.67%。此外,检出不明意义CNVs 31例,占总数的0.84%。高龄孕妇年龄每增长一岁,染色体非整倍体检出率明显增高(P<0.05),但致病性CNVs检出率在各年龄段差异无统计学意义(P>0.05)。
结论
a-CGH不仅可以检测非整倍体异常,还可以检出微缺失/微重复综合征等染色体拷贝数变异。胎儿染色体非整倍体的发生率与年龄密切相关,但染色体拷贝数变异发生率与年龄无显著相关性。
Keywords: 染色体微阵列分析, 比较基因组杂交微阵列, 拷贝数变异, 染色体非整倍体, 高龄, 产前诊断
Abstract
Objective
To evaluate the clinical application of array-based comparative genomic hybridization (a-CGH) in the prenatal diagnosis of fetal chromosomal aberrations in gravidas with advanced maternal age (AMA).
Methods
A total of 3 677 amniotic fluid samples from pregnant women who underwent amniocentesis for prenatal diagnosis solely due to AMA were selected. Array-CGH was performed on the Agilent CGXTM (8X60K) platform and the data were analyzed by the Genoglyphix software.
Results
The overall detection rate of chromosomal aberration was 2.04% (75/3677), with 53.33% (40/75) being aneuploidies, including 22 cases of trisomy-21, 5 cases of trisomy-18, 8 cases with XXY, 3 cases of XYY and 2 cases of mosaic monosomy X, 32.00% (24/75) being pathogenic copy number variations (pCNVs), including 19 cases of microdeletion and 5 cases of microduplication, with the fragment size ranging from 323 kb to 26 780 kb, and 14.67% (11/75) being likely pathogenic CNVs (lpCNVs), including 7 cases of microdeletion and 7 cases of microduplication, with the fragment size ranging from 358 kb to 16 873 kb. Besides, the detection rate of CNVs of unknown clinical significance (VUS) was 0.84% (31/3 677). The detection rate of aneuploidies increased significantly with increased maternal age (P<0.05). However, there were no significant differences in the detection rate of p/lpCNVs among different maternal age groups (P>0.05).
Conclusion
Our findings suggest that, compared with traditional karyotype analysis, a-CGH not only detects aneuploidies, but also detect pathogenic CNVs, including microdeletion/microduplication syndromes. The detection rate of fetal aneuploidies was closely correlated to maternal age. However, no correlation was found between the detection rate of p/lpCNVs and maternal age.
Keywords: Chromosome microarray analysis, Array-based comparative genomic hybridization, Copy number variation, Aneuploidy, Advanced maternal age, Prenatal diagnosis
染色体微阵列分析技术(chromosomal microarray analysis,CMA)根据芯片设计与检测原理的不同分为两大类:比较基因组杂交微阵列(array-based comparative genomic hybridization,a-CGH)和单核苷酸多态性微阵列(single nucleotide polymorphism array,SNP array)[1]。其中,a-CGH技术是一种高分辨率、全基因组范围内的分子检测技术,相比于传统的细胞遗传学核型分析技术具有高通量、高分辨、高灵敏度、操作自动化等优势[2];它能够检测出常规G显带核型分析技术不易发现的染色体微缺失/微重复综合征[3]。
染色体微缺失/微重复综合征是一类多由小于5 Mb的染色体拷贝数变异(copy number variations,CNVs)所致,临床表征复杂多变,包括:智力低下、发育迟滞、面容异常、多发畸形等[4],而传统染色体核型检查方法不能检出。目前已知的染色体微缺失/微重复综合征高达300多种,总体发病率约1/600[5],因此,对CNVs的产前诊断能发现染色体微缺失/微重复综合征等异常,是目前降低出生缺陷率的重要手段。
高龄妊娠或妊娠合并高危检查指征(如超声异常、血清学筛查异常、夫妻双方染色体异常或不良妊娠史等)是进行产前诊断胎儿染色体异常的重要临床指征[6]。以往认为,高龄与染色体非整倍体关系密切[7],但年龄与染色体微缺失/微重复综合征的关系研究较少。有研究表明[8],约15%的人类遗传病由基因组CNVs引起,因此a-CGH技术能检出染色体核型分析技术检测不到的基因组微缺失/微重复变异显得尤为重要。本研究将单纯因高龄因素并选择有创检查(羊膜腔穿刺术采集羊水标本)进行产前诊断的孕妇作为研究对象,使用a-CGH技术对采集的孕妇羊水标本进行胎儿染色体异常检测,为产前遗传咨询提供数据做参考。
1. 对象与方法
1.1. 对象
选取2018年12月−2019年12月在四川大学华西第二医院进行产前诊断的3 677例高龄孕妇为研究对象,孕妇预产期年龄为35~50岁,平均年龄为(37.27±2.31)岁,所有孕妇均无介入性产前诊断禁忌症。本研究获得四川大学华西第二医院伦理委员会批准(批准号20180094)。
1.2. 纳入和排除标准
纳入标准:①孕妇预产期年龄≥35岁;②孕妇均知情并签字同意进行此检查。
排除标准:①预产期年龄<35岁;②胎儿存在超声异常,包括超声结构异常或超声软指标,如颈项透明层(NT)增厚、侧脑室增宽、脉络丛囊肿、后颅窝积液、心内点状强回声、单脐动脉、长骨短 、肠管强回声、鼻骨缺失等;③术前已明确夫妻双方存在染色体异常;④曾生育(或引产)过染色体异常患儿(胎儿)且未行夫妻双方染色体检测排除染色体异常的孕妇。
1.3. 方法
1.3.1. 相关试剂
a-CGH为美国Agilent Technologies公司生产的PerkinElmer CGXTM(8X60K)芯片,其配套试剂包括美国Agilent Technologies公司生产的DNA纯化试剂盒(PureLinkTM Genomic DNA Kits)、标记试剂盒(SureTag DNA Labeling Kit,Purification Columns)和杂交试剂盒(Oligo aCGH/Chip-on-Chip Hybridization Kit)。荧光定量聚合酶链反应(QF-PCR)为广州达瑞生物技术股份有限公司生产的染色体(13/18/21/XY)多重STR基因分型试剂盒(荧光PCR毛细管电泳法)。荧光原位杂交(fluorescence in situ hybridization,FISH):染色体非整倍体(DNA)检测试剂盒(荧光原位杂交法)(AneuVysion Multicolor DNA Probe Kit)为雅培分子有限公司(Abbott Molecular Inc.)产品。
1.3.2. 羊水标本的采集
孕妇均在超声引导下无菌操作进行羊膜腔穿刺、采集羊水20 mL,分装于4支无菌离心管中,4 ℃保存,1管用于a-CGH检测,1管用于QF-PCR检测,另2管备用。
1.3.3. 全基因组DNA提取
所有标本提取均采用羊水细胞DNA提取试剂盒〔UPure Tissue DNA Kit(M2012-A96)〕上机(Thermo KingFisherTM Flex)提取,−20 ℃储存备用。
对于离心后肉眼可见血的羊水样本,需进行羊水细胞培养、分离,待羊水细胞培养成功后提取羊水细胞DNA再行实验。
1.3.4. 染色体微阵列分析检测
提取的DNA纯度要求达到A260/A280为1.8~2.0,A260/A230为>1.0;取200 ng/μL的待测样本DNA 13.0 μL,人类参照DNA稀释成相同浓度及体积。样本DNA和对照DNA用随机引物进行标记,待测DNA用Cy5标记,对照DNA用Cy3标记。标记好的产物使用纯化试剂(PureLinkTM Genomic DNA Kits)纯化DNA,将待测DNA与对照DNA以1∶1比例混合。加入封闭非特异性重复序列的人类Cot-1 DNA后进行预杂交,并将预杂交好的DNA加载到芯片上,65 ℃杂交24 h。杂交结束后,洗去芯片上剩余的杂交缓冲液以及未杂交的DNA。用SureScan Dx Microarray Scanner芯片扫描仪进行扫描。
结果判断:用Genoglyphix®分析软件( https://uk.genoglyphix.com/)进行数据判读。并按照《拷贝数变异检测在产前诊断中的应用指南》[9]对CNVs进行分析。将CNVs分为致病性CNVs(pathogenic CNVs,pCNVs)、可能致病性CNVs(like pathogenic CNVs,lpCNVs)、不明意义CNVs(uncertain clinical significance,VUS)、可能良性CNVs(likely benign CNVs)和良性CNVs(benign CNVs)五类。对于可能良性及良性CNVs不予报道。主要查询数据库包括:①Databases of Genomic Variants (DGV) ( http://projects.tcag.ca/variation/);②Databases of Chromosomal Imbalance and Phenotype in Humans Using Ensembl Resurces (DECIPHER) ( http://decipher.sanger.ac.uk/); ③Clinvar ( https://www.ncbi.nlm.nih.gov/clinvar);④Clinical Genome Resource (ClinGen) ( https://www.ncbi.nlm.nih.gov/projects/dbvar/clingen/);⑤GeneReviews ( https://www.ncbi.nlm.nih.gov/books/NBK1116/);⑥Online Mendelian Inheritance in Man (OMIM) ( https://www.ncbi.nlm.nih.gov/omim);⑦PubMed ( https://www.ncbi.nlm.nih.gov/pubmed)。
1.3.5. QF-PCR检测
所有羊水样本均同时进行QF-PCR检测,用于快速检测常见染色体非整倍体(13-、18-、21-三体及性染色体数目异常)及检出a-CGH分析无法检出的三倍体。实验操作严格按照试剂盒说明书进行。
1.3.6. 荧光原位杂交(fluorescence in situ hybridization,FISH)检测
当a-CGH分析提示性染色体异常时,进一步行FISH检测。实验操作严格按照试剂盒说明书进行。当异常细胞比例介于10%~60%时,判定为嵌合体;当异常细胞比例大于60%时,判定为该指标异常[10]。
1.4. 统计学方法
计量资料采用t检验,计数资料χ2检验,P<0.05为差异有统计学意义。
2. 结果
共检测3 677例羊水样本,其中195例羊水样本离心后肉眼可见血,进行细胞培养和分离后检测,所有羊水样本a-CGH均检测成功。
2.1. a-CGH总体检测结果
a-CGH分析共检出染色体异常75例,总体检出率2.04%(75/3 677),其中非整倍体40例,占53.33%;pCNVs 24例,占32.00%;lpCNVs 11例,占14.67%。此外,检出 VUS 31例,占总数的0.84%。在不同年龄段中非整倍体检出率为0.35 %~3.86%,p/lpCNVs检出率为0.26% ~1.40%,VUS检出率为0.52% ~1.15%。染色体异常在不同高龄孕妇中的具体分布见表1。
表 1. The results of prenatal a-CGH in 3 677 gravidas with advanced maternal age.
3 677例高龄孕妇羊水a-CGH检测结果
Age/yr. | n | a-CGH results/case (%) | |||
Aneuploidies | p/lpCNVs* | VUS | Normal | ||
p/lpCNVs: Pathogenic or likely pathogenic copy number variations; VUS: Uncertain clinical significance. * Diagnostic CNVs means p/lpCNVs. | |||||
≥35 | 850 | 3 (0.35) | 8 (0.94) | 6 (0.71) | 833 (98.00) |
36- | 783 | 7 (0.89) | 11 (1.40) | 9 (1.15) | 756 (96.55) |
37- | 768 | 5 (0.65) | 9 (1.17) | 5 (0.65) | 749 (97.53) |
38- | 381 | 4 (1.05) | 1 (0.26) | 2 (0.52) | 374 (98.16) |
39- | 279 | 3 (1.08) | 1 (0.36) | 3 (1.08) | 272 (97.49) |
40- | 227 | 3 (1.32) | 2 (0.88) | 2 (0.88) | 220 (96.92) |
>40 | 389 | 15 (3.86) | 3 (0.77) | 4 (1.03) | 367 (94.34) |
Total | 3 677 | 40 (1.09) | 35 (0.95) | 31 (0.84) | 3 571 (97.12) |
2.2. 高龄孕妇不同年龄段染色体异常检出率比较
对每一年龄进行划分,采用年龄段累积的方法,将小于等于该年龄所有高龄孕妇异常率与大于该年龄所有高龄孕妇异常率进行比较,当孕妇年龄大于38岁,与年龄≤38岁相比,染色体异常率增高,差异有统计学意义〔1.73% (48/2 782) vs. 3.02%(27/895), P=0.017〕。进一步进行亚组分析,染色体非整倍体异常率随年龄的增长而增高,而CNV异常率与年龄无关,见表2、图1。
表 2. Comparison of detection rates of chromosomal aberrations among different age groups.
各年龄段异常数检出率比较
Age/yr. | n | Chromosomal abnormalities/case (%) | P | Aneuploidies/case (%) | P | p/lpCNVs/case (%) | P |
p/lpCNVs: Pathogenic or likely pathogenic copy number variations. *P<0.05, vs. older than the certain age group. | |||||||
35 | 850 | 11 (1.29) | 0.079 | 3 (0.35) | 0.018* | 8 (0.94) | 0.971 |
≤36 | 1 633 | 29 (1.78) | 0.312 | 10 (0.61) | 0.013* | 19 (1.16) | 0.237 |
≤37 | 2 401 | 43 (1.79) | 0.143 | 15 (0.62) | <0.000 1* | 28 (1.17) | 0.066 |
≤38 | 2 782 | 48 (1.73) | 0.017* | 19 (0.68) | <0.000 1* | 29 (1.04) | 0.319 |
≤39 | 3 061 | 52 (1.70) | 0.001* | 22 (0.72) | <0.000 1* | 30 (0.98) | 0.695 |
≤40 | 3 288 | 57 (1.73) | <0.000 1* | 25 (0.76) | <0.000 1* | 32 (0.97) | 0.911 |
图 1.
The relationship between chromosomal aberrations and maternal ages
染色体异常与高龄孕妇各年龄段的关系
A: Chromosomal abnormalities; B: Aneuploid; C: Pathogenic or likely pathogenic CNVs.* P<0.05.
2.3. 高龄孕妇胎儿染色体非整倍体的检出
a-CGH共检出非整倍体病例40例:21-三体22例,18-三体5例,XXY 8例,XYY 3例,X/XX 2例。其中1例X/XX病例a-CGH结果提示:arr[GRCh37] Xp22.33q28(2772612_154882515)x1.53(152.110 Mb),性染色体FISH结果提示:X(27)/XX(73);另1例X/XX病例a-CGH结果提示:arr[GRCh37] Xp22.33q28(2772612_154882515)x1.53(152.110 Mb),性染色体FISH结果提示:X(23)/XX(77)。
2.4. 高龄孕妇胎儿染色体CNVs检出情况
a-CGH共检出致病性CNVs 24例,可能致病CNVs 11例。
2.4.1. 致病性CNVs
24例致病性CNVs结果中19例为微缺失,5例为微重复,涉及片段大小为323~26 780 kb,其中片段大于10 Mb仅1例。查见染色体微缺失/微重复综合征16例:16p13.11复发性微缺失(神经认知障碍易感位点)4例,遗传性压力易感性神经病(hereditary liability to pressure palsies,HNPP)2例,22q11缺失综合征(腭心面综合征/DiGeorge综合征)2例,复发性16p12.1微缺失(神经发育易感位点)1例,16p11.2复发性微缺失1例,脱髓鞘型腓骨肌萎缩症1A型(charcot-marie-tooth syndrome type 1A,CMT1A)1例,Ⅰ型神经纤维瘤病微缺失综合征1例,肾囊肿糖尿病综合征( renal cysts and diabetes,RCAD)1例,22q11重复综合征1例,X连锁鱼鳞病(steroid sμlphatase deficiency,STS)1例,精子缺乏因子c(azoospermia factor area C,AZFc)1例。1例男性胎儿查见重复片段涉及杜氏进行性肌营养不良(Duchenne muscular dystrophy,DMD)基因2~44号外显子区域。
其中6例进行了生物学父母比对,其中1例16p13.11复发性微缺失(神经认知障碍易感位点)遗传自无明显表型父亲,1例复发性16p12.1微缺失(神经发育易感位点)遗传自无明显表型父亲,1例遗传性压力易感性神经病遗传自父亲,1例DMD遗传自母亲,2例为新发,见表3。
表 3. Pathogenic CNVs in 24 fetuses.
24例致病性CNVs结果
No. | Age/
yr. |
a-CGH
results |
Known
syndromes |
Sizes of
CNVs/kb |
Copy
number |
OMIM
gene |
Inherited or
de novo |
CNVs: Copy number variations; OMIM: Online mendelian inheritance in man; HNPP: Hereditary liability to pressure palsies; CMT1A: Charcot-marie-tooth syndrome type 1A; RCAD: Renal cysts and diabetes; STS: Steroid sμlphatase deficiency; PWS: Prader-Willi syndrome; AS: Angelman syndrome; AZFc: Azoospermia factor area C; DMD: Duchenne muscular dystrophy; GJA: Gap junction protein, alpha; MYH11: Myosin, heavy chain 11, smooth muscle; AUTS2: Autism susceptibility candidate 2; ZIC2: Zic family, member 2; PMP22: Peripheral myelin protein 22; TBX6: T-box transcription factor 6; EEF2K: Eukaryotic elongation factor 2 kinase; CDR2: Cerebellar degeneration-related autoantigen 2; NF1: Neurofibromin 1; RNF135: Ring finger protein 135; HNF1B: HNF1 homeobox B; PTCHD1: Patched domain-containing protein 1. | |||||||
1 | 41 | arr[GRCh37] 1q21.1q21.2
(146531538_147384520)x1 |
1q21.1 recurrent region
(BP3-BP4, distal) (includes GJA5) |
853 | Loss | GJA5/GJA8 | de novo |
2 | 36 | arr[GRCh37] 7q11.22
(69578697_70026776)x1 |
/ | 448 | Loss | AUTS2 | NA |
3 | 38 | arr[GRCh37] 13q31.1q33.3
(82493401_109273215)x1 |
/ | 26 780 | Loss | ZIC2 | NA |
4 | 37 | arr[GRCh37] 15q11.2q13.1
(22822019_28513165)x3 |
15q11q13 recurrent (PWS/AS) region
(BP1-BP3, Class 1) |
5 691 | Gain | / | de novo |
5 | 36 | arr[GRCh37] 16p13.11
(15049829_16271357)x1 |
16p13.11 recurrent microdeletion
(neurocognitive disorder susceptibility locus) |
1 222 | Loss | MYH11 | NA |
6 | 37 | arr[GRCh37] 16p13.11
(15049829_16275530)x1 |
16p13.11recurrent microdeletion
(neurocognitive disorder susceptibility locus) |
1 226 | Loss | MYH11 | NA |
7 | 34 | arr[GRCh37] 16p13.11
(15049829_16287899)x1 |
16p13.11recurrent microdeletion
(neurocognitive disorder susceptibility locus) |
1 238 | Loss | MYH11 | NA |
8 | 35 | arr[GRCh37] 16p13.11
(15049829_16287899)x1 |
16p13.11recurrent microdeletion
(neurocognitive disorder susceptibility locus) |
1 238 | Loss | MYH11 | Inherited from
normal father |
9 | 36 | arr[GRCh37] 16p13.11p12.3
(15512480_18128488)x3 |
16p13.11 recurrent region
(includes MYH11) |
2 616 | Loss | MYH11 | NA |
10 | 36 | arr[GRCh37] 16p13.11p12.3
(15512480_18128488)x1 |
16p13.11 recurrent region
(includes MYH11) |
2 616 | Loss | MYH11 | NA |
arr[GRCh37]
17p12(14104475_15420102)x1 |
HNPP | 1 316 | Loss | PMP22 | |||
11 | 36 | arr[GRCh37] 16p13.11
(15049829_16287899)x1 |
16p13.11recurrent microdeletion
(neurocognitive disorder susceptibility locus) |
1 238 | Loss | MYH11 | de novo |
12 | 35 | arr[GRCh37] 16p11.2
(29657192_30188268)x3 |
16p11.2 microduplication syndrome | 531 | Gain | TBX6 | NA |
13 | 37 | arr[GRCh37] 16p12.2
(21950360_22428364)x1 |
Recurrent 16p12.1 microdeletion
(neurodevelopmental susceptibility locus) |
478 | Loss | EEF2K, CDR2 | Inherited from
normal mother |
14 | 40 | arr[GRCh37] 17p12
(14104475_15420102)x1 |
HNPP | 1 316 | Loss | PMP22 | Inherited from
normal mother |
15 | 42 | arr[GRCh37] 17p12
(14104475_15420102)x3 |
CMT1A | 1 316 | Gain | PMP22 | NA |
16 | 37 | arr[GRCh37] 17q11.2
(29116494_30314406)x1 |
NF1-microdeletion syndrome | 1 198 | Loss | NF1/RNF135 | NA |
17 | 39 | arr[GRCh37] 17q12
(34816424_36207539)x1 |
RCAD | 1 391 | Loss | HNF1B | NA |
18 | 36 | arr[GRCh37] 22q11.21
(18483068_20745885)x1 |
22q11 deletion syndrome
(Velocardiofacial/DiGeorge syndrome) |
2 263 | Loss | TBX1 | NA |
19 | 37 | arr[GRCh37] 22q11.21
(18919528_21417548)x1 |
22q11 deletion syndrome
(Velocardiofacial/DiGeorge syndrome) |
2 498 | Loss | TBX1 | NA |
20 | 35 | arr[GRCh37] 22q11.21
(18919528_21417548)x3 |
22q11 duplicationsyndrome | 2 498 | Gain | / | NA |
21 | 36 | arr[GRCh37] Xp22.31
(6456777_8119328)x0 |
STS | 1 663 | Loss | STS | NA |
22 | 34 | arr[GRCh37] Xp22.11
(23112972_23436276)x0 |
/ | 323 | Loss | PTCHD1 | NA |
23 | 36 | arr[GRCh37] Xp21.1
(32201247_33179950)x3 |
/ | 979 | Gain | DMD | Inherited from
normal mother |
24 | 37 | arr[GRCh37] Yq11.223q11.23
(25296950_28556002)x0 |
AZFc | 3 259 | Loss | / | NA |
2.4.2. 可能致病CNVs
11例可能致病性CNVs结果中4例为微缺失,7例为微重复,涉及片段长度为358 ~16 873 kb,其中片段大于10 Mb仅1例。4例涉及微缺失/微重复综合征的部分区域:16p13.11复发性微重复(神经认知障碍易感位点)2例,CMT1A 1例,AZFc 1例。见表4。
表 4. Likely pathogenic CNVs in 11 fetuses.
11例可能致病性CNVs结果
No. | Age/
yr. |
a-CGH results | Known syndromes | Sizes of
CNVs/kb |
Copy
number |
OMIM
gene |
Inherited or
de novo |
TAR: Thrombocytopenia-absent radius syndrome; AZFb: Azoospermia factor area B; RBM8A: RNA-binding motif protein 8A; CNTN4: Contactin 4; YTHDC1: YTH domain-containing protein 1; CRKL: V-CRK avian sarcoma virus ct10 oncogene homolog-like. CNVs,OMIM,MYH11, CMT1A, PMP22: Notes same as the table 3. | |||||||
25 | 36 | arr[GRCh37] 1q21.1
(145388977_145746492)x1 |
1q21.1 recurrent (TAR syndrome)
region (BP2-BP3, proximal) (includes RBM8A) |
358 | Loss | RBM8A | de novo |
26 | 36 | arr[GRCh37] 3p26.3p26.2
(101072_3576969)x1 |
/ | 3 476 | Loss | CNTN4/CNTN6 | de novo |
27 | 37 | arr[GRCh37] 4q13.2q21.23
(68632189_85505332)x1 |
/ | 16 873 | Loss | YTHDC1 | de novo |
28 | 37 | arr[GRCh37] 16p13.11
(15125829_16282387)x3 |
16p13.11 recurrent microduplication
(neurocognitive disorder susceptibility locus) (77.1%) |
1 157 | Gain | MYH11 | de novo |
29 | 40 | arr[GRCh37] 16p13.11p12.3
(15512480_18128488)x3 |
16p13.11 recurrent microduplication
(neurocognitive disorder susceptibility locus) (64.9%) |
2 616 | Gain | MYH11 | de novo |
30 | 36 | arr[GRCh37] 17p12
(13478126_14621537)x3 |
Charcot-Marie-Tooth syndrome type 1A
(CMT1A) (38.1%) |
1 143 | Gain | PMP22 | de novo |
31 | 35 | arr[GRCh37] 22q11.21
(20734765_21417548)x3 |
22q11.2 recurrent region
(central, B/C-D) (includes CRKL) |
683 | Gain | CRKL | de novo |
32 | 37 | arr[GRCh37] 22q11.21
(20734765_21417548)x3 |
22q11.2 recurrent region
(central, B/C-D) (includes CRKL) |
683 | Gain | CRKL | de novo |
33 | 42 | arr[GRCh37] 22q11.21
(20734765_21417548)x3 |
22q11.2 recurrent region
(central, B/C-D) (includes CRKL) |
683 | Gain | CRKL | de novo |
34 | 35 | arr[GRCh37] Xp21.3p21.1
(26014588_34408233)x2 |
/ | 8 394 | Gain | / | de novo |
35 | 34 | arr[GRCh37] Yq11.222q11.223
(20812161_24396347)x0 |
AZFb (60.3%) | 3 584 | Loss | / | de novo |
3. 讨论
预产期年龄≥35岁属于高龄妊娠。有研究报道[11],胎儿染色体异常与母亲年龄有密切的关系,随着年龄的增长,胎儿染色体异常率也显著增长。本次研究对高龄孕妇胎儿染色体异常按照年龄进行了分层分析,发现在单纯因高龄进行产前诊断的孕妇中,当孕妇>38岁后,其染色体异常的检出率显著提高。进一步对染色体非整倍体的检出率进行分层分析,发现高龄孕妇中,年龄每增长1岁,其染色体非整倍体的发生率均显著提高,与国内报道一致[12];但有临床意义的CNVs的发生率与年龄无关,与STOSIC 等[13]的报道一致。
CNVs是指基因组DNA中1 kb以上的结构变异,为传统G显带核型分析无法分辨的染色体亚显微结构的改变,包括染色体微缺失/微重复综合征,是导致出生缺陷的重要遗传学病因之一。染色体G显带核型分析作为一种细胞遗传学方法,被认为是诊断染色体异常的“金标准”。染色体核型分析可发现染色体数目异常和结构异常,但需要进行细胞培养、检测周期长(约2~4周)、分辨率较低(只能发现>5~10 Mb的显微结构的染色体异常)等,临床应用存在一定的局限性。因此,对于高龄孕妇胎儿染色体异常的产前诊断,除染色体数目异常外,CNVs的应用价值仍需大样本量研究进一步明确。
本次研究我们对3 677例高龄孕妇进行了羊水a-CGH的检测。共检出染色体异常75例,总体检出率2.04%。其中非整倍体40例,占53.33%。本研究检出的有临床意义的CNVs为0.95%(35/3 677),发生率高于非整倍体中检出率最高的21-三体综合征的发生率(0.60%,22/3 677),且片段绝大多数(33/35)小于10 Mb,传统的染色体G显带核型分析无法检出。因此,与传统的染色体G显带核型分析相比,a-CGH可显著提高高龄孕妇胎儿染色体异常的检出率。
本研究发现,异常CNVs在不同年龄段中的发生率无显著差异。由于胎儿CNVs的发生与孕妇年龄无相关性,因此评估高龄孕妇人群中CNVs的发生率及类型也可用来反映非高龄低危孕妇人群中胎儿CNV的发生率及类型[13-15]。对于有产前诊断指征需进行胎儿染色体检测的孕妇,均可采取a-CGH检测,提高染色体异常的检出率。但因为a-CGH无法检出杂合性丢失(absence of heterozygosity,AOH),因此当高度怀疑胎儿存在单亲二体(uniparental disomy,UPD)相关染色体异常时,建议进行单核苷酸多态性(single nucleotide polymorphism,SNP)染色体微阵列分析平台的检测。
有研究表明[16-18],对于超声未见异常、单纯高龄或非整倍体筛查阳性而接受羊水穿刺的孕妇,染色体微阵列分析在1.7%的病例中检出致病性微缺失/重复,高于本次研究0.95%的有临床意义CNVs的检出率。因此,提示我们还需积累更多临床数据。本次研究检出的24例pCNVs中,6例进行了生物学父母比对,其中1例16p13.11复发性微缺失(神经认知障碍易感位点)遗传自无明显表型父亲,1例复发性16p12.1微缺失(神经发育易感位点)遗传自无明显表型父亲,1例遗传性压力易感性神经病遗传自父亲,1例DMD遗传自母亲,2例为新发。对于外显不全或表现度存在差异的pCNVs,进行家系溯源检测,对于帮助临床遗传咨询医生评估胎儿再发风险有一定的临床意义。本研究对于涉及DMD基因拷贝数变异的发现,属于a-CGH技术的额外发现,但因其涉及X连锁隐性遗传病,再发风险高,因此对于这部分疾病的检出,也体现了a-CGH技术的重要价值。
WAPNER 等[17]的研究同时指出,VUS发生率为0.9%,与本研究0.84%的检出率接近。VUS可能会造成孕期父母的焦虑和可能健康胎儿的终止妊娠。由于目前对这些变异的研究仍然较少,在临床上还不能确定这些变异与表型之间的相关性,而且CNVs在人类基因组中的分布非常广泛,使得在临床应用中对CNVs性质的判断和临床意义的解释面临许多困难,使得临床医生在是否采用a-CGH进行产前诊断上感到疑虑。但这不应该成为阻碍a-CGH技术临床应用的主要因素,我们可以通过溯源分析不断累积数据以及随访生后病例等的方法,建立大型CNVs数据库,进一步对VUS进行评估[19]。
综上所述,a-CGH对于高龄孕妇而言,是一种有价值的染色体产前诊断技术,不仅可以检测出非整倍体异常,还可有效检测出传统核型G显带分析无法检出的微缺失/微重复综合征,从而协助临床医师进行诊断,对降低出生缺陷和研究人类拷贝数变异都具有重大意义。
Funding Statement
国家重点研发计划(No.2018YFC10022003)和四川省科技厅重点研发项目(No.2017SZ0125)资助
Contributor Information
睿 胡 (Rui HU), Email: hhrruuii@163.com.
婷 胡 (Ting HU), Email: huting4123@163.com.
References
- 1.染色体微阵列分析技术在产前诊断中的应用协作组 染色体微阵列分析技术在产前诊断中的应用专家共识. 中华妇产科杂志. 2014;49(8):570–572. doi: 10.3760/cma.j.issn.0529-567x.2014.08.002. [DOI] [Google Scholar]
- 2.杨继青, 朱宝生 array-CGH在产前诊断染色体疾病中的应用. 临床检验杂志. 2012;30(11):909–912. [Google Scholar]
- 3.廖灿 染色体微阵列分析技术在产前诊断中的应用. 中华围产医学杂志. 2014;15(12):804–808. doi: 10.3760/cma.j.issn.1007-9408.2014.12.004. [DOI] [Google Scholar]
- 4.张丽娜, 孟哲, 何展文, 等 50例微缺失和微重复综合征患儿的临床表型及基因组拷贝数变异的分析. 中国当代儿科杂志. 2016;18(9):840–845. doi: 10.7499/j.issn.1008-8830.2016.09.011. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 5.中华医学会医学遗传学分会临床遗传学组, 中国医师协会医学遗传医师分会遗传病产前诊断专业委员会, 中华预防医学会出生缺陷预防与控制专业委员会遗传病防控学组 低深度全基因组测序技术在产前诊断中的应用专家共识. 中华医学遗传学杂志. 2019;36(4):293–296. doi: 10.3760/cma.j.issn.1003-9406.2019.04.001. [DOI] [Google Scholar]
- 6.柳爱华, 张莉, 游园园 3 606例孕中期羊水细胞染色体核型分析. 当代医学. 2020;26(1):44–46. doi: 10.3969/j.issn.1009-4393.2020.01.017. [DOI] [Google Scholar]
- 7.汪淑娟, 高志英, 卢彦平, 等 高龄孕妇胎儿染色体非整倍体异常的早孕期检测. 南方医科大学学报. 2014;(5):655–658. doi: 10.3969/j.issn.1673-4254.2014.05.12. [DOI] [Google Scholar]
- 8.VISSERS L E, VELTMAN J A, VAN KESSEL A G, et al Identification of disease genes by whole genome CGH arrays. Hum Mol Genet. 2005;14(2):215–223. doi: 10.1093/hmg/ddi268. [DOI] [PubMed] [Google Scholar]
- 9.中华预防医学会出生缺陷预防与控制专业委员会, 中国优生科学协会基因诊断与精准医学分会 拷贝数变异检测在产前诊断中的应用指南. 中华医学遗传学杂志. 2020;37(9):909–917. doi: 10.3760/cma.j.cn511374-20200522-00373. [DOI] [Google Scholar]
- 10.荧光原位杂交技术在产前诊断中的应用协作组 荧光原位杂交技术在产前诊断中应用的专家共识. 中华妇产科杂志. 2016;51(4):241–244. doi: 10.3760/cma.j.issn.0529-567x.2016.04.001. [DOI] [Google Scholar]
- 11.俞菁, 章莉, 谭美玉, 等 上海地区高龄孕妇羊水染色体核型分析. 中国优生与遗传杂志. 2013;2l(2):41–42. [Google Scholar]
- 12.陈铁峰, 毛倩倩, 鲁莉萍, 等 羊水细胞染色体核型分析与高龄孕妇年龄因素的相关性. 中华检验医学杂志. 2016;39(6):423–426. doi: 10.3760/cma.j.issn.1009-9158.2016.06.007. [DOI] [Google Scholar]
- 13.STOSIC M, LEVY B, WAPNER R The use of chromosomal microarray analysis in prenatal diagnosis. Obstet Gynecol Clin North Am. 2018;45(1):55–68. doi: 10.1016/j.ogc.2017.10.002. [DOI] [PubMed] [Google Scholar]
- 14.American College of Obstetricians and Gynecologists Committee on Genetics Committee Opinion No. 581: The use of chromosomal microarray analysis in prenatal diagnosis. Obstet Gynecol. 2013;122(6):1374–1377. doi: 10.1097/00006250-201312000-00042. [DOI] [PubMed] [Google Scholar]
- 15.BUIZER-VOSKAMP J E, BLAUW H M, BOKS M P, et al Increased paternal age and the influence on burden of genomic copy number variation in the general population. Hum Genet. 2013;132(4):443–450. doi: 10.1007/s00439-012-1261-4. [DOI] [PubMed] [Google Scholar]
- 16.American College of Obstetricians and Gynecologists’ Committee on Practice Bulletins-Obstetrics; Committee on Genetics; Society for Maternal-Fetal Medicine Practice Bulletin No. 162: Prenatal diagnostic testing for genetic disorders. Obstet Gynecol. 2016;127(5):e108–122. doi: 10.1097/AOG.0000000000001405. [DOI] [PubMed] [Google Scholar]
- 17.WAPNER R J, MARTIN C L, LEVY B, et al Chromosomal microarray versus karyotyping for prenatal diagnosis. N Engl J Med. 2012;367(23):2175–2184. doi: 10.1056/NEJMoa1203382. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 18.LEVY B, WAPNER R Prenatal diagnosis by chromosomal microarray analysis. Fertil Steril. 2018;109(2):201–202. doi: 10.1016/j.fertnstert.2018.01.005. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 19.LOVRECIC L, REMEC Z I, VOLK M, et al Clinical utility of array comparative genomic hybridisation in prenatal setting. BMC Med Genet. 2016;17(1):81. doi: 10.1186/s12881-016-0345-8. [DOI] [PMC free article] [PubMed] [Google Scholar]