Skip to main content
Journal of Sichuan University (Medical Sciences) logoLink to Journal of Sichuan University (Medical Sciences)
. 2021 May 20;52(3):364–372. [Article in Chinese] doi: 10.12182/20210560202

组蛋白去甲基化酶在间充质干细胞成骨和成软骨分化中的作用综述

The Role of Histone Demethylase in Osteogenic and Chondrogenic Differentiation of Mesenchymal Stem Cells: A Literature Review

昊 隋 1, 陶 张 1,*
PMCID: PMC10409206  PMID: 34018352

Abstract

间充质干细胞(MSCs)的增殖和多向分化潜能使其广泛用于骨、软骨修复新疗法的开发,虽然已初步探明MSCs成骨、成软骨分化的基因表达谱,但启动MSCs分化的关键因子仍不明确,限制了其在骨、软骨组织工程中的应用。组蛋白去甲基化酶(KDMs)介导的表观遗传机制是调控MSCs谱系分化的关键环节。含Tower结构域的赖氨酸特异性组蛋白去甲基化酶家族(LSD)及含Jumonji C(JmjC)结构域的组蛋白去甲基化酶家族通过调控Runt相关转录因子2(RUNX2)、成骨相关转录因子抗体(OSX)、骨钙素(OCN)在内的多种成骨相关基因的表达以介导MSCs成骨向分化。KDM2/4/6亚家族等通过以SRY-related high-mobility-group-box gene 9(SOX9)为中心的多条通路调控MSCs成软骨分化。此外,纳米拓扑结构、mircoRNAs等通过上、下调KDMs调控多种成骨和成软骨转录因子的表达。本文对KDMs在MSCs成骨和成软骨分化中的作用进行综述,以帮助读者更好地理解骨、软骨损伤疾病的发病机制,促进为骨、软骨组织工程未来的临床应用。

Keywords: 间充质干细胞, 组蛋白去甲基化酶, 表观遗传学, 成骨分化, 成软骨分化


间充质干细胞(mesenchymal stem cells,MSCs),也被称为“间充质基质细胞(mesenchymal stromal cells)”或“多潜能基质细胞(multipotent stromal cells)”[1],是一种具有多向分化潜能的成体干细胞,在体内和体外都能自我更新和分化为中胚层谱系细胞,如骨细胞、软骨细胞和脂肪细胞等[2-3]。虽然MSCs最初在小鼠骨髓中被发现,但如今已从大多数间充质组织中将其分离出来,包括骨骼肌组织、脂肪组织、牙髓组织和牙周膜等[4-6]。不同组织来源的MSCs具有相似的自我更新能力、多能性和易获取性,这些特性奠定了MSCs参与再生医学应用的基础。此外,MSCs独特的可募集至损伤区域的能力[7]、调控免疫动态平衡的能力[8-10]及低致瘤性[11]使以MSCs为中心的组织工程成为治疗骨、软骨缺损的可行方案。

明确MSCs分化的调控机制是将其应用于组织工程的前提。生理状态下,MSCs的成骨、成脂分化存在竞争性平衡,此平衡失调可直接导致包括骨质疏松症在内的多种代谢性骨病[12-13],因此代谢性骨病的治疗依赖于重建MSCs的成骨分化潜能。同时,关节软骨受损后的自我修复能力十分有限,MSCs的介入有望帮助解决这一难题[14-15]。明确 MSCs的分化调控机制对骨、软骨疾病的新疗法开发至关重要。MSCs的成骨、成软骨分化涉及多种机制和各机制间的相互影响,Wnt、PPARγ、Notch、TGF-b、NF-κB等信号通路[16-18],转录因子SOX9、 Runt相关转录因子2(RUNX2)、BCL6辅抑制因子(BCL co-repressor,BCOR)等[19-21]共同构成调控MSCs成骨、成软骨分化的复杂网络。虽然MSCs分化过程中的基因表达谱已逐渐清晰,但既往研究尚未确定决定其分化命运的关键因子。近年来,诸多研究从基因表达转向表观遗传机制,探索MSCs谱系分化的始动因子。

表观遗传机制指在不改变DNA序列的情况下,使基因发生遗传性变化并最终影响细胞表型的机制,包括DNA甲基化、组蛋白修饰、非编码RNA调控、核小体定位和染色质重塑[22-23]。表观遗传机制被认为是抑制无关基因并激活特定细胞谱系所需基因的主要介体,越来越多的研究表明,表观遗传标记的变化是决定干细胞命运和分化的重要调控因素[24]。在真核细胞中,谱系定型和基因表达依赖于组蛋白介导的染色质动态变化,这一过程受组蛋白修饰的调节,如组蛋白甲基化、乙酰化和磷酸化等[25]。组蛋白甲基化主要影响组蛋白侧链上的赖氨酸或精氨酸残基,使其发生单甲基化、二甲基化或三甲基化,从而改变了DNA包绕于组蛋白周围的方式,导致基因启动子区域的折叠或暴露状态发生转变,在基因转录和干细胞分化中起关键的调控作用[26]。组蛋白甲基化曾被认为是不可逆的过程,直到第一个赖氨酸特异性组蛋白去甲基化酶〔lysine (K)-specific histone demethylases,KDMs〕于2004年被发现[27]。如今已有超过30种组蛋白去甲基化酶被识别[28],他们可分为两类:含Tower结构域的赖氨酸特异性组蛋白去甲基化酶家族(lysine-specific histone demethylase,LSD);含Jumonji C(JmjC)结构域的组蛋白去甲基化酶家族。近年来,在探索间MSCs成骨[29-48]、成软骨[19,49-52]分化过程中的组蛋白去甲基化修饰方面已取得很大进展,组蛋白去甲基化酶抑制剂、microRNAs(miRNAs)的开发和应用推动了组蛋白去甲基化修饰调控网络的构建。最近,有研究报道了纳米材料通过KDMs介导调控干细胞分化的机制,提示纳米材料有望成为表观遗传调控干细胞分化的上游信号[41,53]。本文回顾MSCs成骨、成软骨分化中表观遗传作用的研究现状,对组蛋白去甲基化酶在MSCs成骨、成软骨分化中的调控机制进行综述。

1. LSD家族

1.1. LSD1

LSD1,也被称为AOF2或KDM1A,是最早被发现的组蛋白去甲基化酶,由SWI3/RSC8/Moira(SWIRM)结构域、Tower结构域和胺氧化酶(amine oxidase,AOD)结构域组成[54]。Tower结构域为CoREST蛋白提供连接位点,后者可赋予LSD1与核小体结合的能力[55]。在辅酶FAD的共同作用下,LSD1能够特异性地催化包括组蛋白H3在内的多种核蛋白的单甲基化和二甲基化赖氨酸侧链的去甲基化[54]

在MSCs的成骨分化过程中,LSD1介导的表观遗传机制发挥重要作用。通过测定人脂肪来源干细胞(human adipose-derived stem cells,hASC)的碱性磷酸酶(alkaline phosphatase,ALP)活性、基质矿化能力及成骨基因表达谱,LSD1被证明为hASC成骨分化的负调控因子[29]。在自然状态的hASC中,LSD1在骨钙素(osteocalcin,OC)和成骨相关转录因子抗体(osterix,OSX)启动子上高度富集,而经成骨诱导后,其富集程度明显降低,同时伴随ALPOCOSXRUNX2等成骨基因表达的显著上调及组蛋白H3赖氨酸4的单甲基化和二甲基化(H3K4me1/2)水平的升高,提示LSD1通过在成骨相关基因的调控区域消除H3K4me1/2标记而抑制MSCs的成骨分化[29]。这为MSCs的成骨分化调控提供了新思路,即利用小分子药物靶向抑制LSD1活性来实现对成骨基因表达的表观遗传调控。单胺氧化酶抑制剂盐酸帕吉林(pargyline hydrochloride)可有效抑制LSD1的活性,体内和体外研究均表明其可通过增强成骨相关基因的启动子区域的H3K4甲基化水平来促进MSCs的成骨分化[29,56]。值得注意的是,在对骨质疏松小鼠注射盐酸帕吉林后,其体内新骨的生成增加,骨质疏松有所改善,而对骨骼代谢正常小鼠无显著影响[56],这一研究为预防和治疗骨质疏松症提供了可能的表观遗传学疗法。miRNAs作为一种内源性调节因子,也被报道与LSD1介导的干细胞成骨分化有关,作为上游信号参与构建了MSCs成骨、成软骨分化的表观遗传调控网络。研究表明,miR-137是 LSD1的上游信号,且二者对骨形态生成蛋白2(BMP2)-SMAD4信号通路的负调控存在协同作用。miR-137基因敲除可下调LSD1表达,二者的下调可分别激活BMP2-SMAD4通路,最终增强成骨基因RUNX2的表达,促进hASC的成骨分化[57]

1.2. LSD2

LSD2为LSD1的哺乳动物同源物,与LSD1一样,LSD2含有SWIRM结构域及AOD结构域,以FAD为辅酶使单甲基化和二甲基化的H3K4脱甲基化[54,58]。不同的是,LSD2含有一个潜在的锌结合位点,即CW型锌指(zinc finger)结构域[58]。同时Tower结构域的缺失提示其核小体结合能力可能与特异性辅因子NPAC/GLYR1有关[59]。MSCs向脂肪细胞或成骨细胞的分化存在竞争性平衡,通过不同信号传导通路和各种转录调节因子之间复杂的串扰,MSCs的成脂、成骨分化呈现此消彼长的趋势[60]。因此,可将成脂分化的正调控因子作为有潜力的成骨分化的负调控因子。最新研究表明,LSD2活性是小鼠棕色脂肪细胞谱系分化的必要条件,当LSD2基因敲除小鼠的棕色脂肪前体细胞被诱导分化时,其成脂相关基因的表达量减少,提示LSD2是成脂分化的正调控因子[61]。基于MSCs成脂和成骨分化的相互拮抗关系,LSD2是否参与成骨分化调控及其可能机制有望为干细胞表观遗传调控的研究开拓新方向。

2. 含JmjC结构域的组蛋白去甲基化酶家族

含JmjC结构域的赖氨酸特异性去甲基化酶家族是目前已知最大的一类组蛋白去甲基化酶,它们通过催化一种特殊氧化反应使组蛋白去甲基化。二价铁和α-酮戊二酸作为辅助因子参与反应[62]。根据所含结构域的不同,可分为KDM2、KDM4和KDM6等不同亚家族。与LSD只能去除组蛋白的单甲基和二甲基赖氨酸标记的特性不同,含JmjC结构域的组蛋白去甲基化酶可以去除全部3种组蛋白赖氨酸甲基化标记,调控包括细胞增殖、干细胞分化在内的多种细胞过程。KDM2/4/5/6等亚家族间结构域的差异决定了作用位点的不同,直接导致在调控MSCs成骨、成软骨分化的过程中各亚家族靶向不同的成骨、成软骨分化相关基因。深入研究表明,各亚家族成员间也功能各异,可与不同的辅因子组成复合体或与靶基因间形成反馈调节,构成MSCs成骨、成软骨分化的调控网络。

2.1. KDM2亚家族

KDM2亚家族,也被称为含JmjC域的组蛋白去甲基化酶1(JmjC domain-containing histone demethylation protein 1,JHDM1)亚家族。除JmjC结构域外,KDM2还包含富亮氨酸重复序列(LRR)、F-box结构域和CXXC锌指结构域[62],能够在辅助因子的帮助下特异性地催化三甲基化的H3K4、单甲基化和双甲基化的H3K36。KDM2亚家族由两个成员组成:KDM2A(JHDM1A)、KDM2B(JHDM1B)。KDM2A可调节细胞增殖及牙源性间充质干细胞的成骨/成牙本质、成软骨分化[30-32,49,63],KDM2B可调节细胞增殖、诱导细胞衰老并调控牙源性间充质干细胞的成骨/成牙本质、成软骨分化。特别的是,KDM2A、KDM2B调控MSCs成骨/成牙本质和成软骨分化的能力都需依赖BCOR(BCL-6 co-repressor)复合体。眼-面-心-牙综合征(oculo-facio-cardio-dental syndrome,OFCD 综合征)是BCOR突变所导致的,表现为先天性白内障、颅面缺损、先天性心脏病及超长的尖牙牙根。自然状态下,BCOR复合体可招募泛素连接酶和组蛋白去甲基化酶,通过一种独特的表观遗传修饰组合来指导基因沉默[21]。在人根尖牙乳头干细胞(stem cells from the apical papilla,SCAPs)中,KMD2A与BCOR结合后可去除转录因子SOX2、NANOG启动子的H3K4三甲基化,下调SOX2、NANOG的转录水平,从而抑制SCAPs的成软骨分化[49]。此外,KDM2A与BCOR结合后还可通过去除EREGSFRP2启动子上H3K4的三甲基化和H3K36的二甲基化实现基因沉默,导致相关蛋白合成受阻,使决定MSCs成骨分化潜能的关键转录因子OSXDLX2未能激活,最终抑制SCAPs的成骨分化[30-31]。除了与BCOR结合外,KDM2A在BMSCs中还可直接与转录因子RUNX2相互作用,以RUNX2依赖的方式抑制成骨分化相关基因OCOSX的表达[32]。由于RUNX2、OSX均为NF-κB通路的下游信号,而KDM2A的缺失可激活NF-κB通路,因此NF-κB通路也可能与KDM2A对MSCs的成骨/成牙本质调控有关。KDM2B为BCOR复合体的组分之一[21],可被募集至成骨分化标志基因AP-2α的启动子区域。下调KDM2B的表达可使AP-2α启动子上H3K4和H3K36的甲基化增强,AP-2α转录激活,进而促进牙源性间充质干细胞的成骨/成牙骨质分化[33]。KDM2亚家族对牙源性间充质干细胞成骨/成牙本质调控作用有望使其成为骨缺损修复的潜在靶点,一项对小鼠牙胚发育过程中KDM2A表达的时间、空间变化的研究表明KDM2A可能是牙胚分化的“开关”,能够抑制细胞增殖并启动细胞分化[64],为间充质干细胞谱系分化的精准调控提供了新靶点。未来有望利用控释载体,如脂质体、DNA四面体等,实现对MSCs分化进行时空上的精准调控,以提高组织修复的成功率、扩大其应用范围。

2.2. KDM4亚家族

KDM4亚家族也被称为JHDM3亚家族,由5个成员组成:KDM4A/B/C/D/E。他们的共同特征是含有JmjC及JmjN结构域,此外,KDM4A/B/C还包含两个用于识别甲基化组蛋白的TUDOR结构域和两个PHD型锌指结构。KDM4家族成员可在辅助因子二价铁的参与下去除H3K9及H3K36上不同程度的甲基化修饰。KDM4A是一种最近鉴定的成骨分化负调控因子,在BMSCs中,KDM4A可直接与成脂分化相关基因SFRP4和C/ERBα启动子结合,去除组蛋白H3K9的三甲基化标记,激活SFRP4和C/ERBα蛋白的转录。其中,SFRP4可阻断Wnt/β-catenin信号通路,进而抑制MSCs的成骨分化。β-catenin表达的下调同时解除KDM4A的转录抑制,形成抑制成骨的正反馈调节[34]。研究人员在诱导BMSCs成骨分化的过程中,观察到KDM4A的表达增加,提示其可能参与限制细胞过度成骨的胞内自平衡过程[34]。KDM4B是成骨/成牙本质、成软骨分化的正调控因子,在BMSCs中KDM4B通过去除DLX家族启动子区域的H3K9三甲基化标记而启动DLX2/3/5/6的表达,间接增强成骨分化相关转录因子SP7/OSX的表达,促进成骨分化[35]。在SCAPs中,KDM4B也通过DLX5/2调控成骨/成牙本质分化[36-37]。其中,DLX5不仅受KDM4B的调控,也可直接与KDM4B启动子结合来增强其转录,二者通过正反馈机制相互调节[37]。KDM4B也参与由TGF-β诱导BMSCs软骨分化,SMAD2/3被TGF-β激活,并与SMAD4形成复合物进入细胞核内。同时KDM4B从SOX9启动子上移除H3K9的三甲基化修饰,募集SMAD2/3至SOX9启动子区域,使SOX9表达上调,软骨形成[19]。KDM4C/D已被鉴定为MSCs成脂分化的正调控因子[65-66],考虑到成骨与成脂的竞争性,二者在促进成骨分化中的作用有待探索。

2.3. KDM5亚家族

KDM5亚家族以编码ARID(AT-rich interactive domain)结构域为特点,该结构域为维持KDM5活性所必需[67]。除ARID外,KDM5还包含JmjN、JmjC结构域及特异性识别H3K4的锌指结构。KDM5家族由4个成员组成:KDM5A/B/C/D,各成员间存在酶促活性和作用位点的差异。KDM5A是BMSCs成骨分化的负调控因子,一方面通过去除RUNX2启动子区域的H3K4三甲基化修饰抑制RUNX2的转录及SMAD的募集,进而抑制OSX和OC的表达[38-39],另一方面KDM5A也可通过其H3K4去甲基酶活性直接抑制OC表达[39]。在牙源性间充质干细胞中,KDM5A同样抑制成牙本质分化。在人牙髓干细胞(hDPCs)中,KDM5A敲除导致成牙本质相关基因启动子区域的H3K4三甲基化水平升高,上调DSPPDSP1等多个基因的表达[40]。一项最新研究报道,KDM5B作为一种成骨分化的负调控因子参与RUNX2的双位点表观遗传调控。在成骨或成脂分化诱导中,KDM5B、KDM6A等多种组蛋白修饰酶在RUNX2启动子上以特定模式募集、脱落,使H3K4、H3K27两个位点的甲基化、乙酰化状态发生改变,影响RUNX2的表达[42]。提示从表观遗传层面调控基因的激活或沉默可能需要多个组蛋白位点的共同作用。

2.4. KDM6家族

KDM6家族由3个成员组成:KDM6A(UTX),KDM6B(JMJD3),KDM6C(UTY)。它们可作用于三甲基化或二甲基化的H3K27,依靠JmjC结构域去除组蛋白甲基化修饰。KDM6A/C还含有多个TRP重复序列(tetratricopeptide repeat),可能参与蛋白质间的相互作用。KDM6C是否存在KDM活性仍存在争议,有报道指出KDM6C具有与KDM6A/B相似的活性位点,可去除H3K27的三甲基化修饰,但其体内活性及调控作用仍待探索[68]。KDM6A/B均参与MSCs的谱系分化,是成骨/成软骨分化的正调控因子。在BMSCs中,KDM6A直接去除RUNX2、OC启动子区域的H3K27三甲基化修饰,启动成骨相关基因的表达[43]。在骨祖细胞中,KDM6A的调控作用与Wnt信号通路密切相关。Wnt抑制剂Dkk1(Dickkopf-1)、Wnt组件β-catenin与KDM6A间存在相互调节,β-catenin可增加KDM6A表达,使成骨相关基因RUNX2及OSX启动子上的三甲基化H3K27水平降低,维持骨祖细胞的成骨分化能力,而受糖皮质激素刺激后,KDM6A的功能减弱,细胞内高水平的H3K27me3启动了Dkk1的转录,使Wnt信号通路被抑制,骨祖细胞成骨分化潜能受损[44]。除Dkk1外,miR-199a-3p也被证实通过靶向KDM6A/Wnt信号通路,调控BMSCs的成脂分化,证明MircoRNAs可能存在作为上游信号参与MSCs的成骨分化的潜力[69]。在牙源性间充质干细胞中,KDM6A的H3K27me3去甲基化功能是诱导牙周膜干细胞(periodontal ligament stem cells,PDLSCs)向软骨分化所必需的[50]。KDM6A的缺失使成软骨相关基因SOX9、COL2A1、ACAN表达下调,蛋白多糖产生减少,miR-29a、miR-204和miR-211也参与了这一过程,但其具体机制仍待阐明[50]。在成骨或成软骨诱导过程中,KDM6B的表达随着细胞表型的变化而变化,提示KDM6B可能在MSCs的成骨或成软骨分化中起主要作用[35,51]。在BMSCs中,KDM6B通过去除H3K27me3修饰直接启动BMPHOX基因的表达,从而间接启动RUNX2的表达,促进成骨分化[35]。近年来,越来越多KDM6B-HOX-RUNX2通路的上、下游信号被发现,完善了以KDM6B为中心的成骨分化表观遗传调控网络。其中,mircoRNAs及细胞微环境改变是重要的上游信号。miR-146a、miR-148A-3p及miR-99a已被鉴定为KDM6B的负调控因子,通过抑制KDM6B-HOX-RUNX2通路使BMSCs的成骨分化潜能降低[70-72]。模拟糖尿病的胞外高糖环境同样可使BMSCs成骨分化能力减弱,H3K27me3增加,KDM6BRUNX2表达受抑制[73]。在BMSCs的成软骨分化过程中,KDM6B主要调控软骨合成代谢相关基因,包括SOX9、COL2A1等,去除其启动子区域的H3K27me3标记,促进软骨分化[51]。在对KDM6B基因敲除小鼠进行mRNA和蛋白表达分析后,发现SOX9为这一过程的关键[74]。KDM6B-SOX9通路的确定使研究人员得以在此基础上进行成软骨分化上游信号的探索,为骨关节炎等软骨损伤疾病的病因研究提供新方向。在牙源性间充质干细胞中,KDM6B通过不同的通路介导成牙本质分化。最初的报道表明,KDM6B被招募到BMP2启动子上,随后去除致基因沉默的H3K27me3标记,而导致了这一成牙本质分化相关基因的激活。同时,KDM6B也间接令DLX2表达水平上调[45]。由于BMP2可与DLX2协同作用而诱导牙本质涎磷蛋白和牙本质基质蛋白生成[75],DLX2可能作为KDM6B调控成牙本质分化的下游信号,参与构成KDM6B-BMP2-DLX2通路。随着研究的深入,包括低氧、高乙醇浓度在内的细胞微环境因素被证实为KDM6B调控成牙本质分化的上游信号[76-77]。二者均可抑制牙源性间充质干细胞中KDM6B的表达,阻断KDM6B-BMP2-DLX2通路以抑制成牙本质分化。此外,胰岛素样生长因子结合蛋白5(LGFBP5)也被鉴定为KDM6B的下游信号,通过负调控NF-κB信号通路在牙周组织中实现抗炎和促骨质形成的功能[46]

2.5. 其他含JmjC结构域的组蛋白去甲基化酶

KDM3A能特异性地使单甲基化及二甲基化的H3K9脱甲基,C6型锌指结构域和JmjC结构域是其脱甲基活性的基础。与前述调节成软骨分化的KDMs不同,KDM3A调节成体软骨细胞的功能,补全了KDMs在全生命周期中对软骨功能调节的空白。KDM3A通过在特定阶段去除NFAT1启动子区域的H3K9me2修饰,实现NFAT1的年龄依赖性表达,以维持成体软骨细胞的功能[78]。KDM3A的功能异常会在小鼠中导致骨关节炎样改变,为骨关节炎的发病机制及治疗提供新见解。

KDM7A最初被鉴定为大脑发育所需的组蛋白去甲基化酶[79],含有JmjC结构域和PHD型锌指结构域,后者使KDM7A具有仅能在不存在H3K4me3/H3K9me3的情况下去除H3K4me2/H3K9me2甲基化修饰的特性[80]。在BMSCs中,KDM7A可直接与C/EBPαSFRP1启动子结合,去除组蛋白甲基化标记H3K9me2和H3K27me2,启动C/EBPαSFRP1转录,促进成脂分化而抑制了成骨分化[47]。此外,沉默KDM7A激活了经典Wnt信号,解除成骨分化抑制,表明KDM7A通过表观遗传机制调控C/EBPαSFRP1和经典Wnt信号平衡了BMSCs的成脂和成骨分化。

PHF2是一种可使组蛋白和非组蛋白脱甲基的赖氨酸脱甲基酶,含有JmjC结构域和PHD型锌指结构,经蛋白激酶A(protein kinase A,PKA)磷酸化后获得催化活性[81]。PHF2常被ARID5B招募组成复合物而发挥去除H3K9二甲基化标记的功能。在小鼠胚胎来源的MSCs中,ARID5B可将PHF2招募到SOX9的启动子区域,并去除区域内的H3K9me2修饰,诱导成软骨分化[52]。PHF8是对组蛋白二甲基和一甲基状态具有选择性的组蛋白赖氨酸脱甲基酶。当H3K4me3存在时,PHF8对H3K9me2的结合力显著增强,并可去除H3K9me1/2修饰。在BMSCs中,PHF8通过去除SATB2启动子区域的H3K9me2标记而间接促进RUNX2、OSX表达,激发BMSCs的成骨分化能力[48]

3. 纳米材料通过组蛋白去甲基化酶介导MSCs的成骨分化

纳米材料由于易于合成和表面功能化的多样性而广泛应用于干细胞生物学行为的调控。近年来,纳米材料的飞速发展为开发具有干细胞分化调控潜力的新型纳米材料提供了广阔前景。经功能化改造的纳米材料可模拟干细胞的细胞微环境并调节其分化[82]。诱导干细胞向特定细胞类型的经典方法依赖于配制含有特定分化因子的培养基,但越来越多的证据表明,纳米材料不仅可在分化因子诱导的基础上加强分化潜能,还可直接促进干细胞的增殖和分化[83],预示着纳米材料在组织工程应用的巨大潜力。天然骨是由从纳米级到厘米级的不同结构组装而成的,因此理想的骨组织工程,需借助纳米材料的分层装配以达到仿生状态[84]。理想骨组织工程材料应具有的关键性能为良好的骨诱导性,多种新型纳米材料,如金纳米颗粒、硒纳米颗粒及聚苯乙烯纳米球等,已被证实具有诱导MSCs成骨分化的能力[85-87],但纳米材料影响胞内成骨标记物表达的具体机制尚未明确。研究表明表观遗传机制参与这一过程,纳米拓扑结构可通过表观遗传机制实现对细胞谱系分化的控制,达到骨诱导效果[41]。不同直径的TiO2纳米管可不同程度地促进hASCs成骨分化,在直径为70 nm时达到高峰。此现象是由于TiO2纳米管抑制KDM5A,使RUNX2和OC启动子区域H3K4甲基化水平增高而发生转录激活所致[41]。利用二代测序技术,研究人员揭示了TiO2纳米管调控成骨分化的全貌,除KDM5A外,KDM4E、组蛋白脱乙酰基酶、多种microRNAs和LncRNAs均参与此过程,组成以纳米拓扑结构为中心的的表观遗传调控网络[53]。至此,由纳米材料至MSCs成骨分化间环环相扣的机制串扰已逐渐清晰,仅剩纳米材料启动表观遗传机制的环节尚不清楚,且很可能涉及多种细胞生物过程。既往研究已观察到不同细胞系暴露于纳米材料后所产生的直接效应,包括染色质修饰蛋白功能改变、氧化应激及炎症反应,它们均可导致DNA甲基化状态和组蛋白修饰模式的改变[88],但纳米材料介导的MSCs成骨分化是否有以上效应的参与仍待证实。

4. 总结与展望

如上所述,组蛋白去甲基化酶诱导干细胞成骨、成软骨分化的表观遗传调控网络正逐渐完善(图1),已鉴定出越来越多的通路及相关上、下游信号。近五年来,对KDMs的研究逐渐由聚焦于酶本身转向KDMs与其他转录因子形成的复合体,多种microRNAs和LncRNAs也被证实参与组蛋白去甲基化酶的调控网络。表观遗传调控的组织差异性、时空变化、多位点共同作用均在KDMs的研究中得以体现。组织差异性表现在牙源性间充质干细胞与非牙源性(骨髓、脂肪来源)间充质干细胞对表观遗传调控的敏感性、KDMs作用的靶基因及成骨、成软骨能力的不同。时空变化表现于牙胚发育的不同时期,KDMs表达水平在不同时间点、不同组织间的变化,表明KDMs参与并调控机体发育中的成骨、成软骨过程。多位点共同作用则表现于KDM5B和KDM6A对RUNX2的双位点调控等。以上特性再次证明KDMs是表观遗传调控的重要环节,其调控机制是精准且变化的,完整揭示这种机制将助于实现骨、软骨的个体化修复。同时,纳米拓扑结构与KDMs间关系的确定使KDMs研究进入新的时代。除纳米拓扑结构外,不同种类的纳米材料也存在调控MSCs成骨分化的差异;生物力学参数是细胞对其微环境进行感知和反应的前提,其中基质刚度已被鉴定为调控MSCs软骨分化的重要因素[89]。受纳米拓扑结构启发,以上细胞外信号调控MSCs成骨、成软骨分化的机制有望通过表观遗传机制得以阐明。综上所述,对KDMs介导的表观遗传机制的深入理解,将帮助设计具有优良骨/软骨传导性、诱导性和成骨/成软骨性的下一代纳米材料,应用于骨、软骨组织工程。

图 1.

图 1

The role of KDMs in osteogenic and chondrogenic differentiation of MSCs

KDMs在MSCs成骨、成软骨分化中的作用

KDMs regulate the lineage differentiation of MSCs involving many transcription factors, signaling pathways and genes related to osteogenic and chondrogenic differentiation including BCL-6 co-repressor (BCOR), epiregulin (EREG), insulin-like growth factor-binding protein (LGFBP5), secreted frizzled-related protein 2, 4 (SFRP2, 4), transcription factor AP-2 alpha (AP-2α), Wnt pathway, NF-κB pathway, Runt-related transcription factor 2 (RUNX2), osteocalcin (OC), bone morphogenetic protein (BMP), distal-less homebox (DLX), osterix (OSX), SRY-related high-mobility-group-box gene 2, 9 (SOX2, 9), collagen type I/II (COL1/2), collagen type II alpha 1 (COL2A1), aggrecan (ACAN), nanog homeobox (NANOG), lysine-specific histone demethylase 1 (LSD1). A: The role of KDMs in MSCs osteogenic differentiation; B: The role of KDMs in chondrogenic differentiation.

* * *

利益冲突  所有作者均声明不存在利益冲突

Funding Statement

国家自然科学基金(No. 81800947)、四川省科技计划项目(No. 2020YFS0176)和中国博士后科学基金(No. 2018M640930)资助

Contributor Information

昊 隋 (Hao SUI), Email: 2017151642068@stu.scu.edu.cn.

陶 张 (Tao ZHANG), Email: taozhang@scu.edu.cn.

References

  • 1.ANKRUM J A, ONG J F, KARP J M Mesenchymal stem cells: immune evasive, not immune privileged. Nat Biotechnol. 2014;32(3):252–260. doi: 10.1038/nbt.2816. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 2.DOMINICI M, BLANC K L, MUELLER I, et al Minimal criteria for defining multipotent mesenchymal stromal cells. Cytotherapy. 2006;8(4):315–317. doi: 10.1080/14653240600855905. [DOI] [PubMed] [Google Scholar]
  • 3.CAPLAN A I Adult mesenchymal stem cells for tissue engineering versus regenerative medicine. J Cell Physiol. 2010;213(2):341–347. doi: 10.1002/jcp.21200. [DOI] [PubMed] [Google Scholar]
  • 4.MINGUELL J J, ERICES A, CONGET P Mesenchymal stem cells. Exp Biol Med (Maywood) 2001;226(6):507–520. doi: 10.1007/0-306-46870-0_9. [DOI] [PubMed] [Google Scholar]
  • 5.ROMANOV Y A, DAREVSKAYA A N, MERZLIKINA N V, et al Mesenchymal stem cells from human bone marrow and adipose tissue: isolation, characterization, and differentiation potentialities. Bull Exp Biol Med. 2005;140(1):138–143. doi: 10.1007/s10517-005-0430-z. [DOI] [PubMed] [Google Scholar]
  • 6.OZKUL Y, GALDERISI U The impact of epigenetics on mesenchymal stem cell biology. J Cell Physiol. 2016:2393–2401[2020-12-20]. https://doi.org/10.1002/jcp.25371. doi: 10.1002/jcp.25371. [DOI] [PubMed] [Google Scholar]
  • 7.MA S, XIE N, LI W, et al Immunobiology of mesenchymal stem cells. Cell Death Differ. 2014;21(2):216–225. doi: 10.1038/cdd.2013.158. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 8.NÉMETH K, LEELAHAVANICHKUL A, YUEN P S T, et al Bone marrow stromal cells attenuate sepsis via prostaglandin E(2)-dependent reprogramming of host macrophages to increase their interleukin-10 production. Nat Med. 2008;15(1):42–49. doi: 10.1038/nm.1905. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 9.YUAN Y, LIN S, GUO N, et al Marrow mesenchymal stromal cells reduce methicillin-resistant Staphylococcus aureusinfection in rat models . Cytotherapy. 2014;16(1):56–63. doi: 10.1016/j.jcyt.2013.06.002. [DOI] [PubMed] [Google Scholar]
  • 10.WARD C L, SANCHEZ JR C J, POLLOT B E, et al. Soluble factors from biofilms of wound pathogens modulate human bone marrow-derived stromal cell differentiation, migration, angiogenesis, and cytokine secretion. BMC Microbiol, 2015, 15: 75[2020-12-20]. https://doi.org/10.1186/s12866-015-0412-x.
  • 11.WALTER J, WARE L B, MATTHAY M A Mesenchymal stem cells: mechanisms of potential therapeutic benefit in ARDS and sepsis. Lancet Respir Med. 2014;2(12):1016–1026. doi: 10.1016/S2213-2600(14)70217-6. [DOI] [PubMed] [Google Scholar]
  • 12.DRAGOJEVIČ J, LOGAR D B, KOMADINAET R, et al Osteoblastogenesis and adipogenesis are higher in osteoarthritic than in osteoporotic bone tissue. Arch Med Res. 2011;42(5):392–397. doi: 10.1016/j.arcmed.2011.08.005. [DOI] [PubMed] [Google Scholar]
  • 13.HOSHIBA T, KAWAZOE N, CHEN G The balance of osteogenic and adipogenic differentiation in human mesenchymal stem cells by matrices that mimic stepwise tissue development. Biomaterials. 2012;33(7):2025–2031. doi: 10.1016/j.biomaterials.2011.11.061. [DOI] [PubMed] [Google Scholar]
  • 14.RISBUD M V, SITTINGER M Tissue engineering: advances in in vitro cartilage generation . Trends Biotechnol. 2002;20(8):351–356. doi: 10.1016/S0167-7799(02)02016-4. [DOI] [PubMed] [Google Scholar]
  • 15.AISENBREY E, BRYANT S A MMP7-sensitive photoclickable biomimetic hydrogel for MSC encapsulation towards engineering human cartilage. J Biomed Mater Res A. 2018;106(8):2344–2355. doi: 10.1002/jbm.a.36412. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 16.TAKADA I, KOUZMENKO A P, KATO S Wnt and PPARγ signaling in osteoblastogenesis and adipogenesis. Nat Rev Rheumatol. 2009;5(8):442–447. doi: 10.1038/nrrheum.2009.137. [DOI] [PubMed] [Google Scholar]
  • 17.CHANG J, WANG Z, TANG E, et al Inhibition of osteoblastic bone formation by nuclear factor-κB. Nat Med. 2009;15(6):682–689. doi: 10.1038/nm.1954. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 18.MOERMAN E J, TENG K, LIPSCHITZ D A, et al Aging activates adipogenic and suppresses osteogenic programs in mesenchymal marrow stroma/stem cells: the role of PPAR-gamma2 transcription factor and TGF-beta/BMP signaling pathways. Aging Cell. 2004;3(6):379–389. doi: 10.1111/j.1474-9728.2004.00127.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 19.LEE H L, YU B, DENG P, et al Transforming growth factor-β-induced KDM4B promotes chondrogenic differentiation of human mesenchymal stem cells. Stem Cells. 2016;34(3):711–719. doi: 10.1002/stem.2231. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 20.LIM K E, PARK N R, CHE X, et al Core binding factor β of osteoblasts maintains cortical bone mass via stabilization of Runx2 in mice. J Bone Miner Res. 2015;30(4):715–722. doi: 10.1002/jbmr.2397. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 21.GEARHART M D, CORCORAN C M, WAMSTAD J A, et al Polycomb group and SCF ubiquitin ligases are found in a novel BCOR complex that is recruited to BCL6 targets. Mol Cell Biol. 2006;26(18):6880–6889. doi: 10.1128/MCB.00630-06. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 22.ATLASI Y, STUNNENBERG H G The interplay of epigenetic marks during stem cell differentiation and development. Nat Rev Genet. 2017;18(11):643–658. doi: 10.1038/nrg.2017.57. [DOI] [PubMed] [Google Scholar]
  • 23.PORTELA A, ESTELLER M Epigenetic modifications and human disease. Nat Biotechnol. 2010;28(10):1057–1068. doi: 10.1038/nbt.1685. [DOI] [PubMed] [Google Scholar]
  • 24.VINCENT A, SEUNINGEN I V Epigenetics, stem cells and epithelial cell fate. Differentiation. 2009;78(2/3):99–107. doi: 10.1016/j.diff.2009.07.002. [DOI] [PubMed] [Google Scholar]
  • 25.CANTERBURY E, DURAIAPPAH A K, NAEEM S, et al Translating the histone code. Science. 2001;293(5532):1074–1080. doi: 10.1126/science.1063127. [DOI] [PubMed] [Google Scholar]
  • 26.LUNYAK V V, ROSENFELD M G Epigenetic regulation of stem cell fate. Hum Mol Genet. 2008;17(R1):R28–R36. doi: 10.1093/hmg/ddn149. [DOI] [PubMed] [Google Scholar]
  • 27.SHI Y, LAN F, MATSON C, et al Histone demethylation mediated by the nuclear amine oxidase homolog LSD1. Cell. 2004;119(7):941–953. doi: 10.1016/j.cell.2004.12.012. [DOI] [PubMed] [Google Scholar]
  • 28.NIC-CAN G I, RODAS-JUNCO B A, CARRILLO-COCOM L M, et al Epigenetic regulation of adipogenic differentiation by histone lysine demethylation. Int J Mol Sci. 2019;20(16):3918[2020-12-09]. https://doi.org/10.3390/ijms20163918. doi: 10.3390/ijms20163918. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 29.GE W, LIU Y, CHEN T, et al The epigenetic promotion of osteogenic differentiation of human adipose-derived stem cells by the genetic and chemical blockade of histone demethylase LSD1. Biomaterials. 2014;35(23):6015–6025. doi: 10.1016/j.biomaterials.2014.04.055. [DOI] [PubMed] [Google Scholar]
  • 30.DU J, MA Y, MA P, et al Demethylation of epiregulin gene by histone demethylase FBXL11 and BCL6 corepressor inhibits osteo/dentinogenic differentiation. Stem Cells. 2013;31(1):126–136. doi: 10.1002/stem.1255. [DOI] [PubMed] [Google Scholar]
  • 31.YU G, WANG J, LIN X, et al Demethylation of SFRP2 by histone demethylase KDM2A regulated osteo-/dentinogenic differentiation of stem cells of the apical papilla. Cell Prolif. 2016;49(3):330–340. doi: 10.1111/cpr.12256. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 32.DENG Y, GUO T, LI J, et al Repair of calvarial bone defect using jarid1a-knockdown bone mesenchymal stem cells in rats. Tissue Eng Part A. 2018;24(9/10):711–718. doi: 10.1089/ten.tea.2017.0168. [DOI] [PubMed] [Google Scholar]
  • 33.FAN Z, YAMAZA T, LEE J S, et al BCOR regulates mesenchymal stem cell function by epigenetic mechanisms. Nat Cell Biol. 2009;11(8):1002–1009. doi: 10.1038/ncb1913. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 34.QI Q, WANG Y, WANG X, et al Histone demethylase KDM4A regulates adipogenic and osteogenic differentiation via epigenetic regulation of C/EBPα and canonical Wnt signaling. Cell Mol Life Sci. 2020;77(12):2407–2421. doi: 10.1007/s00018-019-03289-w. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 35.YE L, FAN Z, YU B, et al Histone demethylases KDM4B and KDM6B promotes osteogenic differentiation of human MSCs. Cell Stem Cell. 2012;11(1):50–61. doi: 10.1016/j.stem.2012.04.009. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 36.QU B, LIU O, FANG X, et al Distal-less homeobox 2 promotes the osteogenic differentiation potential of stem cells from apical papilla. Cell Tissue Res. 2014;357(1):133–143. doi: 10.1007/s00441-014-1833-9. [DOI] [PubMed] [Google Scholar]
  • 37.YANG H, FAN J, CAO Y, et al Distal-less homeobox 5 promotes the osteo-/dentinogenic differentiation potential of stem cells from apical papilla by activating histone demethylase KDM4B through a positive feedback mechanism. Exp Cell Res. 2019;374(1):221–230. doi: 10.1016/j.yexcr.2018.11.027. [DOI] [PubMed] [Google Scholar]
  • 38.WANG C, WANG J, LI J, et al KDM5A controls bone morphogenic protein 2-induced osteogenic differentiation of bone mesenchymal stem cells during osteoporosis. Cell Death Dis. 2016;(7):e2335[2020-11-24]. https://doi.org/10.1038/cddis.2016.238. doi: 10.1038/cddis.2016.238. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 39.GE W, SHI L, ZHOU Y, et al Inhibition of osteogenic differentiation of human adipose-derived stromal cells by retinoblastoma binding protein 2 repression of RUNX2-activated transcription. Stem Cells. 2011;29(7):1112–1125. doi: 10.1002/stem.663. [DOI] [PubMed] [Google Scholar]
  • 40.LI Q M, LI J L, FENG Z H, et al Effect of histone demethylase KDM5A on the odontogenic differentiation of human dental pulp cells. Bioengineered. 2020;11(1):449–462. doi: 10.1080/21655979.2020.1743536. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 41.LV L, LIU Y, ZHANG P, et al The nanoscale geometry of TiO2 nanotubes influences the osteogenic differentiation of human adipose-derived stem cells by modulating H3K4 trimethylation . Biomaterials. 2015;39:193–205. doi: 10.1016/j.biomaterials.2014.11.002. [DOI] [PubMed] [Google Scholar]
  • 42.ROJAS A, AGUILAR R, HENRIQUEZ B, et al Epigenetic control of the bone-master Runx2 gene during osteoblast-lineage commitment by the histone demethylase JARID1B/KDM5B . J Biol Chem. 2015;290(47):28329–28342. doi: 10.1074/jbc.M115.657825. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 43.HEMMING S, CAKOUROS D, ISENMANN S, et al EZH2 and KDM6A act as an epigenetic switch to regulate mesenchymal stem cell lineage specification . Stem Cells. 2014;32(3):802–815. doi: 10.1002/stem.1573. [DOI] [PubMed] [Google Scholar]
  • 44.WANG F S, LIAN W S, LEE M S, et al Histone demethylase UTX counteracts glucocorticoid deregulation of osteogenesis by modulating histone-dependent and -independent pathways. J Mol Med (Berl) 2017;95(5):499–512. doi: 10.1007/s00109-017-1512-x. [DOI] [PubMed] [Google Scholar]
  • 45.XU J, YU B, HONG C, et al KDM6B epigenetically regulates odontogenic differentiation of dental mesenchymal stem cells. Int J Oral Sci. 2013;5(4):200–205. doi: 10.1038/ijos.2013.77. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 46.LIU D, WANG Y, JIA Z, et al Demethylation of IGFBP5 by histone demethylase KDM6B promotes mesenchymal stem cell-mediated periodontal tissue regeneration by enhancing osteogenic differentiation and anti-inflammation potentials. Stem Cells. 2015;33(8):2523–2536. doi: 10.1002/stem.2018. [DOI] [PubMed] [Google Scholar]
  • 47.YANG X, WANG G, WANG Y, et al Histone demethylase KDM7A reciprocally regulates adipogenic and osteogenic differentiation via regulation of C/EBPα and canonical Wnt signalling. J Cell Mol Med. 2019;23(3):2149–2162. doi: 10.1111/jcmm.14126. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 48.HAN Q, YANG P, WU Y, et al Epigenetically modified bone marrow stromal cells in silk scaffolds promote craniofacial bone repair and wound healing. Tissue Eng Part A. 2015;21(15/16):2156–2165. doi: 10.1089/ten.TEA.2014.0484. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 49.DONG R, YAO R, DU J, et al Depletion of histone demethylase KDM2A enhanced the adipogenic and chondrogenic differentiation potentials of stem cells from apical papilla. Exp Cell Res. 2013;319(18):2874–2882. doi: 10.1016/j.yexcr.2013.07.008. [DOI] [PubMed] [Google Scholar]
  • 50.WANG P, LI Y, MENG T, et al. KDM6A promotes chondrogenic differentiation of periodontal ligament stem cells by demethylation of SOX9. Cell Prolif, 2018, 51(3): e12413[2020-12-11]. https://doi.org/10.1111/cpr.12413.
  • 51.YAPP C, CARR A J, PRICE A, et al. H3K27me3 demethylases regulate in vitro chondrogenesis and chondrocyte activity in osteoarthritis. Arthritis Res Ther, 2016, 18: 158[2020-12-14]. https://doi.org/10.1186/s13075-016-1053-7.
  • 52.HATA K, TAKASHIMA R, AMANO K, et al Arid5b facilitates chondrogenesis by recruiting the histone demethylase Phf2 to Sox9-regulated genes. Nat Commun. 2013;4:2850[2020-07-18]. https://doi.org/10.1038/ncomms3850. doi: 10.1038/ncomms3850. [DOI] [PubMed] [Google Scholar]
  • 53.LV L, LIU Y, ZHANG P, et al The epigenetic mechanisms of nanotopography-guided osteogenic differentiation of mesenchymal stem cells via high-throughput transcriptome sequencing. Int J Nanomedicine. 2018;13:5605–5623. doi: 10.2147/ijn.S168928. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 54.NIWA H, UMEHARA T Structural insight into inhibitors of flavin adenine dinucleotide-dependent lysine demethylases. Epigenetics. 2017;12(5):340–352. doi: 10.1080/15592294.2017.1290032. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 55.SHI Y J, MATSON C, LAN F, et al Regulation of LSD1 histone demethylase activity by its associated factors. Mol Cell. 2005;19(6):857–864. doi: 10.1016/j.molcel.2005.08.027. [DOI] [PubMed] [Google Scholar]
  • 56.LV L, GE W, LIU Y, et al Lysine-specific demethylase 1 inhibitor rescues the osteogenic ability of mesenchymal stem cells under osteoporotic conditions by modulating H3K4 methylation. Bone Res. 2016;4:16037[2020-10-24]. https://doi.org/10.1038/boneres.2016.37. doi: 10.1038/boneres.2016.37. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 57.MA X, FAN C, WANG Y, et al MiR-137 knockdown promotes the osteogenic differentiation of human adipose-derived stem cells via the LSD1/BMP2/SMAD4 signaling network. J Cell Physiol. 2020;235(2):909–919. doi: 10.1002/jcp.29006. [DOI] [PubMed] [Google Scholar]
  • 58.KARYTINOS A, FORNERIS F, PROFUMO A, et al A novel mammalian flavin-dependent histone demethylase. J Biol Chem. 2009;284(26):17775–17782. doi: 10.1074/jbc.M109.003087. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 59.FANG R, CHEN F, DONG Z, et al LSD2/KDM1B and its cofactor NPAC/GLYR1 endow a structural and molecular model for regulation of H3K4 demethylation. Mol Cell. 2013;49(3):558–570. doi: 10.1016/j.molcel.2012.11.019. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 60.MURUGANANDAN S, ROMAN A A, SINAL C J Adipocyte differentiation of bone marrow-derived mesenchymal stem cells: Cross talk with the osteoblastogenic program. Cell Mol Life Sci. 2009;66(2):236–253. doi: 10.1007/s00018-008-8429-z. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 61.TAKASE R, HINO S, NAGAOKA K, et al Lysine-specific demethylase-2 is distinctively involved in brown and beige adipogenic differentiation. FASEB J. 2019;33(4):5300–5311. doi: 10.1096/fj.201801422RR. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 62.TSUKADA Y, FANG J, ERDJUMENT-BROMAGE H, et al Histone demethylation by a family of JmjC domain-containing proteins. Nature. 2006;439(7078):811–816. doi: 10.1038/nature04433. [DOI] [PubMed] [Google Scholar]
  • 63.GAO R, DONG R, DU J, et al Depletion of histone demethylase KDM2A inhibited cell proliferation of stem cells from apical papilla by de-repression of p15INK4B and p27Kip1. Mol Cell Biochem. 2013;379(1/2):115–122. doi: 10.1007/s11010-013-1633-7. [DOI] [PubMed] [Google Scholar]
  • 64.YI Q, CAO Y, LIU O S, et al Spatial and temporal expression of histone demethylase, Kdm2a, during murine molar development. Biotech Histochem. 2016;91(2):137–144. doi: 10.3109/10520295.2015.1106586. [DOI] [PubMed] [Google Scholar]
  • 65.LU C, WARD P S, KAPOOR G S, et al IDH mutation impairs histone demethylation and results in a block to cell differentiation. Nature. 2012;483(7390):474–478. doi: 10.1038/nature10860. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 66.CHOI J H, LEE H Histone demethylase KDM4D cooperates with NFIB and MLL1 complex to regulate adipogenic differentiation of C3H10T1/2 mesenchymal stem cells. Sci Rep. 2020;10:3050[2020-11-13]. https://doi.org/10.1038/s41598-020-60049-8. doi: 10.1038/s41598-020-60049-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 67.TU S, TENG Y C, YUAN C, et al The ARID domain of the H3K4 demethylase RBP2 binds to a DNA CCGCCC motif. Nat Struct Mol Biol. 2008;15(4):419–421. doi: 10.1038/nsmb.1400. [DOI] [PubMed] [Google Scholar]
  • 68.WALPORT L J, HOPKINSON R J, VOLLMAR M, et al Human UTY(KDM6C) is a male-specific Nϵ-methyl lysyl demethylase . J Biol Chem. 2014;289(26):18302–18313. doi: 10.1074/jbc.M114.555052. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 69.SHUAI Y, YANG R, MU R, et al MiR-199a-3p mediates the adipogenic differentiation of bone marrow-derived mesenchymal stem cells by regulating KDM6A/WNT signaling. Life Sci. 2019;220:84–91. doi: 10.1016/j.lfs.2019.01.051. [DOI] [PubMed] [Google Scholar]
  • 70.HUSZAR J M, PAYNE C J MIR146A inhibits JMJD3 expression and osteogenic differentiation in human mesenchymal stem cells. FEBS Lett. 2014;588(9):1850–1856. doi: 10.1016/j.febslet.2014.03.057. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 71.TIAN L, ZHENG F, LI Z, et al MiR-148a-3p regulates adipocyte and osteoblast differentiation by targeting lysine-specific demethylase 6b. Gene. 2017;627:32–39. doi: 10.1016/j.gene.2017.06.002. [DOI] [PubMed] [Google Scholar]
  • 72.TANG Y, ZHANG L, TU T, et al MicroRNA-99a is a novel regulator of KDM6B-mediated osteogenic differentiation of BMSCs. J Cell Mol Med. 2018;22(4):2162–2176. doi: 10.1111/jcmm.13490. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 73.唐宇, 胡赟, 罗丹, 等 糖尿病环境下成骨细胞KDM6B表达的变化. 四川大学学报(医学版) 2019;50(5):660–665. doi: 10.13464/j.scuxbyxb.2019.05.007. [DOI] [PubMed] [Google Scholar]
  • 74.DAI J, YU D, WANG Y, et al Kdm6b regulates cartilage development and homeostasis through anabolic metabolism. Ann Rheum Dis. 2017;76(7):1295–1303. doi: 10.1136/annrheumdis-2016-210407. [DOI] [PubMed] [Google Scholar]
  • 75.OH S H, HWANG Y C, YANG H, et al SHP is involved in BMP2-induced odontoblast differentiation. J Dent Res. 2012;91(12):1124–1129. doi: 10.1177/0022034512461916. [DOI] [PubMed] [Google Scholar]
  • 76.HOANG M, KIM J J, KIM Y, et al Alcohol-induced suppression of KDM6B dysregulates the mineralization potential in dental pulp stem cells. Stem Cell Res. 2016;17(1):111–121. doi: 10.1016/j.scr.2016.05.021. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 77.YOON D K, PARK J S, RHO G J, et al The involvement of histone methylation in osteoblastic differentiation of human periosteum-derived cells culturedin vitro under hypoxic conditions . Cell Biochem Funct. 2017;35(7):441–452. doi: 10.1002/cbf.3302. [DOI] [PubMed] [Google Scholar]
  • 78.RODOVA M, LU Q, LI Y, et al Nfat1 regulates adult articular chondrocyte function through its age-dependent expression mediated by epigenetic histone methylation. J Bone Miner Res. 2011;26(8):1974–1986. doi: 10.1002/jbmr.397. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 79.TSUKADA Y, ISHITANI T, NAKAYAMA K I KDM7 is a dual demethylase for histone H3 Lys 9 and Lys 27 and functions in brain development. Genes Dev. 2010;24(5):432–437. doi: 10.1101/gad.1864410. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 80.HORTON J R, UPADHYAY A K, QI H H, et al Enzymatic and structural insights for substrate specificity of a family of Jumonji histone lysine demethylases. Nat Struct Mol Biol. 2010;17(1):38–43. doi: 10.1038/nsmb.1753. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 81.BABA A, OHTAKE F, OKUNO Y, et al PKA-dependent regulation of the histone lysine demethylase complex PHF2-ARID5B. Nat Cell Biol. 2011;13(6):668–675. doi: 10.1038/ncb2228. [DOI] [PubMed] [Google Scholar]
  • 82.MASHINCHIAN O, TURNER L, DALBY M, et al Regulation of stem cell fate by nanomaterial substrates. Nanomedicine (Lond) 2015;10(5):829–847. doi: 10.2217/nnm.14.225. [DOI] [PubMed] [Google Scholar]
  • 83.WEI M, LI S, LE W Nanomaterials modulate stem cell differentiation: biological interaction and underlying mechanisms. J Nanobiotechnol. 2017;15:75[2020-11-14]. https://doi.org/10.1186/s12951-017-0310-5. doi: 10.1186/s12951-017-0310-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 84.GONG T, XIE J, LIAO J, et al. Nanomaterials and bone regeneration. Bone Res, 2015, 3: 15029[2020-10-04]. https://doi.org/10.1038/boneres.2015.29.
  • 85.ZHANG Y, WANG P, WANG Y, et al Gold nanoparticles promote the bone regeneration of periodontal ligament stem cell sheets through activation of autophagy. Int J Nanomedicine. 2021;16:61–73. doi: 10.2147/ijn.S282246. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 86.FATIMA S, ALFRAYH R, ALRASHED M, et al Selenium nanoparticles by moderating oxidative stress promote differentiation of mesenchymal stem cells to osteoblasts. Int J Nanomedicine. 2021;16:331–343. doi: 10.2147/ijn.S285233. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 87.ZHAO C, SONG X, LU X Directional osteo-differentiation effect of hADSCs on nanotopographical self-assembled polystyrene nanopit surfaces. Int J Nanomedicine. 2020;15:3281–3290. doi: 10.2147/ijn.S240300. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 88.POGRIBNA M, HAMMONS G Epigenetic effects of nanomaterials and nanoparticles. J Nanobiotechnol. 2021;19:2[2020-11-14]. https://doi.org/10.1186/s12951-020-00740-0. doi: 10.1186/s12951-020-00740-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 89.SELIG M, LAUER J, HART M, et al Mechanotransduction and stiffness-sensing: mechanisms and opportunities to control multiple molecular aspects of cell phenotype as a design cornerstone of cell-instructive biomaterials for articular cartilage repair. Int J Mol Sci. 2020;21(15):5399. doi: 10.3390/ijms21155399. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Sichuan University (Medical Sciences) are provided here courtesy of Editorial Board of Journal of Sichuan University (Medical Sciences)

RESOURCES