Abstract
目前胰腺导管腺癌(PDAC)的有效临床治疗方案有限,5年生存率低于8%,因此迫切需要探索新的治疗策略。PDAC为了适应极端恶劣的微环境,在其演进过程中存在广泛的代谢重编程。代谢应激与癌基因激活(如KRAS)以及抑癌基因失活所触发的信号密切相关。同时,代谢异常重塑肿瘤微环境,协同促进PDAC的发展。本篇综述将重点阐述PDAC及其微环境中的代谢重编程,以探索PDAC治疗中潜在的靶标。
Keywords: 胰腺导管腺癌, 代谢, 肿瘤微环境
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is one of the most notorious malignancies with a 5-year survival rate of less than 8%. Therefore, it is crucial to investigate the molecular mechanism underlining PDAC initiation, promotion, and progression for efficient treatment of PDAC. In order to adapt and survive in an extremely adverse microenvironment of hypoxia and insufficiency of nutrients and energy, PDAC cells undergo extensive metabolic modification triggered by intrinsic signalings which are activated by different genetic events, including mutations occurred at KRAS, TP53, and DPC4/SMAD4, collaboratively promoting PDAC development. Notably, PDCA cells have extensive crosstalk in the form of reciprocal metabolic flux with its surrounding microenvironment to facilitate tumor advancement and therapy resistance. We herein summarize recent findings of PDAC metabolism and discuss metabolic rewiring-based therapeutic strategies.
Keywords: Pancreatic ductal adenocarcinoma, Metabolism, Tumor microenvironment
胰腺导管腺癌(PDAC)是一种具有早期转移潜能的肿瘤,占各类胰腺恶性肿瘤(PAC)发生率的90%以上,对现有的治疗方法如化疗、放疗和分子靶向治疗等具有显著的耐药性[1]。PDAC的恶性进展,从癌前病变,即胰腺上皮内瘤变(PanINs)开始,到恶性转化、侵袭、转移,都伴随着多种原癌基因的激活和抑癌基因的失活。研究发现KRAS、p16/CDKN2A、TP53、DPC4/SMAD4在PDAC肿瘤发生过程中突变频率较高,造成了它们促癌功能活化和/或抑癌功能失活,因此被认为是PDAC发生发展的四大驱动突变[2]。在95%的PDAC病例中,KRAS活化突变发生在PanIN Ⅰ期,随后是功能性抑癌基因p16(CDKN2A,>90%)的丢失。TP53(大约75%)和DPC4(SMAD4,大约55%)的失活突变经常出现在PanIN Ⅲ期[2]。基于原发灶的定位和细胞形态,一般认为PDAC起源于胰腺导管细胞。然而,胰腺癌的早期常发生腺泡导管化生(ADM),提示PDAC可能起源于胰腺组织腺泡细胞,包括谱系溯源在内的多项研究也支持这一假设[3-4]。此外,有证据表明,一些被称为癌症干细胞的罕见细胞群也可能是PDAC细胞起始和转移的前体细胞[1, 5]。
在肿瘤细胞中,碳水化合物、氨基酸和脂肪酸等营养物质不仅参与了体内大分子的生物合成,还可以提供能量和应对氧化还原应激。PDAC细胞信号通路的异常,改变了代谢途径,以满足肿瘤细胞自身的物质和能量需求。值得注意的是,PDAC细胞周围是由免疫细胞、星状细胞/成纤维细胞和细胞外基质(ECM)等组成的微环境。肿瘤细胞快速增殖会造成微环境营养物质缺乏、乳酸等代谢产物释放增多以及低氧和氧化应激失衡等代谢重塑[6]。因此,我们有必要深入了解肿瘤微环境代谢重塑对PDAC发生、发展的影响。
1. PDAC细胞异常信号传导和代谢重编程
即使是在氧供充足的情况下,肿瘤细胞也偏好吸收更多的葡萄糖进行糖酵解,这一现象被称为Warburg效应[7]。KRAS的激活突变是PDAC发展过程中最常见的遗传改变,在代谢重编程中发挥着关键作用,特别是在葡萄糖的酵解过程中[8]。基因表达和代谢流分析表明,KRAS上调葡萄糖转运蛋白-1(GLUT1)的表达以增加葡萄糖摄取,并上调己糖激酶(HK)1和2的表达以加速糖酵解活性[9-10]。KRAS突变提高了细胞糖酵解水平进而增强生物质合成,也增强了葡萄糖进入糖酵解旁路之一的磷酸戊糖通路(PPP)[10]。PPP衍生的核糖-5-磷酸(R5P)为快速增殖细胞的DNA和RNA合成提供了原料。一般来说,PPP分为氧化和非氧化两个阶段。KRAS突变的胰腺癌细胞依赖于非氧化阶段的PPP。KRAS敲低下调了调控PPP非氧化通路的基因表达,从而有效抑制胰腺癌细胞的生长[10]。此外,氨基己糖生物合成途径(HBP)是糖酵解的另外一条旁路,在KRAS突变的驱动下,可为蛋白糖基化提供前体调控蛋白质的功能[11]。
正常生理条件下,谷氨酰胺(Gln)属于非必需氨基酸(NEAA)。在KRAS突变的PDAC细胞中,KRAS突变通过转录水平调节谷氨酸脱氢酶(GLUD1)和天门冬氨酸转氨酶(GOT1)等关键代谢酶的表达这一非经典途径,调控Gln的代谢,为快速增殖的肿瘤细胞物质和能量代谢提供氮和碳[12-13]。在该代谢途径,Gln衍生的碳在线粒体中通过一系列反应转化为天冬氨酸(Asp)。衍生的Asp随后被释放到细胞质中,转化为草酰乙酸(OAA)和苹果酸盐,最终产生烟酰胺腺嘌呤二核苷酸磷酸(NADPH),后者参与活性氧(ROS)的生物合成和提供还原当量,维持细胞内氧化还原平衡[14]。此外,KRAS可诱导Nrf2基因调控细胞内抗氧化基因表达水平[15]。研究发现Nrf2作为ROS抑制基因,可以促进PDAC发展[16]。因此,KRAS信号的活化下调了细胞内ROS水平,这对PDAC的发展至关重要。这些发现从代谢重编程的角度证明了癌基因KRAS突变活化是驱动PDAC发生、发展的重要因素。近二十年,靶向治疗为肿瘤患者的治疗提供了新的希望,然而目前在PDAC中靶向KRAS并未取得令人满意的结果。其中一种解释是由于RAS蛋白的“不可成药”结构(KRAS是RAS基因家族成员之一),但最近的一些研究表明靶向RAS的抑制剂是有可能实现的[17-18]。
基于PDAC的小鼠模型研究显示,KRAS突变造成PanIN病变,而进一步发展成肿瘤则需要另一重要遗传事件——TP53突变。研究认为,TP53突变会导致三羧酸(TCA)循环中间代谢物的减少,从而使线粒体功能受到抑制[19]。近期研究表明,可以通过增加TP53依赖的α-酮戊二酸(αKG)来触发恶性PDAC细胞的分化,从而阻止PDCA的发展[20]。此外,TP53突变可以阻止糖酵解途径中的甘油醛-3-磷酸脱氢酶(GAPDH)的核定位,增加GAPDH在细胞质中的稳定性,支持细胞糖酵解,避免细胞凋亡和自噬[21]。
除了葡萄糖和谷氨酰胺代谢失调之外,多种其他代谢物都被发现在PDAC发生、发展中发生了适应性变化。研究表明,在KRAS突变的腺泡细胞中支链氨基酸(branched chain amino acid,BCAA)分解代谢产生的乙酰辅酶A上调组蛋白H4K5和H3K9的乙酰化水平,从而促进ADM的发生[22]。也有报道认为,BCAA为胰腺导管细胞提供脂肪酸合成所需的碳源[23]。我们实验室的最新研究发现,在胰腺癌早期动物模型KC(LSL-KRASG12D;Pdx1-Cre)小鼠中,KRAS突变通过翻译后修饰上调胰腺导管细胞中BCAA分解代谢的关键酶——支链氨基酸转氨酶2(BCAT2)的蛋白水平,提高细胞对BCAA的吸收和利用,并增强线粒体功能。利用类器官模型,我们发现高浓度的BCAA能显著促进PanIN导管类器官的生长。同位素标记示踪实验表明,BCAA为PDAC细胞中核酸分子合成提供氮源。更重要的是,我们发现在体内条件下靶向BCAT2的药物治疗或低(限制)BCAA饮食能显著减缓PDAC的进展[24-25]。针对其他氨基酸的研究发现,胱氨酸摄入的减少增加肿瘤细胞内的ROS水平,诱导PDAC细胞发生铁死亡;敲除胱氨酸转运蛋白SLC7a11,显著延长PDAC的生存期;摄入降解胱氨酸的药物cyst(e)inase有效减缓PDAC的发展[26- 27]。也有实验表明,肥胖诱导线粒体中精氨酸酶ARG2的表达,而ARG2的沉默或丢失导致氨的积累并抑制肥胖诱导的PDAC的发展[28]。通过基因工程构建胰腺癌的小鼠模型研究发现糖酵解和三羧酸循环在乳酸水平上解偶联,乳酸对TCA循环中间产物的贡献超过了葡萄糖,因此,在这一条件下,乳酸成为大多数组织和肿瘤中主要的三羧酸循环底物[29]。5-羟色胺(5-HT)作为神经递质控制着人类的关键认知和行为功能。最近的报道表明5-HT在PDAC细胞中升高,并伴随着色氨酸羟化酶(TPH1)的增加和线粒体酶单胺氧化酶A(MAOA)的降低,两者分别调节5-HT的合成途径和降解途径[30]。此外,用5-HT受体抑制剂治疗可抑制胰腺肿瘤的生长并使其代谢重编程,从而延长KPC小鼠的生存期[30]。以上这些研究显示代谢重编程不仅是PDAC发展过程中的一种适应机制,发挥促进肿瘤发展的作用,更可能是在PDAC发生前、在PDAC发生过程中发挥重要调控作用。这提示通过代谢干预,如根据个人遗传背景或病理进程制定精准饮食,将为PDAC提供有效的防治策略。
2. 脂质代谢与PDAC
癌细胞需要不断合成各种细胞组分以维持快速的细胞增殖。脂质是细胞结构的基本物质,激活脂质从头合成途径是癌细胞生长所必需的。首先,ATP柠檬酸裂合酶(ACLY)将柠檬酸转化为胞质乙酰辅酶A,进一步被乙酰辅酶A羧化酶(ACC)催化生成丙二酰辅酶A。乙酰辅酶A和丙二酰辅酶A与脂肪酸合酶(FASN)的酰基载体蛋白(ACP)结构域偶联,以NADPH依赖性方式合成棕榈酸(16个碳的饱和脂肪酸)[31]。包括ACLY在内的脂肪合成酶通常在PDAC中高表达[32]。在异种移植瘤模型中,抑制ACLY活性可以抑制PDAC的生长[33]。此外,FASN高表达的胰腺癌患者的总生存期要明显短于FASN低表达的患者[34]。
临床统计发现脂肪性胰腺炎的患者罹患胰腺癌的风险明显增加[35]。 此外,在KRAS驱动的PDAC小鼠模型中,3-羟基-3-甲基戊二酸单酰辅酶A还原酶(HMG-CoA)和低密度脂蛋白受体( LDLR)的表达均升高,相应的,敲低LDLR可减少ERK信号传导并抑制PDAC细胞增殖[36]。
缺氧诱导因子HIF-1被发现也参与脂质合成。HIF-1的激活抑制α-酮戊二酸脱氢酶(α-KGDH),从而促使代谢流由TCA循环到脂肪酸合成转变[37]。我们的既往研究表明,乙酸在低氧条件下可作为一种调节表观遗传的代谢产物来促进肿瘤细胞中的脂质从头合成[38]。以上研究为探讨脂质代谢在胰腺癌发生、发展过程中的作用提供了更多方向。
3. 自噬、线粒体与PDAC
经典的自噬始于膜结构的自噬小体形成,当细胞受到应激刺激(如缺氧、饥饿、化疗和放射线)时,自噬体将受损的细胞成分转运到溶酶体,进而在溶酶体中进行加工降解或循环利用以保持细胞内稳态。自噬在肿瘤中可能发挥抑癌或促癌功能。PDAC中常见自噬增强。然而也有文献报道,消除自噬有助于PDAC发生[39]。有研究发现抑制KRAS可增加PDAC的自噬水平[40]。我们的研究发现,乳酸脱氢酶A(LDHA)K5(第5位的赖氨酸残基)残基发生乙酰化引发分子伴侣介导的自噬(CMA),乙酰化的LDHA被运送至溶酶体降解,从而改变细胞内乳酸通量,进一步的体内、体外研究都证实LDHA的K5乙酰化减轻PDAC细胞的恶性表型[41]。自噬在PDAC细胞中的复杂功能可能是目前其对放化疗不敏感的原因之一。
研究发现,一小群具有干细胞特征的PDAC细胞依赖于线粒体氧化磷酸化,而对KRAS信号失去响应[42]。线粒体呼吸是细胞内ROS的主要来源,我们的研究也发现,PDAC细胞中苹果酸脱氢酶1(MDH1)第248精氨酸位点的甲基化对维持细胞氧化还原稳态至关重要[43]。最新的机制研究表明激活的KRAS可以通过线粒体自噬受体 Nix蛋白刺激线粒体自噬,以维持PDAC的发生、发展[44]。综上所述,靶向线粒体呼吸和/或KRAS信号通路将显著提高PDAC的治疗效果[17, 42-43]。
4. PDAC微环境的代谢重编程
肿瘤微环境的代谢重编程是导致PDAC患者预后差的重要原因之一。胶原蛋白是PDAC肿瘤微环境中最丰富的细胞外基质。PDAC细胞可以通过依赖或非依赖巨胞饮方式摄取裂解的胶原蛋白片段或胶原蛋白来源的脯氨酸。被吞噬的胶原蛋白片段在溶酶体中降解产生的游离氨基酸进入TCA循环代谢为PDAC细胞生存提供所需物质[45]。在营养缺乏的情况下,表皮生长因子受体(EGFR)-Pak通路受到刺激活化,从而增强PDAC中的微胞饮作用[46]。
PDAC微环境中存在多种间质细胞。胰腺星状细胞(PSC)是胰腺内的组织特异性成纤维细胞。研究发现PSC与PDAC细胞之间存在相互调节。PDAC中被活化的PSC分泌白血病抑制因子(LIF)通过旁分泌促进PDAC细胞的进展[47]。肿瘤组织中由于血管发生异常,造成血供不足,进而引起肿瘤微环境中营养物质短缺,肿瘤相关PSC分泌丙氨酸(Ala)为PDAC细胞提供养分并激活TCA循环,减少肿瘤细胞对葡萄糖等来源于血清营养物质的依赖[48-50]。据报道,维生素D和全反式维甲酸(ATRA)可将星状细胞转换为静止状态,抑制基质重塑并抑制肿瘤细胞的侵袭[51-52]。此外,最新的研究发现,TGF-β-SMAD5通路直接靶向肿瘤相关成纤维细胞(CAFs)中的BCAT1,活化BCAA-BCAT1代谢轴,促进CAFs中支链氨基酮酸(BCKDs)的生成和释放,肿瘤细胞摄入和利用BCKDs满足其快速增殖的需求,该研究结果进一步在PDAC患者来源的循环肿瘤细胞(CTCs)和肿瘤组织切片的相关实验中得到证实[53]。
PDAC微环境中的免疫细胞在PADC发生、发展和治疗预后中起到重要作用。研究发现在肿瘤相关巨噬细胞(TAM)中观察到糖酵解增加,促进PDAC的发展[54]。此外,通过增强CD8+ T细胞的免疫抑制作用以及破坏巨噬细胞中作为关键脂质激酶的PI3Kγ可以显著消除PDAC的侵袭和转移[55]。值得注意的是,胰腺组织中敲除HIF1α后,某一特定的B细胞亚群被募集到肿瘤微环境中,从而极大地促进了KRAS突变驱动的PanIN病变进展[56]。
最新的研究发现,当丝氨酸/甘氨酸缺失时,外周神经元释放丝氨酸来支持PDAC细胞的生长;并且,丝氨酸缺失导致核糖体在丝氨酸的2个密码子UCC和UCU上停滞。更重要的是,在无丝氨酸/甘氨酸饮食的小鼠中,PDAC肿瘤生长缓慢,神经细胞调控作用增强[57]。
基于上述这些发现,针对肿瘤微环境的治疗策略正在成为战胜这种致命疾病的新策略。
5. 总结与展望
PDAC细胞依赖代谢重编程以适应肿瘤微环境中的能量和营养匮乏、氧化应激异常等,这为胰腺癌的治疗提供了针对代谢特征,进行靶向干预和治疗的新的思路和策略。PDAC细胞根据其代谢谱的不同可分为3种不同的亚型,包括缓慢增殖型、糖酵解型和脂肪合成型[58]。缓慢增殖型PDAC细胞中氨基酸和糖类水平较低,细胞增殖缓慢。糖酵解型PDAC细胞中糖酵解通路及其旁路中的各类中间代谢物如磷酸烯醇丙酮酸(PEP)、3-磷酸甘油醛、乳酸和丝氨酸等水平增多,相应的糖酵解通路以及旁路如PPP通路等相关的基因表达升高,值得注意的是,利用稳定同位素示踪实验发现糖酵解型PDAC细胞中主要利用葡萄糖的碳源满足糖酵解的需求,而通过摄取谷氨酰胺的碳源维持TCA循环。因此,糖酵解型对靶向于糖酵解和谷氨酰胺的抑制剂敏感,敲除糖酵解中的关键代谢酶可以显著抑制糖酵解型PDAC细胞体内移植瘤的生长。而脂肪合成型PDAC细胞中富含脂类代谢物,如棕榈酸、油酸、肉豆蔻酸等,细胞中脂质合成的酶表达升高,如7-脱氢胆固醇还原酶、硬脂酰辅酶A去饱和酶(SCD)和FASN等。与糖酵解型PDAC细胞不同,脂肪合成型PDAC细胞主要利用葡萄糖的碳源维持脂质合成和TCA循环,因此耗氧量更高,线粒体容量更大。对脂质抑制剂更敏感,脂肪合成型PDAC细胞的体内移植瘤生长可以被SCD抑制剂显著抑制,但对抑制糖酵解通路不敏感。这些发现从代谢角度阐释了PDAC细胞的可塑性。而代谢可塑性正是造成肿瘤异质性的重要原因之一。此外,最近的单细胞RNA测序研究发现,包括T细胞、巨噬细胞和成纤维细胞在内的基质细胞也具有高度异质性[59-60]。因此在未来,将靶向肿瘤代谢的治疗策略与其他靶向药或化疗药联合应用于PDAC,将为PDAC患者的治疗带来新的希望。
Funding Statement
国家自然科学基金(No. 82002951、No. 81872240)资助
Contributor Information
金涛 李 (Jin-tao LI), Email: lijt15@fudan.edu.cn.
群英 雷 (Qun-ying LEI), Email: qlei@fudan.edu.cn.
淼 尹 (Miao YIN), Email: miaoyin@fudan.edu.cn.
References
- 1.RHIM A D, MIREK E T, AIELLO N M, et al EMT and dissemination precede pancreatic tumor formation. Cell. 2012;148(1/2):349–361. doi: 10.1016/j.cell.2011.11.025. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 2.LI J T, WANG Y P, YIN M, et al Metabolism remodeling in pancreatic ductal adenocarcinoma. Cell Stress. 2019;3(12):361–368. doi: 10.15698/cst2019.12.205. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 3.HAN H, VON HOFF D D SnapShot: pancreatic cancer. Cancer Cell. 2013;23(3):424e1[2020-12-25]. https://doi.org/10.1016/j.ccr.2013.03.008. doi: 10.1016/j.ccr.2013.03.008. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 4.ROOMAN I, REAL F X Pancreatic ductal adenocarcinoma and acinar cells: a matter of differentiation and development? Gut. 2012;61(3):449–458. doi: 10.1136/gut.2010.235804. [DOI] [PubMed] [Google Scholar]
- 5.HAENO H, GONEN M, DAVIS M B, et al Computational modeling of pancreatic cancer reveals kinetics of metastasis suggesting optimum treatment strategies. Cell. 2012;148(1/2):362–375. doi: 10.1016/j.cell.2011.11.060. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 6.BAPAT A A, HOSTETTER G, VON HOFF D D, et al Perineural invasion and associated pain in pancreatic cancer. Nat Rev Cancer. 2011;11(10):695–707. doi: 10.1038/nrc3131. [DOI] [PubMed] [Google Scholar]
- 7.WARBURG O Origin of cancer cells. Oncologia. 1956;9(2):75–83. doi: 10.1159/000223920. [DOI] [PubMed] [Google Scholar]
- 8.BRYANT K L, MANCIAS J D, KIMMELMAN A C, et al KRAS: feeding pancreatic cancer proliferation. Trends Biochem Sci. 2014;39(2):91–100. doi: 10.1016/j.tibs.2013.12.004. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 9.GAGLIO D, METALLO C M, GAMEIRO P A, et al Oncogenic K-Ras decouples glucose and glutamine metabolism to support cancer cell growth. Mol Syst Biol. 2011;7:523[2020-12-25]. https://doi.org/10.1038/msb.2011.56. doi: 10.1038/msb.2011.56. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 10.YING H, KIMMELMAN A C, LYSSIOTIS C A, et al Oncogenic Kras maintains pancreatic tumors through regulation of anabolic glucose metabolism. Cell. 2012;149(3):656–670. doi: 10.1016/j.cell.2012.01.058. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 11.MA Z, VOCADLO D J, VOSSELLER K Hyper-O-GlcNAcylation is anti-apoptotic and maintains constitutive NF-kappaB activity in pancreatic cancer cells. J Biol Chem. 2013;288(21):15121–15130. doi: 10.1074/jbc.M113.470047. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 12.BOTT A J, SHEN J, TONELLI C, et al Glutamine anabolism plays a critical role in pancreatic cancer by coupling carbon and nitrogen metabolism. Cell Rep. 2019;29(5):1287–1298. doi: 10.1016/j.celrep.2019.09.056. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 13.YANG S, HWANG S, KIM M, et al Mitochondrial glutamine metabolism via GOT2 supports pancreatic cancer growth through senescence inhibition. Cell Death Dis. 2018;9(2):55[2020-12-25]. https://doi.org/10.1038/s41419-017-0089-1. doi: 10.1038/s41419-017-0089-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 14.SON J, LYSSIOTIS C A, YING H, et al Glutamine supports pancreatic cancer growth through a KRAS-regulated metabolic pathway. Nature. 2013;496(7443):101–105. doi: 10.1038/nature12040. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 15.KONG B, QIA C, ERKAN M, et al Overview on how oncogenic Kras promotes pancreatic carcinogenesis by inducing low intracellular ROS levels. Front Physiol. 2013;(4):246[2020-12-25]. https://doi.org/10.3389/fphys.2013.00246. doi: 10.3389/fphys.2013.00246. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 16.CHIO I I C, JAFARNEJAD S M, PONZ-SARVISE M, et al NRF2 promotes tumor maintenance by modulating mRNA translation in pancreatic cancer. Cell. 2016;166(4):963–976. doi: 10.1016/j.cell.2016.06.056. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 17.O'BRYAN J P Pharmacological targeting of RAS: recent success with direct inhibitors. Pharmacol Res. 2019;139:503–511. doi: 10.1016/j.phrs.2018.10.021. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 18.KIM D, XUE J Y, LITO P Targeting KRAS(G12C): from inhibitory mechanism to modulation of antitumor effects in patients. Cell. 2020;183(4):850–859. doi: 10.1016/j.cell.2020.09.044. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 19.SCHOFIELD H K, ZELLER J, ESPINOZA C, et al Mutant p53R270H drives altered metabolism and increased invasion in pancreatic ductal adenocarcinoma. JCI Insight. 2018;3(2):e97422[2020-12-25]. https://doi.org/10.1172/jci.insight.97422. doi: 10.1172/jci.insight.97422. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 20.MORRIS J P T, YASHINSKIE J J, KOCHE R, et al Alpha-ketoglutarate links p53 to cell fate during tumour suppression. Nature. 2019;573(7775):595–599. doi: 10.1038/s41586-019-1577-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 21.BUTERA G, PACCHIANA R, MULLAPPILLY N, et al Mutant p53 prevents GAPDH nuclear translocation in pancreatic cancer cells favoring glycolysis and 2-deoxyglucose sensitivity. Biochim Biophys Acta Mol Cell Res. 2018;1865(12):1914–1923. doi: 10.1016/j.bbamcr.2018.10.005. [DOI] [PubMed] [Google Scholar]
- 22.CARRER A, TREFELY S, ZHAO S, et al Acetyl-CoA metabolism supports multistep pancreatic tumorigenesis. Cancer Discov. 2019;9(3):416–435. doi: 10.1158/2159-8290.CD-18-0567. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 23.LEE J H, CHO Y R, KIM J H, et al Branched-chain amino acids sustain pancreatic cancer growth by regulating lipid metabolism. Exp Mol Med. 2019;51(11):1–11. doi: 10.1038/s12276-019-0350-z. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 24.LI J T, YIN M, WANG D, et al BCAT2-mediated BCAA catabolism is critical for development of pancreatic ductal adenocarcinoma. Nat Cell Biol. 2020;22(2):167–174. doi: 10.1038/s41556-019-0455-6. [DOI] [PubMed] [Google Scholar]
- 25.LEI M Z, LI X X, ZHANG Y, et al Acetylation promotes BCAT2 degradation to suppress BCAA catabolism and pancreatic cancer growth. Signal Transduct Target Ther. 2020;5(1):70[2020-12-25]. https://doi.org/10.1038/s41392-020-0168-0. doi: 10.1038/s41392-020-0168-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 26.BADGLEY M A, KREMER D M, MAURER H C, et al Cysteine depletion induces pancreatic tumor ferroptosis in mice. Science. 2020;368(6486):85–89. doi: 10.1126/science.aaw9872. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 27.DAHER B, PARKS S K, DURIVAULT J, et al Genetic ablation of the cystine transporter xCT in PDAC cells inhibits mTORC1, growth, survival, and tumor formation via nutrient and oxidative stresses. Cancer Res. 2019;79(15):3877–3890. doi: 10.1158/0008-5472.CAN-18-3855. [DOI] [PubMed] [Google Scholar]
- 28.ZAYTOUNI T, TSAI P Y, HITCHCOCK D S, et al Critical role for arginase 2 in obesity-associated pancreatic cancer. Nat Commun. 2017;8(1):242[2020-12-25]. https://doi.org/10.1038/s41467-017-00331-y. doi: 10.1038/s41467-017-00331-y. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 29.HUI S, GHERGUROVICH J M, MORSCHER R J, et al Glucose feeds the TCA cycle via circulating lactate. Nature. 2017;551(7678):115–118. doi: 10.1038/nature24057. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 30.JIANG S H, LI J, DONG F Y, et al Increased serotonin signaling contributes to the Warburg effect in pancreatic tumor cells under metabolic stress and promotes growth of pancreatic tumors in mice. Gastroenterology. 2017;153(1):277–911. doi: 10.1053/j.gastro.2017.03.008. [DOI] [PubMed] [Google Scholar]
- 31.BAENKE F, PECK B, MIESS H, et al Hooked on fat: the role of lipid synthesis in cancer metabolism and tumour development. Dis Model Mech. 2013;6(6):1353–1363. doi: 10.1242/dmm.011338. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 32.SWIERCZYNSKI J, HEBANOWSKA A, SLEDZINSKI T Role of abnormal lipid metabolism in development, progression, diagnosis and therapy of pancreatic cancer. World J Gastroenterol. 2014;20(9):2279–2303. doi: 10.3748/wjg.v20.i9.2279. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 33.HATZIVASSILIOU G, ZHAO F, BAUER D E, et al ATP citrate lyase inhibition can suppress tumor cell growth. Cancer Cell. 2005;8(4):311–321. doi: 10.1016/j.ccr.2005.09.008. [DOI] [PubMed] [Google Scholar]
- 34.TADROS S, SHUKLA S K, KING R J, et al De Novo lipid synthesis facilitates gemcitabine resistance through endoplasmic reticulum stress in pancreatic cancer. Cancer Res. 2017;77(20):5503–5517. doi: 10.1158/0008-5472.CAN-16-3062. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 35.TAKAHASHI M, HORI M, ISHIGAMORI R, et al Fatty pancreas: a possible risk factor for pancreatic cancer in animals and humans. Cancer Sci. 2018;109(10):3013–3023. doi: 10.1111/cas.13766. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 36.GUILLAUMOND F, BIDAUT G, OUAISSI M, et al Cholesterol uptake disruption, in association with chemotherapy, is a promising combined metabolic therapy for pancreatic adenocarcinoma. Proc Natl Acad Sci U S A. 2015;112(8):2473–2478. doi: 10.1073/pnas.1421601112. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 37.SUN R C, DENKO N C Hypoxic regulation of glutamine metabolism through HIF1 and SIAH2 supports lipid synthesis that is necessary for tumor growth. Cell Metab. 2014;19(2):285–292. doi: 10.1016/j.cmet.2013.11.022. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 38.GAO X, LIN S H, REN F, et al Acetate functions as an epigenetic metabolite to promote lipid synthesis under hypoxia. Nat Commun. 2016;7:11960[2020-12-25]. https://doi.org/10.1038/ncomms11960. doi: 10.1038/ncomms11960. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 39.NEW M, VAN ACKER T, LONG J S, et al Molecular pathways controlling autophagy in pancreatic cancer. Front Oncol. 2017;7:28[2020-12-25]. https://doi.org/10.3389/fonc.2017.00028. doi: 10.3389/fonc.2017.00028. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 40.BRYANT K L, STALNECKER C A, ZEITOUNI D, et al Combination of ERK and autophagy inhibition as a treatment approach for pancreatic cancer. Nat Med. 2019;25(4):628–640. doi: 10.1038/s41591-019-0368-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 41.ZHAO D, ZOU S W, LIU Y, et al Lysine-5 acetylation negatively regulates lactate dehydrogenase A and is decreased in pancreatic cancer. Cancer Cell. 2013;23(4):464–476. doi: 10.1016/j.ccr.2013.02.005. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 42.VIALE A, PETTAZZONI P, LYSSIOTIS C A, et al Oncogene ablation-resistant pancreatic cancer cells depend on mitochondrial function. Nature. 2014;514(7524):628–632. doi: 10.1038/nature13611. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 43.WANG Y P, ZHOU W, WANG J, et al Arginine methylation of MDH1 by CARM1 inhibits glutamine metabolism and suppresses pancreatic cancer. Mol Cell. 2016;64(4):673–687. doi: 10.1016/j.molcel.2016.09.028. [DOI] [PubMed] [Google Scholar]
- 44.HUMPTON T J, ALAGESAN B, DENICOLA G M, et al Oncogenic KRAS induces NIX-mediated mitophagy to promote pancreatic cancer. Cancer Discov. 2019;9(9):1268–1287. doi: 10.1158/2159-8290.CD-18-1409. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 45.OLIVARES O, MAYERS J R, GOUIRAND V, et al Collagen-derived proline promotes pancreatic ductal adenocarcinoma cell survival under nutrient limited conditions. Nat Commun. 2017;8:16031. doi: 10.1038/ncomms16031. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 46.LEE S W, ZHANG Y, JUNG M, et al EGFR-Pak signaling selectively regulates glutamine deprivation-induced macropinocytosis. Dev Cell. 2019;50(3):381–392.e5. doi: 10.1016/j.devcel.2019.05.043. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 47.SHI Y, GAO W, LYTLE N K, et al Targeting LIF-mediated paracrine interaction for pancreatic cancer therapy and monitoring. Nature. 2019;569(7754):131–135. doi: 10.1038/s41586-019-1130-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 48.SOUSA C M, BIANCUR D E, WANG X, et al Pancreatic stellate cells support tumour metabolism through autophagic alanine secretion. Nature. 2016;536(7617):479–483. doi: 10.1038/nature19084. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 49.FEIG C, GOPINATHAN A, NEESSE A, et al The pancreas cancer microenvironment. Clin Cancer Res. 2012;18(16):4266–4276. doi: 10.1158/1078-0432.CCR-11-3114. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 50.KAMPHORST J J, NOFAL M, COMMISSO C, et al Human pancreatic cancer tumors are nutrient poor and tumor cells actively scavenge extracellular protein. Cancer Res. 2015;75(3):544–553. doi: 10.1158/0008-5472.CAN-14-2211. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 51.CHRONOPOULOS A, ROBINSON B, SARPER M, et al ATRA mechanically reprograms pancreatic stellate cells to suppress matrix remodelling and inhibit cancer cell invasion. Nat Commun. 2016;7:12630[2020-12-25]. https://doi.org/10.1038/ncomms12630. doi: 10.1038/ncomms12630. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 52.SHERMAN M H, YU R T, ENGLE D D, et al Vitamin D receptor-mediated stromal reprogramming suppresses pancreatitis and enhances pancreatic cancer therapy. Cell. 2014;159(1):80–93. doi: 10.1016/j.cell.2014.08.007. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 53.ZHU Z, ACHREJA A, MEURS N, et al Tumour-reprogrammed stromal BCAT1 fuels branched-chain ketoacid dependency in stromal-rich PDAC tumours. Nat Metab. 2020;2(8):775–792. doi: 10.1038/s42255-020-0226-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 54.PENNY H L, SIEOW J L, ADRIANI G, et al Warburg metabolism in tumor-conditioned macrophages promotes metastasis in human pancreatic ductal adenocarcinoma. Oncoimmunology. 2016;5(8):e1191731[2020-12-25]. https://doi.org/10.1080/2162402X.2016.1191731. doi: 10.1080/2162402X.2016.1191731. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 55.KANEDA M M, CAPPELLO P, NGUYEN A V, et al Macrophage PI3Kgamma drives pancreatic ductal adenocarcinoma progression. Cancer Discov. 2016;6(8):870–885. doi: 10.1158/2159-8290.CD-15-1346. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 56.LEE K E, SPATA M, BAYNE L J, et al HIF1α deletion reveals pro-neoplastic function of B cells in pancreatic neoplasia. Cancer Discov. 2016;6(3):256–269. doi: 10.1158/2159-8290.CD-15-0822. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 57.BANH R S, BIANCUR D E, YAMAMOTO K, et al Neurons release serine to support mRNA translation in pancreatic cancer. Cell. 2020;183(5):1202–1218. doi: 10.1016/j.cell.2020.10.016. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 58.DAEMEN A, PETERSON D, SAHU N, et al Metabolite profiling stratifies pancreatic ductal adenocarcinomas into subtypes with distinct sensitivities to metabolic inhibitors. Proc Natl Acad Sci U S A. 2015;112(32):E4410–4417. doi: 10.1073/pnas.1501605112. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 59.PENG J, SUN B F, CHEN C Y, et al Single-cell RNA-seq highlights intra-tumoral heterogeneity and malignant progression in pancreatic ductal adenocarcinoma. Cell Res. 2019;29(9):725–738. doi: 10.1038/s41422-019-0195-y. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 60.BERNARD V, SEMAAN A, HUANG J, et al Single-cell transcriptomics of pancreatic cancer precursors demonstrates epithelial and microenvironmental heterogeneity as an early event in neoplastic progression. Clin Cancer Res. 2019;25(7):2194–2205. doi: 10.1158/1078-0432.CCR-18-1955. [DOI] [PMC free article] [PubMed] [Google Scholar]