Skip to main content
Journal of Sichuan University (Medical Sciences) logoLink to Journal of Sichuan University (Medical Sciences)
. 2022 Jul 20;53(4):573–578. [Article in Chinese] doi: 10.12182/20220760204

脑胶质瘤微环境中非肿瘤细胞的作用研究进展

Latest Research Findings on the Role of Non-Tumor Cells in Glioma Microenvironment

明荣 左 1, 艳辉 刘 1,*
PMCID: PMC10409475  PMID: 35871725

Abstract

胶质母细胞瘤治疗效果不佳,以肿瘤细胞为中心的治疗策略难以遏制胶质母细胞瘤的恶性进展。除肿瘤细胞之外,胶质瘤微环境中存在大量非肿瘤细胞以及可溶性细胞因子。非肿瘤细胞包括内皮细胞、周细胞、小胶质细胞/巨噬细胞、间充质细胞、星形胶质细胞、神经元等;上述非肿瘤细胞成分与胶质瘤细胞形成一个有机体并调控胶质瘤的恶性进展。胶质瘤微环境的研究已取得一定进展,有助于开发全新的以非肿瘤细胞为靶点的治疗方法并改善胶质瘤患者预后。本文总结了研究较为广泛的内皮细胞、周细胞、小胶质细胞/巨噬细胞、星形胶质细胞、神经元和间充质细胞与胶质瘤细胞之间的关系以及相应的转化研究,展望了未来基于肿瘤微环境治疗胶质瘤的挑战与机遇。

Keywords: 胶质瘤, 肿瘤微环境, 非肿瘤细胞


脑胶质瘤是最常见的原发性中枢神经系统恶性肿瘤[1]。其病理类型和分子特征多种多样,其中胶质母细胞瘤(glioblastoma, GBM)恶性程度最高,新诊断的GBM患者中位生存期约为15个月[2],继发性GBM患者中位生存期仅5~7个月[3]。第五版中枢神经系统肿瘤病理诊断指南明确将分子病理特征纳入胶质瘤的临床诊断中,有助于更精准地进行胶质瘤分类,为胶质瘤患者的治疗、预后提供依据[4]。肿瘤微环境与胶质瘤较差的预后密切相关,本文以胶质瘤微环境中非肿瘤细胞为中心,总结非肿瘤细胞在胶质瘤中发挥的作用、机制以及靶向非肿瘤细胞治疗胶质瘤的转化应用研究。深入研究非肿瘤细胞与胶质瘤的相互关系有助于开发新的以非肿瘤细胞为靶点的治疗方法,改善胶质瘤患者的预后。

1. 胶质瘤微环境非肿瘤细胞

胶质瘤实体组织的细胞构成十分复杂,除了胶质瘤细胞,还包括非肿瘤细胞,如内皮细胞、周细胞、小胶质细胞、巨噬细胞、成纤维细胞,脑组织特有的神经元和星形胶质细胞等;此外,还包括由各种细胞分泌的可溶性细胞因子以及细胞外基质,以上成分相互影响并共同构成胶质瘤微环境[5]。恶性肿瘤微环境在肿瘤进展中发挥关键作用并且与预后密切相关,以肿瘤微环境为靶点的治疗方法有望改善恶性肿瘤患者的预后[6]。本文主要回顾并总结胶质瘤微环境中多种非肿瘤细胞的特点,分析其与胶质瘤细胞之间的关系,阐述其对胶质瘤发生发展的作用。

1.1. 内皮细胞

1.1.1. 胶质瘤微血管主要细胞——内皮细胞

胶质瘤血管形成过程中的内皮细胞来源包括循环内皮(祖)细胞和GBM干细胞分化形成的内皮细胞(glioblastoma-derived endothelial cells, GDEC)[7-8]。在肿瘤血管形成过程中,肿瘤组织释放大量趋化因子,例如,基质细胞源性因子1(stromal cell-derived factor 1, SDF-1),血管内皮生长因子(vascular endothelial growth factor, VEGF),粒细胞-巨噬细胞集落刺激因子(granulocyte-macrophage colony-stimulating factor, GM-CSF)招募骨髓中的内皮(祖)细胞[9]。组织免疫荧光发现46.9%的GBM组织中存在共表达CD34-GFAP或CD31-GFAP的GBM干细胞源性内皮细胞(GDEC);此外,VEGF能够诱导体外培养的胶质瘤干细胞表达内皮细胞标记物,说明GDEC是胶质瘤微血管的组分之一[8]。通过宫内电穿孔以及基因编辑技术CRISPR/Cas9构建小鼠自发胶质瘤模型,对胶质瘤相关血管和肿瘤细胞来源内皮细胞进行单细胞测序,发现二者的分子特征存在异质性,说明胶质瘤血管内皮细胞的构成具有异质性;该研究还发现GDEC在血管中的比例很低[10]。因此GDEC对于肿瘤进展的作用仍需进一步研究。通用的靶向血管形成治疗方法可能无法覆盖所有类型的内皮细胞。

1.1.2. 内皮细胞与胶质瘤细胞互利共生

血管为肿瘤细胞供给营养和氧气以维持肿瘤生长。肿瘤细胞亦能够借助于血管内皮细胞进行迁移实现在脑实质中扩散。胶质瘤细胞分裂增殖常发生在血管分支交叉点附近,提示血管微结构可触发肿瘤细胞的迁移侵袭过程[11]。内皮细胞释放可溶性的一氧化氮可激活周围肿瘤干细胞的Notch信号通路以维持胶质瘤干细胞的表型[12]。胶质瘤干细胞亦可分泌VEGF进而促进肿瘤血管形成[13];此外,携带VEGF-C的GBM外泌体可通过Hippo-TAZ信号轴促进血管内皮细胞活性、迁移和管腔形成[14]。黏附G蛋白偶联受体家族成员(ELTD1)在胶质瘤血管中高表达,尽管ELTD1-/-小鼠的肿瘤增长并未被显著抑制,但肿瘤血管异常确明显好转,肿瘤组织炎性反应增强;对荷瘤小鼠给予程序性死亡受体(PD-1)抑制剂后发现ELTD1敲除能促进肿瘤组织T淋巴细胞浸润,说明ELTD1上调可介导肿瘤的免疫抑制[15]

明确循环内皮细胞与GDEC各自在肿瘤进展中的作用与机制是当务之急;由此,靶向胶质瘤相关血管内皮细胞对于胶质瘤的治疗具有潜在临床意义。

1.2. 周细胞

1.2.1. 胶质瘤微血管辅助细胞——周细胞

周细胞位于血管周围,发挥支撑血管及促血管发育的作用[16]。周细胞主要由骨髓来源的间充质干细胞和造血干细胞转化形成[17]。周细胞起始细胞(PPCs)表达血小板源生长因子受体β(PDGFRβ),能够被血管内皮所释放的PDGFβ募集至血管周围[18]。周细胞神经元胶原抗原2(neural/glia antigen 2, NG2)的表达能够促使其被招募至肿瘤血管周围,与内皮细胞相互作用促使血管成熟[19]。表皮生长因子受体(EGFR)突变的胶质瘤细胞能够转变为肿瘤源性周细胞,发挥稳定肿瘤血管的作用;靶向周细胞的药物依鲁替尼可改善胶质瘤预后[20]。说明胶质瘤EGFR突变是其治疗选择的判断依据之一。

1.2.2. 周细胞调节胶质瘤恶性生物学行为

转化生长因子(TGFβ)能够诱导胶质瘤干细胞分化为周细胞并促进肿瘤血管功能,产生促肿瘤效应[21]。GBM细胞通过上调周细胞自身分子伴侣介导的自噬(chaperone-mediated autophagy, CMA)促进肿瘤生长;抑制周细胞CMA可促进GBM细胞死亡并且释放高浓度的GM-CSF,导致肿瘤产生免疫反应[22]。在低级别胶质瘤中倘若周细胞相关基因表达明显升高则提示该肿瘤倾向于形成继发高级别胶质瘤[23];说明胶质瘤中的周细胞能促进胶质瘤的恶性进展。周细胞能够通过趋化因子配体5-趋化因子受体5(CCL5-CCR5)旁分泌信号诱导GBM对替莫唑胺产生耐药性,马拉韦罗选择性抑制CCR5能显著改善肿瘤的耐药[24]

由此说明,胶质瘤微环境中周细胞与肿瘤细胞以及其它细胞之间的相互作用关系有深入研究的价值,可能成为胶质瘤治疗的有效新选择。

1.3. 小胶质细胞/巨噬细胞

1.3.1. 小胶质细胞和巨噬细胞在胶质瘤中的分类

骨髓源性细胞能够浸润恶性脑肿瘤并调控肿瘤的生物学行为。目前已知的细胞种类包括小胶质细胞、肿瘤相关巨噬细胞(TAM)、骨髓源性抑制细胞(MDSC)、表达Tie2单核细胞(TEM)以及CD11b+CD45+血管调节细胞。血管周围巨噬细胞参与血脑屏障的抗原呈递。这些细胞会不断地被血液循环中的单核细胞更换[25]。小胶质细胞是已经分化的巨噬细胞,在大脑胚胎发育过程中由未成熟巨噬细胞成为脑组织的驻留细胞[26]。单核细胞可以进入脑组织并进一步在脑实质中分化为小胶质细胞[27]。巨噬细胞分为M1/M2型两类,在Ⅰ型T辅助细胞IFNγ和脂多糖(LPS)激活后形成促炎的M1型巨噬细胞(经典活化型);而被Ⅱ型T辅助细胞IL-4和IL-13激活后的M2型巨噬细胞对肿瘤则不完全发挥促肿瘤活性[28]

1.3.2. 小胶质细胞和巨噬细胞在胶质瘤中的作用

小胶质细胞/巨噬细胞数目在较低级别(WHO-Ⅱ/Ⅲ级)原发胶质瘤中低于GBM[29]。选择性活化的CD163+CD204+的M2型小胶质细胞/巨噬细胞数目与胶质瘤的级别呈正相关[30]。小胶质细胞/巨噬细胞可分泌多种细胞因子、生长因子、酶和活性氧,直接或间接导致脑胶质瘤和脑转移瘤的血管形成、肿瘤增殖和肿瘤侵袭[31]。更昔洛韦能够被胸苷激酶转化为有细胞毒性的核苷酸类似物,构建CD11b启动子作用下表达胸苷激酶转基因小鼠,给予更昔洛韦可杀灭约70%的肿瘤相关小胶质细胞/巨噬细胞,最终导致肿瘤体积减少约80%。以上研究结果提示肿瘤相关小胶质细胞/巨噬细胞对胶质瘤的生长有促进作用[32]。抗PD-L1的免疫治疗能够增强胶质瘤放疗后产生远端效应,改善胶质瘤的预后,这与T细胞以及巨噬细胞活化密切相关[33]

小胶质细胞/巨噬细胞能够导致胶质瘤产生免疫抑制的微环境。胶质瘤分泌的细胞因子能够在体内或体外抑制小胶质细胞/巨噬细胞的促炎细胞因子肿瘤坏死因子-α(TNF-α)和主要组织相容性复合体(MHCⅡ)的表达,由此减弱其对T细胞呈递抗原的能力[34]。骨髓源性细胞产生免疫抑制的另一个机制在于Fas和FAS配体(FAS-L)之间的反应。小胶质细胞是胶质瘤中FAS-L的主要来源,FAS-L的表达可导致浸润胶质瘤的淋巴细胞减少,这可能与FAS-L诱导表达Fas的T细胞凋亡有关[35]。多组学分析发现GBM的MET-STAT4-PD-L1信号轴激活与巨噬细胞数目增加密切相关,这可能导致肿瘤产生免疫逃逸,预后更差[36]

综上,小胶质细胞/巨噬细胞对于胶质瘤的进展具有重要调控作用。

1.4. 星形胶质细胞

星形胶质细胞是中枢神经系统的主要细胞成员。在病理条件下能够被快速活化,活化的星形胶质细胞对脑组织能产生双重作用[37]。星形胶质细胞表达MHC,可以作为潜在的抗原递呈细胞[38]。星形胶质细胞分泌的许多细胞因子能够支持原发性脑肿瘤细胞的增殖,如TGF-α、CXCL12等[31]。通过产生可降解肿瘤细胞外基质中乙酰硫酸肝素的乙酰肝素酶,星形胶质细胞能够促进脑肿瘤细胞侵袭[39]。星形胶质细胞缝隙连接蛋白C43能够介导肿瘤细胞从肿瘤中心向周围脑实质侵袭[40]。有研究表明星形胶质细胞能够通过螯合细胞内的钙离子,增强脑肿瘤细胞对化疗药物的耐受性[41]

星形胶质细胞也参与中枢神经系统的免疫抑制。LPS刺激后的单核细胞和小胶质细胞可致星形胶质细胞促炎细胞因子TNF-α的产生减少[42]。在胶质瘤中,星形胶质细胞与小胶质细胞相互作用可释放大量抗炎细胞因子,TGF-β、IL-10和G-CSF,抑制JAK/STAT信号通路可使肿瘤抗炎微环境向促炎微环境转变[43]

总之,星形胶质细胞能够通过多种机制促进胶质瘤恶性进展。例如释放促进胶质瘤细胞增殖和侵袭的物质,通过抑制小胶质细胞的活化和诱导T细胞的凋亡进而抑制适应性免疫反应,以及通过细胞与细胞之间的相互作用抑制肿瘤细胞凋亡。

1.5. 神经元

神经元是中枢神经系统最重要的兴奋性细胞。SCHERER最早发现在胶质瘤中存在神经元,胶质瘤细胞倾向于围绕神经元生长——“神经细胞卫星现象”[44]。基于光遗传学技术能够实现调控大脑皮层神经元活性,神经元被激活后有助于促进少突胶质细胞前体细胞增殖、自适应髓鞘变化等[45]

利用光遗传学方法调控神经元的活性,借以研究神经元与胶质瘤细胞之间的相互关系取得了重大进展。采用光激活小鼠运动前区皮层神经元后会显著促进颅内胶质瘤的生长[46]。激活后的神经元能够向肿瘤微环境中分泌大量Neuroligin-3(NLGN3)与突触前膜的轴突蛋白结合,促进突触发育成熟以及正常功能的维持[47],进而与胶质瘤细胞结合导致包括PI3K-mTOR在内的数条促肿瘤信号通路激活,促进胶质瘤增殖[46]。那么NLGN3对于胶质瘤的生长是否必要?在NLGN3基因敲除小鼠模型中,儿童以及成人GBM移植瘤均无法继续增长。鉴于ADAM10是NLGN3从突触剪切并释放至肿瘤微环境的关键靶点,采用ADAM10抑制剂能够显著阻滞高级别胶质瘤的生长[48]。这为以NLGN3为靶点治疗高级别胶质瘤的临床研究提供了前期研究基础。

神经元突触能够与胶质瘤细胞的微管形成直接的物理接触——神经元胶质瘤细胞突触,这种新发现的突触能够通过谷氨酸受体传递兴奋性电流,导致胶质瘤细胞一过性去极化以及钙离子内流,最终促进胶质瘤细胞的增殖以及侵袭[49]。该研究也为我们提供了一个新的依赖神经元活性进而调节胶质瘤进展的机制。神经元是否能够与胶质瘤微环境中其它的非肿瘤细胞相互作用,共同调节胶质瘤的进展尚不清楚。基于神经元的抗胶质瘤治疗能否应用于临床治疗,需要后续研究进行深入探索。

1.6. 胶质瘤相关间充质细胞

肿瘤微环境中的另一个细胞成分是肿瘤相关间充质细胞。这类细胞来源于骨髓,包括成纤维细胞及间充质干细胞。在其他实体肿瘤中,成纤维细胞对肿瘤的促进作用主要表现为促进肿瘤形成、增殖、侵袭、上皮间质转变、转移以及改变肿瘤代谢等方法[50]。成纤维细胞可能起源于间充质细胞,体外培养的间充质干细胞与活化的成纤维细胞都具有多向分化的能力,如分化为脂肪细胞、软骨细胞、内皮细胞[51]。活化的成纤维细胞与间充质干细胞具有很大程度相似性[50],有学者提出活化的成纤维细胞也可称为间充质干细胞。

由于脑组织的独特性,关于间充质细胞与脑胶质瘤的相互关系的研究尚不深入。间充质干细胞几乎存在于包括脑组织在内的所有组织中,在脑组织中则主要位于血管周围[52]。在胶质瘤是否存在肿瘤相关成纤维细胞,与间充质干细胞的关系目前并不清楚。骨髓源性间充质干细胞能够通过下调PDGF及其受体PDGFR的表达从而抑制胶质瘤的生长[53]。胶质瘤相关间充质干细胞比例增高的患者预后更差,这与癌症基因组图谱(the cancer genome atlas, TCGA)数据相符,表明胶质瘤相关间充质干细胞在高级别胶质瘤中发挥促肿瘤作用[54]。胶质瘤相关间充质干细胞能够通过促进新血管形成以及维持肿瘤干细胞干性进而增强肿瘤侵袭能力[55]。此外,胶质瘤相关间充质干细胞能够促进胶质瘤干细胞的增殖以及保持肿瘤干细胞成瘤能力,其机制为肿瘤相关间充质干细胞释放IL-6并介导STAT3信号通路的活化[56]

肿瘤微环境是抗肿瘤研究的热点方向,对肿瘤相关间充质干细胞、肿瘤相关成纤维细胞在胶质瘤中的起源、异质性以及与胶质瘤细胞之间的关系亟待深入研究,这有助于开发基于肿瘤相关间充质细胞的抗肿瘤治疗新途径。

2. 胶质瘤微环境在胶质瘤治疗中的应用

多数原发性高级别胶质瘤富含微血管并表达高水平的VEGF[57]。因此以VEGF为靶点的抗血管形成研究获得关注。对脑转移瘤以及胶质瘤动物模型给予西地尼布或者贝伐单抗,可实现实验动物肿瘤血管的正常化并且抑制肿瘤生长[58]。然而,胶质瘤患者经贝伐单抗治疗后常出现多灶性复发,说明抗血管形成治疗能够导致胶质瘤侵袭性增加[59]。由于血管内皮细胞种类存在异质性,通用的抗血管形成靶向治疗可能无法作用于不同类别的内皮细胞,更加精准的靶向内皮细胞是破解该难题的解决途径。

脑肿瘤微环境的不同细胞也可能作为运送治疗药物的工具。利用神经干细胞(neural stem cell, NSCs)运送治疗药物被证明能够有效抑制动物模型的脑肿瘤增长[60]。间充质干细胞同样能靶向脑肿瘤细胞。与神经干细胞相似,携带治疗药物的间充质干细胞能够有效抑制动物模型的肿瘤增长[61]

在一项治疗复发GBM的临床实验中,采用以巨噬细胞为靶点的CSF-1R抑制剂联合胶质瘤的标准治疗方案正在进行[62]。间充质型GBM中肿瘤相关巨噬细胞的PROS1-AXL信号通路激活提示胶质瘤预后更差,AXL小分子抑制药联合纳武单抗能够显著增加肿瘤中小胶质细胞/巨噬细胞数量,改善荷瘤小鼠预后[63]。一项Ⅱ期临床试验采用趋化因子受体4(CXCR4)抑制剂Plerixafor,该药物可阻滞骨髓源性巨噬细胞被肿瘤招募,进而抑制放疗后的肿瘤血管再生,研究结果发现患者对该药物耐受性良好,并且可辅助控制肿瘤复发[64]

神经元也是高度特异的细胞类型。研究发现神经元分泌的可溶性的NLGN3可使肿瘤细胞的PI3K信号通路激活,上调FOS并正反馈NLGN3的基因表达,促进肿瘤细胞的增殖。靶向神经元ADAM10能够显著阻滞小鼠肿瘤的生长[48]。基于神经元的靶向抗肿瘤临床治疗研究亟待尝试。

3. 挑战与机遇

胶质瘤微环境的细胞构成十分复杂,尽管现在对胶质瘤微环境与胶质瘤恶性进展的关系已有一定研究基础,但是二者的复杂相互作用仍需要大量研究。从基础研究到临床应用,实现实验室肿瘤治疗效果的等效临床转化研究是目前亟须解决的新问题。肿瘤微环境的研究为胶质瘤的治疗提供了多个潜在靶点,其中一些靶点已处于临床评估阶段。

关于胶质瘤微环境的研究方向,将会从目前的阐释一种细胞的作用提升到理解多种细胞组分在胶质瘤中的共同作用。这对于现有的肿瘤实验模型提出了更高的要求,要尽可能还原胶质瘤患者肿瘤的细胞类型以及结构,还包括其中的非细胞成分,如细胞因子等。上述研究方向将是胶质瘤微环境研究面临的巨大挑战。从应用角度而言,深入研究胶质瘤微环境将有助于设计个性化的以肿瘤微环境为靶点的药物,以获得更好的肿瘤治疗效果,这也是未来基于肿瘤微环境治疗胶质瘤的机遇。

*    *    *

利益冲突  所有作者均声明不存在利益冲突

Funding Statement

华西医院专职博后基金(No. 2020HXBH159)资助

Contributor Information

明荣 左 (Ming-rong ZUO), Email: zuomingrong@scu.edu.cn.

艳辉 刘 (Yan-hui LIU), Email: liuyh@scu.edu.cn.

References

  • 1.OSTROM Q T, GITTLEMAN H, TRUITT G, et al CBTRUS statistical report: Primary brain and other central nervous system tumors diagnosed in the United States in 2011–2015. Neuro Oncol. 2018;20(Suppl_4):iv1–iv86. doi: 10.1093/neuonc/noy131. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 2.BALLMAN K V, BUCKNER J C, BROWN P D, et al The relationship between six-month progression-free survival and 12-month overall survival end points for phase Ⅱ trials in patients with glioblastoma multiforme. Neuro Oncol. 2007;9(1):29–38. doi: 10.1215/15228517-2006-025. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 3.WONG E T, HESS K R, GLEASON M J, et al Outcomes and prognostic factors in recurrent glioma patients enrolled onto phase Ⅱ clinical trials. J Cli Oncol. 1999;17(8):2572–2578. doi: 10.1200/JCO.1999.17.8.2572. [DOI] [PubMed] [Google Scholar]
  • 4.LOUIS D N, PERRY A, WESSELING P, et al The 2021 WHO classification of tumors of the central nervous system: A summary. Neuro Oncol. 2021;23(8):1231–1251. doi: 10.1093/neuonc/noab106. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 5.QUAIL D F, JOYCE J A Microenvironmental regulation of tumor progression and metastasis. Nat Med. 2013;19(11):1423–1437. doi: 10.1038/nm.3394. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 6.ALBINI A, SPORN M B The tumour microenvironment as a target for chemoprevention. Nat Rev Cancer. 2007;7(2):139–147. doi: 10.1038/nrc2067. [DOI] [PubMed] [Google Scholar]
  • 7.AHGI M, COHEN K S, KLEIN R J, et al Tumor stromal-derived factor-1 recruits vascular progenitors to mitotic neovasculature, where microenvironment influences their differentiated phenotypes. Cancer Res. 2006;66(18):9054–9064. doi: 10.1158/0008-5472.CAN-05-3759. [DOI] [PubMed] [Google Scholar]
  • 8.XIN M, CHEN Y S, CHEN F R, et al Glioblastoma stem cell differentiation into endothelial cells evidenced through live-cell imaging. Neuro Oncol. 2017;(8):iii55–iii55. doi: 10.1093/neuonc/nox016. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 9.BERTOLINI F, SHAKED Y, MANCUSO P, et al The multifaceted circulating endothelial cell in cancer: Towards marker and target identification. Nat Rev Cancer. 2006;6(11):835–845. doi: 10.1038/nrc1971. [DOI] [PubMed] [Google Scholar]
  • 10.CARLSON J C, GUTIERREZ M C, LOZZI B, et al Identification of diverse tumor endothelial cell populations in malignant glioma. Neuro Oncol. 2020;23(6):932–944. doi: 10.1093/neuonc/noaa297. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 11.FARIN A, SUZUKI S O, WEIKER M, et al Transplanted glioma cells migrate and proliferate on host brain vasculature: A dynamic analysis. Glia. 2006;53(8):799–808. doi: 10.1002/glia.20334. [DOI] [PubMed] [Google Scholar]
  • 12.CHARLES N, OZAWA T, SQUATRITO M, et al Perivascular nitric oxide activates notch signaling and promotes stem-like character in PDGF-induced glioma cells. Cell Stem Cell. 2010;6(2):141–152. doi: 10.1016/j.stem.2010.01.001. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 13.BAO S, WU Q L, SATHORNSUMETEE S, et al Stem cell-like glioma cells promote tumor angiogenesis through vascular endothelial growth factor. Cancer Res. 2006;66(16):7843–7848. doi: 10.1158/0008-5472.CAN-06-1010. [DOI] [PubMed] [Google Scholar]
  • 14.WANG Z M, YUAN Y F, XIONG J, et al The Hippo-TAZ axis mediates vascular endothelial growth factor C in glioblastoma-derived exosomes to promote angiogenesis. Cancer Lett. 2021;513:1–13. doi: 10.1016/j.canlet.2021.05.002. [DOI] [PubMed] [Google Scholar]
  • 15.HUANG H, GEORGANAKI M, CONZE L L, et al ELTD1-deletion reduces vascular abnormality and improves T-cell recruitment after PD-1 blockade in glioma. Neuro Oncol. 2021;24(3):398–411. doi: 10.1093/neuonc/noab181. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 16.VEERAVAGU A, BABABEYGY S R, KALANI M Y, et al The cancer stem cell-vascular niche complex in brain tumor formation. Stem Cells Dev. 2008;17(5):859–867. doi: 10.1089/scd.2008.0047. [DOI] [PubMed] [Google Scholar]
  • 17.LAMAGNA C, BERGERS G The bone marrow constitutes a reservoir of pericyte progenitors. J Leukoc Biol. 2006;80(4):677–681. doi: 10.1189/jlb.0506309. [DOI] [PubMed] [Google Scholar]
  • 18.HELLSTRM M, KALEN M, LINDAHL P, et al Role of PDGF-B and PDGFR-beta in recruitment of vascular smooth muscle cells and pericytes during embryonic blood vessel formation in the mouse. Development. 1999;126(14):3047–3055. doi: 10.1242/dev.126.14.3047. [DOI] [PubMed] [Google Scholar]
  • 19.HUANG F J, YOU W K, BONALDO P, et al Pericyte deficiencies lead to aberrant tumor vascularizaton in the brain of the NG2 null mouse. Dev Biol. 2010;344(2):1035–1046. doi: 10.1016/j.ydbio.2010.06.023. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 20.BERTA S C, MARIA G A, BEATRIZ H, et al Tumor-derived pericytes driven by eGFR mutations govern the vascular and immune microenvironment of gliomas. Cancer Res. 2021;81(8):2142–2156. doi: 10.1158/0008-5472.CAN-20-3558. [DOI] [PubMed] [Google Scholar]
  • 21.CHENG L, HUANG Z, ZHOU W C, et al Glioblastoma stem cells generate vascular pericytes to support vessel function and tumor growth. Cell. 2013;153(1):139–152. doi: 10.1016/j.cell.2013.02.021. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 22.VALDOR R, DAVID G B, DOLORES R, et al Glioblastoma ablates pericytes antitumor immune function through aberrant up-regulation of chaperone-mediated autophagy. Proc Natl Acad Sci U S A. 2019;116(41):20655–20665. doi: 10.1073/pnas.1903542116. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 23.OUDENAARDEN C, SJLUND J, PIETRAS K Upregulated functional gene expression programmes in tumour pericytes mark progression in patients with low-grade glioma. Mol Oncol. 2021;16(2):405–421. doi: 10.1002/1878-0261.13016. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 24.ZHANG X N, YANG K D, CHEN C, et al Pericytes augment glioblastoma cell resistance to temozolomide through CCL5-CCR5 paracrine signaling. Cell Res. 2021;31(10):1072–1087. doi: 10.1038/s41422-021-00528-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 25.HICKEY W F, KIMURA H Perivascular microglial cells of the CNS are bone marrow-derived and present antigen in vivo . Science. 1988;239(4837):290–292. doi: 10.1126/science.3276004. [DOI] [PubMed] [Google Scholar]
  • 26.STREIT W J, CONDE J R, FENDRICK S E, et al Role of microglia in the central nervous system's immune response. Neurol Res. 2005;27(7):685–691. doi: 10.1179/016164105X49463a. [DOI] [PubMed] [Google Scholar]
  • 27.SOULAS C, DONAHUE R E, DUNBAR C E, et al Genetically modified cd34+ hematopoietic stem cells contribute to turnover of brain perivascular macrophages in long-term repopulated primates. Am J Pathol. 2009;174(5):1808–1817. doi: 10.2353/ajpath.2009.081010. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 28.MANTOVANI A, SICA A Macrophages, innate immunity and cancer: Balance, tolerance, and diversity. Curr Opi Immunol. 2010;22(2):231–237. doi: 10.1016/j.coi.2010.01.009. [DOI] [PubMed] [Google Scholar]
  • 29.NISHIE A, ONO M, SHONO T, et al Macrophage infiltration and heme oxygenase-1 expression correlate with angiogenesis in human gliomas. Clin Cancer Res. 1999;5(5):1107–1113. [PubMed] [Google Scholar]
  • 30.KOMOHARA Y, OHNISHI K, KURATSU J, et al Possible involvement of the M2 anti-inflammatory macrophage phenotype in growth of human gliomas. J Pathol. 2010;216(1):15–24. doi: 10.1002/path.2370. [DOI] [PubMed] [Google Scholar]
  • 31.HOELZINGER D B, DEMUTH T, BERENS M E Autocrine factors that sustain glioma invasion and paracrine biology in the brain microenvironment. J Natl Cancer Inst. 2007;99(21):1583–1593. doi: 10.1093/jnci/djm187. [DOI] [PubMed] [Google Scholar]
  • 32.MARKOVIC D S, VINNAKOTA K, CHIRASANI S, et al Gliomas induce and exploit microglial MT1-MMP expression for tumor expansion. Proc Natl Acad Sci U S A. 2009;106(30):12530–12535. doi: 10.1073/pnas.0804273106. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 33.ENE C I, KREUSER S A, JUNG M, et al Anti-PD-L1 antibody direct activation of macrophages contributes to a radiation-induced abscopal response in glioblastoma. Neuro Oncol. 2020;22(5):639–651. doi: 10.1093/neuonc/noz226. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 34.OKEEFE G M, NGUYEN V T, BENVENISTE E N Class Ⅱ transactivator and class Ⅱ MHC gene expression in microglia: Modulation by the cytokines TGF-beta, IL-4, IL-13 and IL-10. Eur J Immunol. 2010;29(4):1275–1285. doi: 10.1002/(SICI)1521-4141(199904)29:04<1275::AID-IMMU1275>3.0.CO;2-T. [DOI] [PubMed] [Google Scholar]
  • 35.BADIE B, SCHARTNER J, PRABAKARAN S, et al Expression of Fas ligand by microglia: Possible role in glioma immune evasion. J Neuroimmunol. 2001;120(1):19–24. doi: 10.1016/s0165-5728(01)00361-7. [DOI] [PubMed] [Google Scholar]
  • 36.WANG Q W, SUN L H, ZHANG Y, et al MET overexpression contributes to STAT4-PD-L1 signaling activation associated with tumor-associated, macrophages-mediated immunosuppression in primary glioblastomas. J Immunother Cancer. 2021;9(10):e002451[2021-10-25] . https://doi.org/10.1136/jitc-2021-002451. doi: 10.1136/jitc-2021-002451. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 37.SORONIEW M V, VINTERS H V Astrocytes: Biology and pathology. Acta Neuropathol. 2010;119(1):7–35. doi: 10.1007/s00401-009-0619-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 38.YONG V W, YONG F P, RUIJS T C, et al Expression and modulation of HLA-DR on cultured human adult astrocytes. J Neuropathol Exp Neurol. 1991;50(1):16–28. doi: 10.1097/00005072-199101000-00002. [DOI] [PubMed] [Google Scholar]
  • 39.MARCHETTI D, LI J, SHEN R Astrocytes contribute to the brain-metastatic specificity of melanoma cells by producing heparanase. Cancer Res. 2000;60(17):4767–4770. [PubMed] [Google Scholar]
  • 40.SIN W C, AFTAB Q, BECHBERGER J F, et al Astrocytes promote glioma invasion via the gap junction protein connexin43. Oncogene. 2016;35(12):1504–1516. doi: 10.1038/onc.2015.210. [DOI] [PubMed] [Google Scholar]
  • 41.LIN Q, BALASUBRAMANIAN K, FAN D, et al Reactive astrocytes protect melanoma cells from chemotherapy by sequestering intracellular calcium through gap junction communication channels. Neoplasia. 2010;12(9):748–754. doi: 10.1593/neo.10602. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 42.KOSTIANOVSKY A M, MAIER L M, ANDERSON R C, et al Astrocytic regulation of human monocytic/microglial activation. J Immunol. 2008;181(8):5425–5432. doi: 10.4049/jimmunol.181.8.5425. [DOI] [PubMed] [Google Scholar]
  • 43.HEILAND D H, RAVI V M, BEHRINGER S P, et al. Tumor-associated reactive astrocytes aid the evolution of immunosuppressive environment in glioblastoma. Nat Commun, 2019, 10(1): 2541[2021-10-25]. https://doi.org/10.1038/s41467-019-10493-6.
  • 44.SCHERER H J. Structural Development in Gliomas. Cancer, 1938, 34: 333-351[2021-10-25]. https://doi.org/10.1158/ajc.1938.333.
  • 45.MIRESCU C, GOULD E Stress and adult neurogenesis. Hippocampus. 2006;16(3):233–238. doi: 10.1002/hipo.20155. [DOI] [PubMed] [Google Scholar]
  • 46.VENKATESH H S, JOHUNG T B, CARETTI V, et al Neuronal activity promotes glioma growth through neuroligin-3 secretion. Cell. 2015;161(4):803–816. doi: 10.1016/j.cell.2015.04.012. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 47.CHANDA S, HALE W D, ZHANG B, et al Unique versus redundant functions of neuroligin genes in shaping excitatory and inhibitory synapse properties. J Neurosci. 2017;37(29):6816–6836. doi: 10.1523/JNEUROSCI.0125-17.2017. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 48.VENKATESH H S, TAM L T, WOO P J, et al Targeting neuronal activity-regulated neuroligin-3 dependency in high-grade glioma. Nature. 2017;549(7673):533–537. doi: 10.1038/nature24014. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 49.VENKATESH H S, MORISHITA W, GERAGHTY A C, et al Electrical and synaptic integration of glioma into neural circuits. Nature. 2019;573(7775):539–545. doi: 10.1038/s41586-019-1563-y. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 50.KALLURI R The biology and function of fibroblasts in cancer. Nat Rev Cancer. 2016;16(9):582–598. doi: 10.1038/nrc.2016.73. [DOI] [PubMed] [Google Scholar]
  • 51.LORENZ K, SICKER M, SCHMELZER E, et al Multilineage differentiation potential of human dermal skin-derived fibroblasts. Exp Dermatol. 2008;17(11):925–932. doi: 10.1111/j.1600-0625.2008.00724.x. [DOI] [PubMed] [Google Scholar]
  • 52.KANG S G, SHINOJIMA N, HOSSAIN A, et al Isolation and perivascular localization of mesenchymal stem cells from mouse brain. Neurosurgery. 2010;67(3):711–720. doi: 10.1227/01.NEU.0000377859.06219.78. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 53.HO I, TOH H C, NG W H, et al Human bone marrow-derived mesenchymal stem cells suppress human glioma growth through inhibition of angiogenesis. Stem Cells. 2013;31(1):146–155. doi: 10.1002/stem.1247. [DOI] [PubMed] [Google Scholar]
  • 54.SHAHAR T, ROZOVSKI U, HESS K R, et al Percentage of mesenchymal stem cells in high-grade glioma tumor samples correlates with patient survival. Neuro Oncol. 2017;19(5):660–668. doi: 10.1093/neuonc/now239. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 55.KONG B H, SHIN H D, KIM S H, et al Increased in vivo angiogenic effect of glioma stromal mesenchymal stem-like cells on glioma cancer stem cells from patients with glioblastoma . Int J Oncol. 2013;42(5):1754–1762. doi: 10.3892/ijo.2013.1856. [DOI] [PubMed] [Google Scholar]
  • 56.HOSSAIN A, GUMIN J, GAO F, et al Mesenchymal stem cells isolated from human gliomas increase proliferation and maintain stemness of glioma stem cells through the IL‐6/gp130/STAT3 pathway. Stem Cells. 2015;33(8):2400–2415. doi: 10.1002/stem.2053. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 57.JAIN R K, TOMASO E D, DUDA D G, et al Angiogenesis in brain tumours. Nat Rev Neurosci. 2007;8(8):610–622. doi: 10.1038/nrn2175. [DOI] [PubMed] [Google Scholar]
  • 58.PAZE-RIBES M, ALLEN E, HUDOCK J, et al Antiangiogenic therapy elicits malignant progression of tumors to increased local invasion and distant metastasis. Cancer Cell. 2009;15(3):232–239. doi: 10.1016/j.ccr.2009.01.021. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 59.NORDEN A D, YOUNG G S, SETAYESH K, et al Bevacizumab for recurrent malignant gliomas efficacy, toxicity, and patterns of recurrence. Neurology. 2008;70(10):779–787. doi: 10.1212/01.wnl.0000304121.57857.38. [DOI] [PubMed] [Google Scholar]
  • 60.KIM S K, KIM S U, PARK I H, et al Human neural stem cells target experimental intracranial medulloblastoma and deliver a therapeutic gene leading to tumor regression. Clin Cancer Res. 2006;12(18):5550–5556. doi: 10.1158/1078-0432.CCR-05-2508. [DOI] [PubMed] [Google Scholar]
  • 61.NAKAMIZO A, MARINI F, AMANO T, et al Human bone marrow-derived mesenchymal stem cells in the treatment of gliomas. Cancer Res. 2005;65(8):3307–3318. doi: 10.1158/0008-5472.CAN-04-1874. [DOI] [PubMed] [Google Scholar]
  • 62.NICHOLA S, COLMAN H, GROOT J F D, et al Orally administered colony stimulating factor 1 receptor inhibitor PLX3397 in recurrent glioblastoma: An Ivy Foundation Early Phase Clinical Trials Consortium phase Ⅱ study. Neuro Oncol. 2015;18(4):557–564. doi: 10.1093/neuonc/nov245. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 63.SADAHIRO H, KANG K D, GIBSON J T, et al Activation of the receptor tyrosine kinase AXL regulates the immune microenvironment in glioblastoma. Cancer Res. 2018;78(11):3002–3013. doi: 10.1158/0008-5472.CAN-17-2433. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 64.THOMAS R P, NAGPAL S, MICHAEL I V, et al Macrophage exclusion after radiation therapy (MERT): A first in human phase I/II trial using a CXCR4 inhibitor in glioblastoma. Clin Cancer Res. 2019;25(23):6948–6957. doi: 10.1158/1078-0432.CCR-19-1421. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Sichuan University (Medical Sciences) are provided here courtesy of Editorial Board of Journal of Sichuan University (Medical Sciences)

RESOURCES